Thermal Management Roadmap

Avram Bar-Cohen Department of Mechanical Engineering University of Maryland

UEF THERMES 2002 Santa Fe, NM – January 13-17, 2002

Electronic Industry Business Trends

Packaging driven by product category Market-driven price point Cost/Function primary challenge Rapid bifurcation in product categories High functionality and "value added" Low cost commodity Supply Chain drives productivity SCM Enables cost reduction EMS growing 50% per year

Electronic Industry Business Trends

Market Convergence Computing/Telecom fueled 1990's "gold rush" >Automotive/Consumer 2000's ??? Volume Drivers Cell phones > Optoelectronics Bluetooth OLED displays Shrinking Product Cycles \triangleright Product release to peak production = 6-9 mo \succ Production end = 24 mo

Electronic Industry Technology Trends

- Moore's Law "fatigue"
 Silicon device growth slows
 Feature size shrink returning to 3 year cycles
 SOP needed after 2005
- Under-Exploitation of Silicon Potential
 Design Productivity Gap
 Packaging Limitations
- Thermal Management
 CMOS provided only temporary relief
 Key element in performance, reliability, cost
 Develop metrics for thermal packaging

Drivers for Thermal Packaging

- Air as the Ultimate Heat Sink
- Market-Driven Thermal Solutions
- Environmentally-Friendly Design
 - Low power consumption
 - Low noise: acoustic and EMI
 - ➢ Recyclability
- Feature-Rich Design Tools
 Integrated with product CAD system
 Parametric optimization

Design for Sustainability

- "spreading" + natural convection/radiation
- Least-material optimization
- Entropy generation minimization
- Least-energy optimization

Work allocation factor, ξ_{pp}

= Pumping work / Total cooling work = $W_{pp} / [W_M + W_{PP}]$

Heat Sink Design Metrics Thermal resistance $\mathbf{R}_{hs} = \theta_h / \mathbf{q}_T$ [K/W] Array heat transfer coefficient $h_a = q_T / (LW\theta_h)$ Mass-specific heat transfer coefficient $h_m = q_T / (\rho_{fin} V_{fin} \theta_h)$

[W/kg-K]

 $[W/m^3-K]$

Space claim heat transfer coefficient

8/29/01

 $[W/m^2-K]$

Design for Sustainability Metrics Coefficient of Performance $COP = q_T / IP$ $IP = V_{air} \times \Delta P$ Total Work Coefficient of performance $COP_T = q_T t_1 / W_T$ $W_T = W_M + W_{PP}$ $W_{M} = 85,000 M$ (estimated) q_T: Heat dissipation, kW t₁: Duty cycle, h W_T: Energy investment for cooling, kWh M: Fin mass, kg W_{M} : Formation/fabrication work, kWh ΔP : Pressure drop, Pa W_{PP}: Pumping work, kWh V_{air} : Volumetric flow rate, m³/s 8/29/01 Cooling-ABC

Coefficient of **Performance**

Maximum heat transfer design

Least material design

8/29/01 L = W = 0.1 m, H = 0.05 cooling-ABE K, k = 200 W/m-K

COP_T Comparison: Maximum Vs Least-material Forced convection SISE plate-fins $L = W = 0.1 \text{ m}, H = 0.05 \text{ m}, \theta_b = 25 \text{ K}, k = 200 \text{ W/m-K}$

Least material design

Maximum heat transfer design

10

 $\mathbf{COP}_{\mathrm{T}} = \mathbf{q}_{\mathrm{T}}\mathbf{t}_{\mathrm{1}}/\mathbf{W}_{\mathrm{T}}$

 $W_{T} = 85 M + IP t_{1}$

M - mass (kg), IP - pumping power (kW), t₁ - life cycle (6000 hours) 8/29/01 Cooling-ABC

COP_T Comparison: Extrusion Vs Skiving

Forced convection SISE plate-fins

L= W = 0.1 m, H = 0.05 m, θ_{b} = 25 K, k = 200 W/m-K

 $\mathbf{COP}_{\mathrm{T}} = \mathbf{q}_{\mathrm{T}}\mathbf{t}_{1}/\mathbf{W}_{\mathrm{T}}$ $\mathbf{W}_{\mathrm{T}} = \mathbf{85}\,\mathbf{M} + \mathbf{IP}\,\mathbf{t}_{1}$

11

M - mass (kg), IP - pumping power (kW), t₁ - life cycle (6000 hours) 8/29/01 Cooling-ABC

COP_T Optimization: Fixed Input Work Forced convection SISE plate-fins, $W_T = 10$ kWh, $t_1 = 6000$ h

8/29/01 L = W = 0.1 m, H = 0.05 m, Conting 5 ABC k = 200 W/m-K

SOA Heat Spreaders

Ceramic-Coated Cu plate

Cooling-ABC

Heat Spreaders Technology Needs

Heatsink High k Coatings High k composites Airflow Vapor Chambers Micro Heat pipes 2 Thermosyphons *la*por Micro-fluidics

