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Introduction

Rotating fluids occur in a wide variety of technical
contexts and in geophysics, particularly in the atmos-
phere and the oceans (Figs. 1 and 2). The phenomena
involved are so varied that, in order to illustrate some
of the principal features, we shall confine our attention
to homogeneous fluids and to motions that do not de-
viate greatly from a rigid-body rotation. It is then
advantageous to use a coordinate frame which rotates

2. The whirlpool galaxy in Canes Venatici. (Courtesy
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at an appropriate rate Q with respect to inertial space.
The inviscid finid equations of motions take the form**
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where ¢, is the gravitational potential, the velocity
vector U is measured relative to the rotating frame,
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effects in the earth’s atmosphere. (Courtesy V.E. Suomi, equation of motion in a non-rotating, inertial, system. In
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and the other symbols are customary. The last two
terms are parts of the absolute acceleration which are
customarily shifted to the right-hand side and inter-
preted as forces. — V7 (Q7 r?/2) is the centrifugal force
which, since it is a function of relative position only,
can be combined with the gravity term to give an ap-
parent gravitational force. — 2 @ X U is the Coriolis
force, which is responsible for many of the unfamiliar
features of rotating flows. A careful discussion of the
origin and status of these terms is given in Ref. (1).

The Rossby Number and
the Frequency Ratio

=

Two dimensionless parameters are especially im-
portant in the examples we shall consider -— they char-
acterize the relative importance of fluid relative acceler-
ations as against Coriolis forces. If ¢ is a characteristic
frequency, U a characteristic (relative) fluid velocity,
and L a characteristic length, these parameters are the
Rossby number, U/LQ, and a frequency ratio o/Q.
The Rossby number has order of magnitude of the
ratio of convective accéleration to the Coriolis force,
(|U- ¥V U] = |20 X UJ); and the frequency ratio has
order of magnitude of the ratio of local acceleration to

the Coriolis force, (
st

If the Rossby number is much less than one, the
relative convective acceleration is small, and if the fre-
quency ratio is low, the local acceleration is small
Under these conditions there is a very close balance
between the vertical component of the pressure gradi-
ent and apparent gravity (hydrostatic balance). More
importantly, there is a close batance between the
horizontal component of the pressure gradient and the
horizontal component of the Coriolis force. Such flows
are called geostrophic. They occur commonly in the
atmosphere and oceans, where the Rossby number is
small mainly because the scale of the motion is large.
Full discussions of the theoretical features of geo-
strophic flows and of additional dimensionless param-
eters (such as those associated with the viscosity of real
fluids) are given in Ref. (2).
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Elementary Coriolis Effects

The experiments in the film were carried out on a
vertical-axis turntable driven by a very stable variable-
speed motor and transmission (Fig. 3). The rotation
axis must be vertical within a few seconds of arc when
a free surface is present on the water. The top and side
cameras rotated with the fluid containers, and all se-
quences where the rotation was not zero are identified
by an indicator arrow. All rotations are counterclock-
wise seen from above.

One of the initial and subtle surprises is that direct

3. Rotating tarniable carrying cylindrical tank inside a
square tank to reduce optical refraction effects. Top and
side cameras rotate with the tanks, -

4. The Coriolis force is directed 1o the right of the rota-
tional and relative velocity vectors.

reactions of the fluid to the Coriolis force (in the sense
of motions deflecting to the right, toward — 20 X U)
(Fig. 4) are obvious mainly for high Rossby numbers,
where the Coriolis forces are relatively small. A smali
three-dimensional fluid body projected horizontally
from a vortex-ting generator travels straight across a
diameter of a cylindrical tank when the rotafion is zero
(Fig. 5a). In the same situation, but with the tank and
fluid rotating, the vortex ring curves sharply to the right
(Fig. 5b); the curvature increases as the horizontal
velocity decrcases. The Rossby number is of order
one or more throughout (Ref. 3).

The effects of Coriolis forces are more complicated
in an extended fluid body. When the rotation is zero,
the lowest-frequency sloshing mode of surface gravity
waves in a layer of fluid in a circular cylinder has the
property that the free surface merely tilts back and
forth (Fig. 6). Particles on the surface move horizon-
tally in linear harmonic motion perpendicular to a
nodal diameter. When the fluid layer is rotating (at




3a. A small parcel of dyed flnid, projected from a vortex-
ring generator, travels straight across a non-rotating tank.

