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Fluid dynamics deals with the motions of gases and
liquids and with how these motions are related to
forces. For this film, we have designed steady-flow
experiments in which all body forces {gravitational,
electromagnetic, etc.} as well as viscous forces, are
relatively unimportant, and in which the fluids are
essentially incompressible. The main force accounting
for the fluid acceleration is the pressure gradient.

1. Water flows from left to right. The manometer tubes
marked “STAT"ave connected to static pressure taps at the
upstream and downstream cross-sectioms. Those marked
“STAG” are connected to upstream-facing pitot tubes.

2. Water flows from left to right. Tiny hydrogen bubbles
are electrolyzed at a wire near the entrance. Segments of
the wire are insnlated, and the éumrrent is pulsed. Thus
square patches of bubbles are released.

Pressure Variation Aleng Streamlines

Our first experiments have to do with changes of
pressure and velocity in the streamwise direction. Fig.
1 shows water flowing through a channel of decreasing
cross-sectional area. The static-pressure manometers
indicate that the pressure decreases in the direction
of flow.

Since water is nearly incompressible, the volume
flow entering the contraction must equal the volume
flow leaving. But the volume flow Q is equal to AV,
where V' is the average velocity and A is the cross-
sectional area; hence the area decrease should pro-
duce a velocity increase. The velocity field is shown
in Fig. 2. Each fluid patch accelerates as it goes
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through the contraction. Because of the longitudinal
velocity gradient, the front edge of each patch moves
faster than the rear edge; hence each patch stretches
out. Since water is virtually incompressible, and the
flow is two-dimensional, the area of each patch can-
not change; thus each becomes narrower as well as
longer. The successive bubble patches mark out the
streaklines of the flow and, (since the motion is
steady) the streamlines as well.

The velocity increase inferred from Fig. 2 is re-
Jated to the pressure decrease of Fig. 1 by Newton’s
law of motion. For some kinds of analysis, it is con-
venient to use distance along the streamlines, s, and
distance along the normal trajectories to the stream-
lines, #», as curvilinear coordinates. Since viscous

%'.iv Water flows through a manifold from left to right

¢ manometer tubes, open at the to T the 1 .
tudinal pressure distcibution whe: ﬂpu_ 3 ow the longi-
through the open bleed valves. n fuid 95 withdrawn

stresses are negligible, the normal stress at a point is
the same in all directions. It is the scalar hydrostatic
pressure, p. The net force acting along s, arising from
the pressure gradient 8p/8s, is related to the fluid ac-
celeration along s by Euler's equation of steady in-
viscid motion along the streamline:

Sp/ss = — pV (8V/3s) (Eq. 1)

The minus sign tells us that a velocity decrease in the
streamwise direction is accompanied by a pressure
increase, and vice versa.

Fig. 3 shows flow through a manifold, with bleed
valves installed to allow withdrawal of fluid at several
stations between the manometer tubes. With the bleed
valves closed, the average water velocity is the same
at all cross-sections, and there is a barely perceptible
pressure drop due to viscous forces. The volume flow
is then reduced in each successive cross-section by
bleeding water away through the valves. The pressure
now rises. Since the area 4 is in this case constant,
the velocity V' is proportional to the volume flow (;
hence the velocity V' decreases along s, and 8V /3s is
negative. In agreement with Eq. 1, 3p/3s is positive.

In an incompressible, steady, inviscid flow, Euler’s
equation may be integrated with respect to distance
along each streamline, to obtain the Bernouli integral,

(Eq. 2)

Along each streamline the sum of the static pressure
p and the dynamic pressure p¥2/2 is a constant. This
sum is called the stagnation pressure, or total pressure.
On any one streamline, wherever the velocity is high,
the pressure is low, and vice versa. The highest pos-
sible pressure, the stagnation pressure, occurs where
the velocity is zero. A large reservoir supplying 2
fluid to a duct system is itself a stagnation region.

Fig. 4 shows a streaming flow past a blunt-nosed
body, with a central stream tube marked by hydrogen
bubbles. The widening of this stream tube shows that
the flow is decelerating. Where the central streamline
reaches the nose is a stagnation point. There the speed
is zero. On both sides of the unique stagnation stream-
line the fluid decelerates, although not to zero speed,
and then accelerates as it slides around the sides.

p + p¥'2/2 = constant = Pstag

4.
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The experimental realization of a stagnation point
Is put to practical use in a pitot tube. The hole at the
upstream-facing nose measurcs the stagnation pressure
of the particular streamline reaching the hole, as de-
fined by Eq. 2. In the contracting flow of Fig. 1, pitot
tubes at the upstream and downstream cross-sections
of the contraction show the respective stagnation pres-
sures. By Eq. 2, the difference between the local
stagnation pressure and the local static pressure is the
local dynamic pressure. Thus (Fig. 1), we may deter-
mine the fluid speed through a measurement of this
differenice. Furthermore, Fig. 1 verifies that although
both the dynamic pressure and the static pressure vary
in the contraction, the sum of the two — the stagnation
pressure — remains constant.

