Maternal H3.3 nucleosome assembly complexes prevent late-onset defects and chronic mitochondrial stress

Kirk B. Burkhart1,2, Steven R. Sando1,2, Anna Corrionero1,2, H. Robert Horvitz1,2

1. Department of Biology, Massachusetts Institute of Technology
2. Howard Hughes Medical Institute

Many disease phenotypes manifest as late-onset, not presenting for years to decades. The molecular defects that lead to many of these disorders are unknown. We have discovered that \textit{C. elegans} mutants lacking components of H3.3-assembly complexes have late-onset defects and chronic mitochondrial stress. HIRA is an evolutionarily conserved histone chaperone that facilitates the deposition of the histone variant H3.3. Mutants lacking \textit{hira-1}, the sole HIRA ortholog encoded in the \textit{C. elegans} genome, have defects in body size, pigmentation, pharyngeal pumping, and defecation. These pleiotropic defects are minor or undetectable until adulthood. These late-onset defects can be maternally rescued, likely by the persistence of maternally-derived HIRA-1 into the adult. Tissue-specific rescue experiments indicate that loss of \textit{hira-1} has a systemic effect, as neuron-, muscle-, or intestine- specific expression is sufficient to rescue \textit{hira-1} mutant defects. Loss of \textit{hira-1} results in gene expression profiles similar to those of animals undergoing mitochondrial stress and chronic systemic activation of the mitochondrial stress response suggesting that mitochondrial stress might contribute to \textit{hira-1} mutant defects. A screen for mutants that mimic the late-onset defects and mitochondrial stress of \textit{hira-1} mutants identified PQN-80/UBN1, a core HIRA complex component, and XNP-1/ATRX, an H3.3 chaperone that functions in a complex distinct from that of the HIRA complex. Mutants lacking H3.3 are superficially wild-type but have a late-onset defect in defecation similar to that of \textit{hira-1}, \textit{pqn-80}, and \textit{xnp-1} mutants, strongly suggesting that the HIRA complex and XNP-1 assemble H3.3-containing chromatin to prevent this late-onset defect. We hypothesize that H3 can compensate for loss of H3.3, explaining why H3.3 mutants share only one of the pleiotropic defects of \textit{hira-1}, \textit{pqn-80}, and \textit{xnp-1} mutants. Indeed, RNAi of H3 mimics the small and pale aspects of the \textit{hira-1} phenotype in H3.3 mutants but not in wild-type animals, supporting our hypothesis that H3 can compensate for loss of H3.3 and that this compensation is executed by the HIRA complex and XNP-1. We propose that HIRA- and ATRX- mediated assembly of H3.3-containing chromatin plays an essential role in preserving normal organismal physiology across the lifespan of many organisms and that perturbations of these pathways might underlie some late-onset human diseases.