3b. When the tank and fluid are rotating counterclock-
wise at a moderate rate, the projected vortex ring curves
sharply to the right (elockwise).

2.0 sec.™), there are two fundamental modes, now pro-
gressive, with crests moving either with, or opposed to,
the sense of rotation (as seen in the rotating frame)
(Fig. 7). These progressive modes stem basically from
the transverse deflections due to the Coriolis forces,
but the kinetic effects are substantially modified by the

6. Free surface tilt in the lowest sloshing mode of a
gravity wave generated by a vertically-oscillating disk posi-
tioned near the rim on the left side. The tank is not rotat-
ing. Wave frequency — 8.4 sec.™.

7. When the fluid layer of Fig. 6 is rotating counterclock-
wise, a disk frequency 159% higher than the non-rotating
fundamental mode produces a progressive wave which
travels clockwise around the tank (a}. A second progres-
sive mode, at a frequeney 139% lower than the non-
rotating mode, travels counterclockwise (b).

pressure fields. Thus the “negative” mode whose angu-~
lar phase speed is clockwise has a 15% higher fre-
quency than the non-rotating mode, while the “positive”
mode has 13% lower frequency (Ref. 4). Moreover,
while the horizontal trajectories of particles seen from
above are circles curving to the right (in the same sense
as the Coriolis force) for the negative mode, they are
circles described to the left, exactly contrary to elemen-
tary expectation, for the positive mode.*

Low-Rosshy-Number Motions
Around Spheres

Some of the most striking instances of low-Rossby-
number geostrophic flows 'were demonstrated by G. L.
Taylor about 1920 (see Ref. 2 for discussion and
sources), using various cases of flow around an im-
mersed sphere. These and some later cases are con-
siderably illuminated by thinking in terms of the vortex
tubes of the absolute motion. In a low-Rossby-number,
low-frequency-ratio, homogeneous fiow, the inviscid
Helmholtz vorticity equation contains (in the lowest-
order approximation) only the term

20-V)U=0.

*The sequences in the film vsing aluminum powder on the fop
surface also show some unrelated motions resulting from local
flow around the generating disk that js located below the free
surface.



8. (a) A ncutrally buoyant sphere, suspended from a
long string so that it is free to deflect, travels straight
across a diameter when pulled at a very slow speed in
rotating fluid. (b) In a side view, dye streaks above the
sphere show that a colomn of finid #s carried with the
This is the Taylor-Proudman theorem Ref. 2). Ttis
equivalent to the statement that the relative velocity
field does not vary in the direction of the rotation axis
(since 20 + ¥/ is a differentiation operation in that di-
rection), and that the flow tends to be two-dimensional
in planes perpendicular to the rotation axis. The abso-
lute vortex tubes tend to remain parallel to the axial
direction. They resist both bending and shrinking or
stretching.

A small, nearly neutrally buoyant sphere was sus-
pended on a fine thread and translated horizontally at
a very slow speed. The sphere moved along a straight
path, instead of deflecting to the right (Fig. 8a). It
moved straight because a pressure field developed
which exactly compensated the Coriolis force on the
sphere. Dye trails above the sphere show that a Taylor
column was carried with the sphere (Fig. 8b); in this
manner the flow becomes approximately two-dimen-
sional, in accord with the Taylor-Proudman theorem.
When the towing speed is increased to a higher Rossby
number, the flow becomes more three-dimensional, is

sphere at low Rossby number. (¢) When the towing speed
is inereased so that the Rosshy number is no longer small,
the sphere deflects to the right. (d) A side view shows that
the dyed column is left behind when the sphere is ac-
celerated to higher Rossby nmnber.

no longer geostrophic, and the sphere deflects to the
right (Fig. 8c). When the sphere is accelerated, the
dye column is left behind (Fig. 8d}.