Bernoulli’s integral also explains how suction can be
produced by blowing, as in the aspirator experiment of
Fig. 5. To illustrate in detail how a venturi can pro-
duce low pressure, Fig. 6 shows an experiment with
flow through an unsymmetrical venturi in which one
wall is straight. Since AV is constant, the average
cross-sectional velocity increases to the throat; in ac-
cord with Eq. 1, the pressure decreases. Downstream
of the throat, the area increase produces a velocity de-
crease, and the pressure rises. At the upstream and
downstream ends, where the cross-sectional areas are

)

6. (a) A two-dimensional horizontal venturi-tube test
section is installed at the exit of the large settling section.
Pressure leads from each wall of the channel are con-
nected to the two manometer boards inelined at 45°.
(b) Overhead view of pressure distribution on the straight
and curved walls of the venturi. Water flow is from to
to bottom.

7. Pressure distributions for a venturi in which the dif-
fuser diverges so rapidly that flow separation ocenrs and
there is little pressuré recovery. Compare with Fig. 6b.

equal, the average velocities are also equal. Bernoulli’s
integral predicts equal pressures, but the downstream
pressure is substantially less than the upstream pres-
sure. The static-pressure recovery in the diffuser is
only about half of the static-pressure decrease to the
S._Air is blown from left to right through a venturi. The throat. This difference is due to viscous boundary

sab-at i t . . .
from :i,o:fli';.“c pressure at the throat sucks up water layers whose behavior we must always keep in mind
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8. Hydroégen bubbles mark ihe flow in a diffuser. Flow is
from left to right, (a) Small divergence angle. The flow
remains attached. (b) Large divergence angle, The flow
detaches.

even when we pretend temporarily that viscosity is
absent. In the experiment of Fig. 7, the area diver-
gence is too rapid, and the static pressure recovery in
the diffuser is only about a quarter of the decrease in
static pressure to the throat. Even a very small amount
of viscosity, if it leads to boundary-layer separation
(Fig. 8), can produce radical changes from a hypo-
thetical non-viscous flow.

In the experiment of Fig. 9, water flows through a
venturi that discharges to the atmosphere. Since the

9. Flow of water, from left to right, through a venmuri
which discharges to the atmosphere. The gauge shows the
vacuum at the throat, in inches of Hg. below atmospheric.
When the vacoum reaches mearly 30”7 Hg., cavitation
zones appear near the throat. These are seen in the photo
as dark patches.

pressure at the exit is atmospheric, the throat pressure
is sub-atmospheric. As we increase the flow, all pres-
sure differences increase with the square of the veloc-
ity. When the absolute pressure at the throat goes
below the vapor pressure of water (about one inch of
mercury), boiling occurs. This is cavitation. Steam
bubbles appear in the water. Their subsequent col-
lapse creates enormous pressures which can be clearly
heard as sound and which can produce very high
stresses on nearby walls. Such mechanical stresses
often do great damage to liquid-handling machinery,
to marine hydrofoils and propellers, and to hydraulic
structures.

10. The white plasiic disk is free to move vertically. The
thick clear disk at top is supported from the base on three
posts. Air blown down throngh the vertieal tube at the
top escapes rapidly in the space between the white disk
and the clear disk. The black stresmers indicate the es-
caping air flow. (a) No air flow. The streamiers are limp,
and the white disk rests on stops. (b) The air flow is on,
and the streamers are extended. The white disk is lifted
upward by the downward air flow, until only a small gap
separates it from the clear disk.

When air is blown from a hole in the middle of one
disk against a paraliel disk (Fig. 10), the resulting
pressure distribution can be such as to force the disks
together. To see how this happens, we have instru-
mented the lower plate (Fig. 11a) with pressure taps
attached to manometer tubes below. Note that the
water in each manometer tube is pushed down when
the pressure goes above atmospheric. At the disk axis,
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the pressure is greater than atmospheric by an amount
equal to the dynamic pressure of the air jet. Over most
of the plate, though, the pressure is less than atmos-
pheric, and rises to atmospheric pressure at the outer
edge. The reason is that the through-flow cross-sec-
tional area between the disks increases with radius.
This area increase causes a fluid deceleration and, by
Bernoulli’s integral, a pressure rise to the atmospheric

11. (a) A fixed lower disk for the experiment of Fig. 19,
with six static pressure taps and manometer tubes at-
tached below. Three small gap spacers are visible, on
which the opper disk of Fig. 10 is placed. (b) The six
manometer tnbes are connected through a commeon head-
er (ont of frame at bottom) to the large reservoir at the
far lefr. The single manometer tube at the left is open at
the top and indicates atmospheric pressare. The mano-
meters show the pressure in the gap is below atmospheric
except near the axis of the air jet. There the pressure
is 50 high that the liquid level is our of sight.

