200. Functional analysis of the micro RNA genes of C. elegans

* HHMI and Dept. Biology, MIT, Cambridge, MA 02139, USA
§ Dept. Genetics, Dartmouth Medical School, Hanover, NH, 03755, USA
Whitehead Institute for Biomedical Research and Dept. Biology, MIT, Cambridge, MA 02142, USA

The heterochronic genes lin-4 and let-7 encode unusually small (21-22nt) non-protein coding regulatory RNAs1,2. Strains carrying a mutation in either of these genes display retarded development, with some cell lineages having an altered temporal pattern of cell division and differentiation. lin-4 and let-7 inhibit translation of target genes that when mutated lead to an opposing phenotype, precocious development and early expression of some cell lineages. Recently, molecular and bioinformatic approaches identified many genes encoding small RNAs in C. elegans, Drosophila and mammalian cell lines3,4,5,6. All of these genes encode 21-25nt RNAs derived from longer transcripts that contain partially double-stranded RNAs. These small RNAs, termed microRNAs (miRNAs, mirs), define a large, new class of genes. We have identified over 100 miRNAs in C. elegans to date, a subset of which is conserved in Drosophila and mammals. To understand the biological functions of miRNAs, we decided to generate mutations in the majority of these genes. Using a library of C. elegans mutants and automated liquid handling, we are screening for deletion strains. In parallel, we are seeking to establish the temporal and spatial expression patterns of these genes.