9, A sphere is towed slowly parallel to the rotation axis,
Ink shows the Taylor column above the sphere, and the
helical motion in the colamn helow the sphere where there
is a strong counterelockwise spin,
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When the sphere is moved slowly upward parallel to
the rotation axis, dye trails again show a Taylor
column both above (forward wake) and below the
sphere (Fig. 9). In the fluid ahead of the sphere, the
compression of the absolute vortex tubes generates
clockwise relative spin, while behind the sphere, the
stretching generates counterclockwise relative spin.
The corresponding pressure fields yield increased pres-
sure in front and decreased pressure behind, so that the
pressure drag on the sphere can be increased by several
orders of magnitude. Thus the terminal velocity of a
positively buoyant sphere is large when the rotation is
zero, and becomes very small when the rotation is high
enough to make the Rossby number small.

Taylor Walls

Even disorganized velocity fields can be radically
affected by vortex tube stability when the Rossby num-
ber is small. Figures 10a and 10b show a turbulent

10. When dye is injecied into non-rotating water (a), it
spreads-in a typical turbulent field (b). With identical
ink injeetion into rotating water, the initial motions are
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field produced by injecting dyed water into a resting
body of fluid. In Fig. 10c, the fluid was initially rotat-
ing rigidly and the dye was injected in an identical
manner. The initial three-dimensional motions are
similar to Fig. 10a, but they are rapidly converted
(Fig. 10c) to a nearly two-dimensional flow as the
velocities decay and the Rossby number decreases.
The dye eventually becomes distributed in vertical
Taylor walls (Fig. 10d). While the system is highly
stable to the initial three-dimensional motions and
rapidly converts them into two-dimensional geo-
strophic flows, it is nearly neutral to the latter, which
undergo only a very slow viscous decay.

Inertia Oscillations and Rossby Waves

The rotational stiffness of the axial vortex tubes (or,
alternatively, the resistance to changes of fluid circuit
length in Kelvin's circulation theorem) make possible
modes of oscillation that do not exist in non-rotating

rapidly converted to nearly two-dimensional motions (c),
and after a time, the ink is found distributed in vertical
Taylor walls {d).
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fluid bodies. A small neutrally buoyant sphere, free
to move on a vertical thread in rotating fluid, will
oscillate up and down when given an impulse. Thisis a
response to an inertia oscillation in the fluid.

In a rotating circuiar cylinder, normal modes of this
type of oscillation can be generated by oscillating a
small disk up and down along the axis at the proper
frequency and position (Refs. 2 and 5). When there is

T

11. When there is no rofation, ink injected near a
vertically oscillating disk shows only a disorganized flow
(a). With rotation, the ink remains in a column which
oseillates in an inertial mode with a nodal plane at the
midpoint (b). (¢) Ink colomm 180 degrees out-of-phase
with (b).

12, (a) A cenmrally placed disk oscillating vertically in a
relatively shallow circular body of water produces rings
(delineated by the overlaid lines) which oscillate in a tan-
gential direction. The direction of motion is opposite for
adjacent rings. (b) When the amplitude of the disk is in-
creased beyond a certain critical value, the ink near the
circumference shows that the motion becomes unstable.

no rotation, ink injected near the disk shows only a
disorganized flow developing from vortex rings shed
off the edge of the disk (Fig. 11a). With the cylinder
rotating, the ink forms a stable Taylor column as the
disk oscillates, in this case at a frequency ratio of 1.25.
This frequency gives the mode with a nodal plane at
middepth for the particular depth-radius ratio (2.00)
of this cylinder. In contrast to a two-dimensional
geostrophic flow, the oscillating ink column undergoes
substantial expansions and contractions (and corre-
sponding vorticity changes) as shown in Figs. 11b and
11c at two phases differing by half a period. Inertia
oscillations of the same general character have been
shown to be very common in the oceans and large lakes
(Ref. 6).
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In a much flatter circular body of water than that of
Fig. 11, and with an excitation frequency ratio of only
1/2, the normal mode obtained is one with a large
radial wave number (10 or so nodal circles}, shown in
plan view in Fig. 12a. An ink streak placed in the fluid
along a circle within one cell of the normal mode ex-
pands, contracts, and simultancously oscillates in the
tangential direction during the inertia oscillation (Ref.
2, 5). When the amplitude of the generating disk is
increased beyond a certain point, the flow becomes un-
stable to a regular set of waves in the azimuthal direc-
tion, Fig. 12b); these waves amplify and often become
complete rows of oscillating vortices (Ref, 7).