Pressure at the outer edge. The sub-atmospheric pres-
Sure over most of the area accounts for the disks being
forced together. Actually. the viscous forces are by no
meaps negligible. For the equilibrium position, how-
ever, the inertial forces are generally larger than the
viscous forces and govern the shape of the pressure
distribution.

Pressure Variation Normal to Streamlines

Thus far we have discussed the relationship between
pressure changes and velocity changes along a stream-
line, or on the average along a channel. However, Fig.
7 shows how different the pressure distributions may
be along the two walls of an unsymmetrical channel.
To understand this, we must consider the particle dy-
namics in a direction normal to the streamline.

Let R be the local radius of streamline curvature.
The pressure gradient 8p/sn, acting on the fluid par-
ticle toward the center of curvature is related to the
acceleration /R by Euler’s equation of inviscid mo-
tion normal to the streamline,

8p/sn = pV2/R (Eq. 3)

which shows that the pressure always increases out-
ward from the center of curvature.

The channel bend of Fig. 12 produces curved
streamlines. In the straight section approaching the
bend the streamlines are nearly straight and the pres-
sure gradient normal to the streamlines is virtually
zero. The difference between the entering stagnation
pressure and the static pressure at the upstream tubes
is a dynamic pressure of about eleven inches of water.
At the middle of the bend, where streamline curvature
is pronounced, there is a pressure difference between
the two sides of the channel, normal to the streamlizes,
of about three and a half inches of water. Downstream
of the bend the pressure is almost uniform again (the
slight variation is due to 2 complicated secondary flow
induced by the bend).

Returning to Fig. 6b, we see that the throat pressure

~

i2. Flow in a two.dimensional 80° bend, entering from
large settling chamber at left and discharging toward
viewer at right. Each set of three static pressure mano-
melers shows the transverse pressure distribntion in a
plane normal to the flow. The first and last sels are I
straight sections of the channel, while the middle set is in
the mid-point of the bend. The single manometer tube
at left shows the stagnation pressure.
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on the curved wall is considerably less than at the
straight wall, with the pressure increasing in the direc-
tion away from the center of streamline curvature, as
demanded by Eq. 3. When we use venturis for flow
measurement, the pressure we measure at the wall is
thus not the average pressure at the throat.

When you place your finger near the side of a jet
from a water faucet, the jet bends toward your finger.
This is the Coanda effect. In Fig. 13 the jet attaches
to and bends around a freely-suspended hollow cylin-
der which has in it a small static pressure hole con-
nected to a manometer. Since the streamlines are
curved, there is a normal pressure gradient, with the
pressure at the cylinder surface less than the atmos-
pheric pressure at the outside boundary of the jet.
Because of this sub-atmospheric pressure, the jet is
bent around the cylinder, and there is a net force on
the cylinder acting toward the jet.

The Coanda eifect is also part of the explanation
for the fact that a billiard ball may be supported by a
rather small air jet (Fig. 14).

13. Jet of water from a slit nozzle. Behind and below it
is a hollow closed cylinder hanging freely and vertically
from pivots. When the cylinder is brought next to the
jet, the latter attaches to and bends around the cylinder.

e sub-atmospheric pressure on the cylinder surface is
sensed at a pressure tap and transmitted to the mano-
meter. The resulting pressure distribution on the cylinder
produces on it a force directed toward the jet, as shown
by the inclination of the pendulum sappori.

14. A hilliard ball is supported by an air jet supplied by
a 14" diameter nozzle it 60 psig. The superposed drawing
shows the forces on the ball accounting for its equilibriam.

Complete Pressure Field

We have now looked separately at the pressure
gradients along and normal to the streamlines. To
understand a complete flow pattern, however, we must
consider both gradients simultaneously, and we must
also consider the equation of continuity.

15. Wall pressure distributions for fow through a rapid
unsymmetrical contraction. The dashed curve compares
the distribution on the carved wall with that on the
straight wall.

Fig. 15 compares the pressure distributions on the
two walls of a rapid unsymmetrical contraction. Up-
stream, the pressures are equal on both walls. Down-
stream, they are also equal but lower. Because of the
general area decrease, the average velocity increases.
In agreement with Eq. 1, the average pressure falls.

On the straight wall the pressure falls continuously.
But on the curved wall it first rises, then undershoots
to a very low value, then rises once again to its final
value.