Heat Spreaders Research Needs

- Low-cost, high-k, TCE-matched materials
- Algorithms for optimal design
- Improved on-chip spreading techniques
- Correlations/analytical models:
 Dryout/rewetting of micro-channels
 Dryout/rewetting of micro-porous structures
 Local spreading resistance

Heat Pipes Technology Needs

Heat Pipes Research Needs

- Deformable & flexible "thermal-hinge"
- High radial & axial heat fluxes
- Long, Low cost, high performance
- Technology capable of withstanding harsh environments (automotive and aerospace)
 High – g
 High, cyclic temperatures

Correlations/algorithm for thermosyphon design

SOA Interface Materials

Grease

Elastomer

Phase Change Material

Classs	Grease	Phase Change	Elastomer	Ероху	Eutectic
Performance [K/W/cm ²]	0.3 - 0.7	0.35 - 1.0	1+	0.25-0.5	~0.1

8/29/01

Cooling-ABC

Thermal Interfaces *Technology Needs*

Develop standardized measurements
Characterize normal process variations
Optimize filled polymers
Study time variant thermal properties
Create new thermal elastomers
k = 20-100 W/mK,
Thin bondlines (~10-25µm)
Low elastic moduli

Thermal Interfaces *Research Needs*

- Nanoparticle-filled high-k pastes, epoxies, elastomers
- Techniques/materials to minimize interfacial stresses
- Correlations/theories for fatigue of bonded interfaces
- Microencapsulated PCM packaging materials

Air Cooling Technology Needs

 High aspect-ratio, closely-spaced fins

- Design/Optimize for manufacturability
- High head fans
- Low acoustic/EMI noise

Air Cooling Industrial Research Needs

- Advanced manufacturing techniques for metal and composite material heat sinks
- Compact high head/moderate flow/low noise fans
- Low power consumption micro-fans for notebook computers and handheld electronics
- High pressure/high flow blowers with low acoustical and EMI noise

Air Cooling Research Needs

- Models/correlations for heat transfer in transition and low Reynolds number flow
- Low Reynolds number turbulence models for use in CFD codes
- Heat sink design/optimization procedures
 Mass constraints
 - Volume constraints
 - Energy requirements/constraints

SOA Liquid Cooling

Liquid Cooling Technology Needs

 Superior coolant
 Exploit known technology – cold plates, compact HX, pumps
 Wide range of

enhancements

Liquid Cooled Cold Plates

Piston Diaphragm

Magnetic Drive

8/29/01

Liquid Cooling Research Needs

- Miniaturized components with high reliability and enhanced performance
- MEMS and meso-scale HX components
- MEMS and meso-scale cold-plates
- Direct "water" cooling of chips/packages

Direct Liquid "Immersion" Cooling

Cooling-ABC

Direct Liquid Immersion *Research Needs*

Thermofluid single- and two-phase correlations > new dielectric coolants Non-uniform fluxes ➤ 3-D structures Dryout and CHF Nanoparticles for enhancing dielectric coolants MEMS/meso-scale thermal enhancement Correlations/models - evaporative spray cooling

SOA Vapor Compression Refrigeration

8/29/01

Cooling-ABC

Issues in Refrigerated Packaging

- CMOS Chip/CPU Performance
- Multiple High Power Devices
- Cost of Refrigeration System
 - Life Cycle Cost
 - Volume, Mass
 - Power Consumption
- Reliability of Refrigeration/Packaging
 - Refrigeration Hardware
 - Condensation on PCBs + Refrigerant Lines
 - Vibration

Refrigeration Cooling *Research Needs*

- Highly reliable miniaturized components
- MEMS/meso-scale, low-cost, low noise refrigerators using solid-state, vapor compression, or absorption cycles
- MEMS/meso-scale, low-cost, packagesize cold plates
- New thermoelectric materials and fabrication methods

Fundamental Thermal Packaging Research

- Low-cost, high-k packaging materials
- Low-Cost, reliable PCM's
- Enhancement of convection/boiling/spray
- Heat Sink/HX Manufacturing processes
- Compact liquid cooling /refrigeration systems
- Improved solid state refrigeration
- Low environmental impact systems
- Integrated modeling tools

Concluding Thoughts

Critical Need in Spreading/Interfaces

- ➢ On-chip
- ≻On-PCB
- Heat Sink Base

Untapped Potential in Direct Air-Cooling Heat Sink Optimization Heat Sink Manufacturing Advances

Concluding Thoughts

- Liquids Provide Superior Spreading Pumped Cold Plates Pumped/Sprayed Dielectric Liquids Passive Immersion Refrigeration Creates New Options Chilled Air-Cooling Refrigerated Cold Plate
 - Low Temperature Operation