A similar class of very low-frequency waves known
as Rossby waves (Ref. 2) are very important in the
motions of the atmosphere and oceans. This type of
wave arises where there is a variation in the depth of a
fluid such that axial vortex tubes are forced to shrink
or stretch in a low-Rossby-number motion. QOur ex-
ample of a Rossby wave is produced in the annular
cylinder shown in Fig. 13a. A conical bottom pro-

13. (a) Side view of annnlar cylinder combination with
a conical bottom. The ratio of the outer to inner depth
is about 5/ 3. (b) In plan view, a dye trace shows a train
of 5 stationary Rossby waves excited in the annnlus when
there is tangential flow past a low ridge on the conical
bottom. The dye trace was released at about middepth.
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duces radial depth variation. A low, smooth radial
mountain on the cone forces the wave perturbations
when counterclockwise zonal flow is produced by
slowly reducing the rotation of the container from an
initial high value. With a Rossby number of about
045, a train of 5 sinusoidal stationary waves is pro-
duced (Fig. 13b). For larger characteristic values of
the Rossby number, the stationary wave number de-
creases (Ref. 2).

Ekman Layers and Free Shear Layers

Effects of viscosity can be very substantial in rotat-
ing systems. The Taylor-Proudman theorem deals with
inviscid fluids, for example, and does not hold in boun-

14. Ekman boindary layer produced by increasing the
rolation_rate of the floor under a rotating cylinder of
water. The vertical streaks left by falling dye crystals
show that the main body of water continues to rotate. The
spiral streaks on the floor show that only in a very thin
boundary layer are there appreciable radial velocity com-
ponents.

dary-layer regions for any Rossby number. Figure 14
shows one of the simplest types of rotating boundary
layers, called an Ekman layer (Ref. 2). The water and
tank were initially in rigid-body rotation, and the tank
speed was then increased to a slightly higher rotation
rate. The dye streaks in Fig. 14 show the strong out-
ward spiraling motions in the Ekman layer; the fluid in
the mviscid region above is in clockwise relative mo-
tion that is almost purely tangential. A downward flux
over the central region is required to supply the radial
flux in the Ekman layer. This siretches the vortex tubes
in the interior, and has the effect of increasing the
angular velocity of the fluid to the new value for the
tank in a much shorter time than would be expected
from ordinary viscous diffusion mechanisms.

If the currents in the inviscid region vary from one
place to another, the transverse Ekman layer fiuxes
also vary, requiring exchanges of fluid between the
viscous and the inviscid regions that may be quite
localized. In Fig. 15 the cylinder has a central disk



15. Side view of a cylindrical free shear layer moving
downward from the solid lid of a rapidly rotating circular
eylinder 130 sec.”®) toward the edge of a more slowly
rotating disk in the base. The Rosshy number of the rela-
tive disk rotation is ahout 107 (a). (b) When the dye
reaches the disk in the base, it flows inward along the disk
and then upward in a slow flow parallel to the axis of
rotation.
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which is flush with the clear plastic bottom. The disk
is rotated at a slightly lower speed than the cylinder.
The interior fluid out to the disk radius adjusts to a
rotation speed halfway between that of the disk and
that of the upper lid. The accommodation to the no-
slip boundary condition occurs in an Ekman layer on
the disk, and in another Ekman layer under the lid.
The fluid in the outside ring rotates at nearly the same
speed as the cylinder. Ink is injected through a central
hole in the solid lid, which is in contact with the fluid.
The ink spreads rapidly outward in the top Ekman
layer to the same radius as the disk, and stops there,
even though the lid is a single rigid sheet. It then
descends in a thin cylindrical Taylor sheet with a hol-
low core (Fig. 15a), a so-called free shear layer, to the
base disk edge. There it flows inward in the disk
Ekman layer and eventually completes the circuit by a
slow upward flow parallel to the axis (Fig. 15b).
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