

C44B9.1 Is a Novel Conserved Neuronal Protein Likely Involved in Synaptic Vesicle Exocytosis

Nicolas Paquin, Allan Froehlich, Daniel Omura and Bob Horvitz.
HHMI, Dept. Biology, MIT, Cambridge, MA 02139 USA

We are interested in the regulation of locomotion and its modulation by environmental signals. Wild-type animals decrease their speed by 70% when they encounter a bacterial lawn after brief food deprivation. Animals lacking MOD-5, a serotonin reuptake transporter (SERT), reduce their speed by more than 90% upon reaching bacteria after being briefly food-deprived but show close to normal locomotion off food. We screened for modifiers of the *mod-5(n3314)* phenotype to identify new mutations that affect the modulation of locomotion. Such modulators of locomotion might have been missed in previous screens that did not use sensitized backgrounds seeking locomotion-impaired animals.

We mutagenized *mod-5* animals and isolated potential *mod-5* enhancer mutations that caused *mod-5* worms to nearly paralyze on bacteria after being briefly food-deprived. Two non-complementing alleles, *n3925* and *n4022*, were found to be nonsense mutations in the uncharacterized gene *C44B9.1*. Mutations in *C44B9.1* cause a severe locomotion defect on food even when separated from *mod-5(n3314)*. *C44B9.1* encodes a novel protein with no known functional domains and is conserved from *C. elegans* to humans. We built a transcriptional *GFP* reporter for *C44B9.1* and found that it is expressed in most non-pharyngeal neurons.

The *n4022* strain shows decreased sensitivity to aldicarb, an acetylcholinesterase inhibitor, and increased sensitivity to levamisole, an acetylcholine receptor agonist, suggesting a presynaptic role for *C44B9.1*. In addition to their locomotion defect, *C44B9.1* mutants retain eggs *in utero* for an abnormally long period of time, which leads to eggs being laid at a later developmental stage. The phenotype and drug sensitivity profile of *C44B9.1* animals are similar to those of strains mutant in genes involved in the regulation of synaptic vesicle exocytosis, such as *unc-64* (syntaxin), *unc-31* (CAPS), and *aex-3* (a RAB-3 GEF).

We are currently investigating the interactions of *C44B9.1* with genes involved in neurotransmission, performing suppressor screens, and using biochemical assays to identify physical partners of *C44B9.1*. We plan to use optogenetics and electrophysiology to assess the role of *C44B9.1* in synaptic vesicle exocytosis and cell excitability.

Poster

Topic: Circuits and Behavior

Keyword: Behavioral assays

No. characters (counting spaces): 2467