These two pressure distributions may be interpreted
using the two dynamical equations and the equation of
continuity. The middle curve of pressure versus dis-
tance in Fig. 16 shows the strcamwise variation of the
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average pressure at each cross-section as determined
(through Bernoulli’s integral) by the average velocity
at each cross-section. Far upstream and far down-
stream, where the streamlines have virtually no curva-
ture, the pressure is uniform over the cross-sections.
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From the shape of the channel, we may expect that
the streamlines will be generally of the shape sketched
in F1g. 16; concave to the right in the neighborhood of
AB; concave to the left in the neighborhood of DC.
The curves AB and DC are drawn normal to the
streamlines in regions of different concavity. The
arrows on these curves show the directions of increas-
ing n. From one-dimensional considerations and a
comparison of cross-sectional areas, the average pres-
sure on AB is only slightly less than the upstream
pressure. But, because of streamline curvature, the
pressure increases from A to B. Hence the pressure
at B is greater than the upstream pressure, and that at
A s less. Similarly, the average pressure on CD is
only slightly greater than the downstream pressure, but
again, because of streamline curvature, the pressure
increases from C to D. Hence the pressure at D is
greater than the average, and that at C is less than the
average. Putting all this together, we can understand
why the pressure on the curved wall first rises to a
maximum at B and then falls to a minimum at C, while
on the straight wall it falls continuously from A to D.
According to Bernoulli’s integral, which in this case

17, Suceessive positions of a bubble line which is initially

vertical.

has the same stagnation pressure for each streamline,
the velocity is a minimum where the pressure is highest
and a maximum where the pressure is least. The
hydrogen bubble lines of Fig. 17 verify the velocity
distributions which may be inferred from the pressure
distributions of Figs. 15 and 16 by using Bernoulli’s
integral. The tilting of these fluid Iines shows that,
near the beginning of the contraction, the velocity near
the curved wall is less than that near the straight wall.

18. Pressure distributions for ha¥ of a gradual sym-
metrical contraction. Compare with Fig. 15.

To avoid separation of the flow from the walls due
to adverse pressure gradients in wind tunnel nozzles,
contractions are made gentle, as in Fig. 18. The
streamline curvature here is much less than in Fig. 15,
and the transverse pressure gradients which cause the
distinctive peaks in the pressure distribution of Fig. 15
are reduced.

Bernoulli’s Integral Is Not Always Valid

The statement “high velocity means low pressure”
is only sometimes trué. Viscosity or compressibility or
unsteadiness can render Bernoulli’s mtegral invalid,
and the integral applies only to individua) streamlines
uniess the motion is irrotational.

The straight duct of Fig. 19 has a partition. One
side is free and clear; the other side has a flow re-
sistance. The static pressures shown by the manome-
ters are equal. However, to conclude from Bernoulli’s
integral that the velocities of the two streams are also
equal would be wrong. The stagnation pressures of
the two adjoining streams are actvally quite different.
From the two dynamic pressures we see that the
velocity in the obstructed passage is less than that in
the clear passage. The reason Bernoulli’s integral can-
not be used here to interpret the observed static pres-
sures Is that we are dealing with different strearnlines
having different stagnation pressures. We must in-
stead use Eq. 3: because of the confinement of the
channel walls, the streamlines have virtually no curva-
ture; thus the normal pressure gradient is zero, and the
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19. (a) A straight dunect with a divider at the left. Beoth
halves of the fiow come from a common reservoir, bat the
lower half passes throngh a bank of small rubes which act
as a How resistance. Downstream of the partition the two
halves of the flow are again in contact. (b) The flow is
on. The two onter manometers show the static pressures,
while the two imner manometers are connected to up-
stream-facing pitot tubes and show stagnation pressures.

static pressures in the two streams are the same even
though the velocities differ. For the same reason, the
static pressure acress a viscous boundary layer is vir-
tuzally constant.

The vertical tubes of Fig. 20 show the pressure dis-

tribution in a horizontal tank of water when we rotate
it on a turntable. After viscosity forces the water into
solid body rotation, the velocity increases linearly
with radius, that is V = Qr. If we used Bernoulli’s
integral (which would be improper because we would
be crossing streamlines}, we might expect the pressure

20. A closed eylindrical tank of colored water is mounted
on a horizontal turntable. The manometer tubes mounted
i the cover are open at the top to atmosphere, and show
how the pressure varies with radins. With the tank ini-
tially at rest, the level is the same in all the tubes. After
the turntable has rotated at uniform speed for a long
time, the water is in solid-body rotation, locked by visecosity
to the tank. This picture was taken at an instant when the
rt;tating bank ef manometer tubes was normal to the line
of view.

to decrease with radius. Actually, the pressure in-
creases with radius. This means that the stagnation
pressure also increases with radius, and that each cir-
cular streamline has a different Bernoulli constant.
The right way to look at this is with Equation 3:

8p/on = pV2/R =~ o02r2/R

But, for circular motions, 3p/8n =dp/dr, and R =r.
Thus, dp = pQ®rdr, which integrates to p — pQ*r*/2 +
constant. This is the parabolic pressure distribution
of Fig. 20.
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