Insulin and NPR-1 Neuropeptide Signaling Mutants Are Defective in the Enhanced Slowing Response Induced by Food Deprivation

Daniel Omura, Bob Horvitz

HHMI, Dept. Biology, MIT, Cambridge, MA 02139 USA

To identify mutants that might perceive a constitutive state of food deprivation, we screened for mutants that behave as if they had been food-deprived when well fed. Well-fed *C. elegans* animals that encounter a bacterial lawn slow their locomotion in the basal slowing response. Acutely food-deprived animals slow more upon entering a bacterial lawn, in the enhanced slowing response. Deletion of *mod-5*, which encodes a serotonin reuptake transporter, confers increased slowing on food in both conditions. Using a *mod-5(n3314)* deletion background, we screened for mutants that exhibited enhanced slowing in the well-fed state.

From this screen we isolated an allele of *mrp-1* (<u>m</u>ultidrug <u>resistance protein family</u>), a member of a large family of ABC transporters. *mrp-1* is the *C. elegans* ortholog of the human sulfonylurea receptor SUR1, which attenuates ATP-dependent inward-rectifying potassium currents in pancreatic beta cells, thus stimulating insulin secretion. The SUR1/ K_{IR} 6.x complex is sensitive to changing ATP/ADP levels and is thought to be an important component in glucose homeostasis in many cell types, including neurons. *daf-2* encodes a *C. elegans* insulin-like receptor. Like *mrp-1* mutants, *daf-2(e1370)* mutants display a constitutive enhanced slowing response in a *mod-5(n3314)* background, consistent with the hypothesis that both mutants perceive a constitutively food-deprived state. We propose that, analogous to the function of SUR1 in humans, *mrp-1* may act as a metabolic sensor in the insulin signaling pathway in *C. elegans*.

Tangential to this study, we discovered that wild strain CB4856 has a greatly reduced enhanced slowing response and that this defect maps to the X chromosome. Work by DeBono et al. (Cell 94: 679-689, 1998) led us to identify *npr-1* as the gene responsible for this modulation defect. *npr-1* encodes a putative neuropeptide Y-like receptor. The mammalian neuropeptide Y receptor functions in energy homeostasis to stimulate increased food consumption in response to a deficit in stored energy. We postulate that *npr-1* acts similarly in *C. elegans* and is involved signaling a food-deprived state. We are currently attempting to identify NPR-1 ligands involved in enhanced slowing and the circuit in which *npr-1* acts in the enhanced slowing response.

Contact: dannyboy@mit.edu

Lab: Horvitz