The BAG Sensory Neurons are Activated by Environmental Carbon Dioxide
Niels Ringstad\(^1\), Elissa Hallem\(^2\), Paul Sternberg\(^2\) and Bob Horvitz\(^1\)
\(^1\)HHMI, Dept. Biology, MIT, Cambridge, MA 02139 USA
\(^2\)HHMI, Division of Biology, Cal Tech, Pasadena, CA 91125 USA

The BAG neurons are ciliated sensory neurons that recently have been shown to mediate avoidance behavior to carbon dioxide (CO\(_2\)) and to inhibit egg-laying behavior. To test whether the BAG neurons are CO\(_2\) sensors, we generated transgenic animals expressing the high-affinity genetically encoded calcium sensor cameleon YC3.60 in the BAG neurons. We observed increases in BAG neuron calcium in response to application of as little as 0.1% CO\(_2\) with half maximal increases evoked by application of 0.9% CO\(_2\). The BAG neurons require the TAX-2 / TAX-4 cyclic nucleotide-gated cation channel to respond to environmental CO\(_2\). The BAG neurons of \textit{rgs-3} mutants, which lack a negative regulator of heterotrimeric G proteins, are defective for CO\(_2\)-evoked calcium responses, indicating that the BAG neurons are negatively regulated by a G protein signaling pathway. Using \textit{in vivo} calcium imaging, we are seeking neurons that function downstream of the BAG sensory neurons in neuronal circuits that mediate CO\(_2\) avoidance and the regulation of egg laying.

Talk
981 characters (with spaces)
151 words

session topic II C: Neurobiology, Behavior
Keyword: 53-Neurobiology: neuronal control of behavior