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Electronic Industry 
Business Trends

Packaging driven by product category
Market-driven price point
Cost/Function primary challenge

Rapid bifurcation in product categories
High functionality and “value added” 
Low cost commodity

Supply Chain drives productivity
SCM Enables cost reduction
EMS growing 50% per year
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Electronic Industry 
Business Trends

Market Convergence 
Computing/Telecom fueled 1990’s “gold rush”
Automotive/Consumer 2000’s ???

Volume Drivers
Cell phones
Optoelectronics 
Bluetooth
OLED displays

Shrinking Product Cycles
Product release to peak production = 6-9 mo
Production end = 24 mo
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Electronic Industry 
Technology Trends

Moore’s Law “fatigue”
Silicon device growth slows
Feature size shrink returning to 3 year cycles 
SOP needed after 2005 

Under-Exploitation of Silicon Potential
Design Productivity Gap
Packaging Limitations

Thermal Management
CMOS provided only temporary relief 
Key element in performance, reliability, cost
Develop metrics for thermal packaging
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Drivers for Thermal Packaging

Air as the Ultimate Heat Sink
Market-Driven Thermal Solutions
Environmentally-Friendly Design

Low power consumption
Low noise: acoustic and EMI 
Recyclability

Feature-Rich Design Tools
Integrated with product CAD system
Parametric optimization
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“spreading” + natural convection/radiation 

Least-material optimization

Entropy generation minimization 

Least-energy optimization

Work allocation factor, ξpp

=  Pumping work / Total cooling work
=  Wpp / [WM + WPP]

Design for Sustainability
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Heat Sink Design Metrics

Thermal resistance 
Rhs =  θb/qT

[K/W]

Array heat transfer coefficient 
ha =  qT/(LWθb) [W/m2-K]

Mass-specific heat transfer coefficient 
hm =  qT/(ρfinVfinθb)

[W/kg-K]

Space claim heat transfer coefficient 
hsc =  qT/(LWHθb)

[W/m3-K]
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Design for Sustainability Metrics
Coefficient of Performance

COP  =  qT/IP

IP  =  Vair × ∆P

Total Work Coefficient of performance

COPT =  qTt1/WT

WT =  WM + WPP

WM =  85,000 M   (estimated) 

qT: Heat dissipation, kW
WT: Energy investment for cooling, kWh
WM: Formation/fabrication work, kWh
WPP: Pumping work, kWh 

t1: Duty cycle, h
M: Fin mass, kg
∆P: Pressure drop, Pa
Vair: Volumetric flow rate, m3/s
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Coefficient of Performance

L = W = 0.1 m, H = 0.05 m, θθbb= 25 K, k = 200 W/m-K

∆P = 40Pa, Vair = 0.02 m3/s
qT = 284W, IP = 0.8W
COP = 355

∆P = 40Pa, Vair = 0.02 m3/s
qT = 194W, IP = 0.8W
COP = 243

Typical values
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COPT Comparison:  Maximum Vs Least-material
Forced convection SISE plate-fins
L= W = 0.1 m, H = 0.05 m, θb= 25 K, k = 200 W/m-K

M - mass (kg), IP - pumping power (kW), t1 - life cycle (6000 hours)

COPT = qTt1/WT
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COPT Comparison: Extrusion Vs Skiving
Forced convection SISE plate-fins
L= W = 0.1 m, H = 0.05 m, θb= 25 K, k = 200 W/m-K

COPT = qTt1 /WT WT = 85M + IP t1

M - mass (kg), IP - pumping power (kW), t1 - life cycle (6000 hours)
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COPT Optimization: Fixed Input Work
Forced convection SISE plate-fins, WT = 10 kWh, t1 = 6000h

L = W = 0.1 m, H = 0.05 m, θθbb= 25 K, k = 200 W/m-K

WT = 10 kWh, t1 = 6000 h
NC: natural convection, FC: forced convection
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SOA Heat Spreaders

Ceramic-Coated Cu plate
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Heat SpreadersHeat Spreaders
Technology Needs 

High k Coatings
High k composites
Vapor Chambers 
Micro Heat pipes 
2φ Thermosyphons 
Micro-fluidics Vapor

Heat sink

Air flow

Chip(s)
chamber
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Heat SpreadersHeat Spreaders
Research Needs

Low-cost, high-k, TCE-matched materials
Algorithms for optimal design 
Improved on-chip spreading techniques 
Correlations/analytical models:

Dryout/rewetting of micro-channels
Dryout/rewetting of micro-porous structures
Local spreading resistance
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Heat PipesHeat Pipes
Technology Needs

Q

Q

Q

Q Air
Flow

Air
Flow
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Heat PipesHeat Pipes
Research Research Needs

Deformable & flexible “thermal-hinge”
High radial & axial heat fluxes
Long, Low cost, high performance
Technology capable of withstanding harsh 
environments (automotive and aerospace) 

High – g 
High, cyclic temperatures 

Correlations/algorithm for thermosyphon design 
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SOA Interface Materials

Grease

Classs Grease Phase Change Elastomer Epoxy Eutectic
Performance [K/W/cm2] 0.3 - 0.7 0.35 - 1.0 1+ 0.25-0.5 ~0.1

Phase 
Change 
Material

Elastomer



8/29/01 Cooling-ABC 19

Thermal InterfacesThermal Interfaces
Technology Needs

Develop standardized measurements
Characterize normal process variations
Optimize filled polymers 
Study time variant thermal properties 
Create new thermal elastomers 

k = 20-100 W/mK, 
Thin bondlines (~10-25µm) 
Low elastic moduli

Interface Material

Block 1

Block 2
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Thermal InterfacesThermal Interfaces
Research  Needs

Nanoparticle-filled high-k pastes, 
epoxies, elastomers 
Techniques/materials to minimize 
interfacial stresses
Correlations/theories for fatigue of 
bonded interfaces
Microencapsulated PCM packaging 
materials
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Air Cooling 
Technology Needs

High aspect-ratio, 
closely-spaced fins
Design/Optimize for 
manufacturability
High head fans
Low acoustic/EMI 
noise 

Air flow

Q
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Air Cooling 
Industrial Research Needs

Advanced manufacturing techniques for metal 
and composite material heat sinks
Compact high head/moderate flow/low noise fans
Low power consumption micro-fans for notebook 
computers and handheld electronics
High pressure/high flow blowers with low 
acoustical and EMI noise
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Air Cooling 
Research Needs

Models/correlations for heat transfer in 
transition and low Reynolds number flow 
Low Reynolds number turbulence models for 
use in CFD codes
Heat sink design/optimization procedures 

Mass constraints
Volume constraints 
Energy requirements/constraints
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SOA Liquid Cooling
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Liquid  Cooling
Technology Needs

Superior coolant
Exploit known 
technology –
cold plates, 
compact HX, 
pumps
Wide range of  
enhancements

Air to water
heat exchanger Filter

Pump

Water 
reservoir

Air 
flow

Cold plate

Electronic module
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Liquid Cooled Cold Plates
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Liquid Cooling
Research  Needs

Miniaturized components with high 
reliability and enhanced performance 
MEMS and meso-scale HX components 
MEMS and meso-scale cold-plates
Direct “water” cooling of chips/packages
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Heat Exchanger

Pump

Blower

CP
U 
Mo
dule

Side View

Direct Liquid
“Immersion” Cooling
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SOA Spray Evaporative Cooling
(Cray SV Module)

Heater Surface

Liquid Droplets

Vapor Bubbles

Spray Nozzle

Liquid Film Thickness
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Direct Liquid Immersion 
Research Needs

Thermofluid single- and two-phase correlations 
new dielectric coolants 
Non-uniform fluxes
3-D structures
Dryout and CHF  

Nanoparticles for enhancing dielectric coolants
MEMS/meso-scale thermal enhancement
Correlations/models - evaporative spray cooling
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SOA Vapor Compression Refrigeration

Kryotech

IBM S/390 G4



8/29/01 Cooling-ABC 32

Issues in Refrigerated Packaging

CMOS Chip/CPU Performance
Multiple High Power Devices 
Cost of Refrigeration System

Life Cycle Cost
Volume, Mass
Power Consumption

Reliability of Refrigeration/Packaging 
Refrigeration Hardware
Condensation on PCBs + Refrigerant Lines
Vibration 
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Refrigeration Cooling
Research Needs

Highly reliable miniaturized components
MEMS/meso-scale, low-cost, low noise 
refrigerators using solid-state, vapor 
compression, or absorption cycles 
MEMS/meso-scale, low-cost, package-
size cold plates
New thermoelectric materials and 
fabrication methods
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TE Refrigeration
Technology Needs

Low-cost 
semi-
conductor 
Technology
Higher Z 
factor 
Improved 
interfaces

P P P P P PN N N N N N

Substrate

Cap

Thermoelectric

Chip

module

Epoxy
interfaces

Thermal
paste
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Fundamental
Thermal Packaging Research
Low-cost, high-k packaging materials 
Low-Cost, reliable PCM’s 
Enhancement of convection/boiling/spray 
Heat Sink/HX Manufacturing processes 
Compact liquid cooling /refrigeration systems
Improved solid state refrigeration
Low environmental impact systems 
Integrated modeling tools 
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Concluding Thoughts

Critical Need in Spreading/Interfaces
On-chip 
On-PCB
Heat Sink Base

Untapped Potential in Direct Air-Cooling
Heat Sink Optimization 
Heat Sink Manufacturing Advances
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Concluding Thoughts

Liquids Provide Superior Spreading
Pumped Cold Plates
Pumped/Sprayed Dielectric Liquids
Passive Immersion

Refrigeration Creates New Options
Chilled Air-Cooling 
Refrigerated Cold Plate
Low Temperature Operation 


