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SUMMARY

The longevity of Caenorhabditis elegans is pro-
moted by extra copies of the sir-2.1 gene in
a manner dependent on the forkhead transcrip-
tion factor DAF-16. We identify two C. elegans
14-3-3 proteins as SIR-2.1 binding partners
and show that 14-3-3 genes are required for
the life-span extension conferred by extra cop-
ies of sir-2.1. 14-3-3 proteins are also required
for SIR-2.1-induced transcriptional activation
of DAF-16 and stress resistance. Following
heat stress, SIR-2.1 can bind DAF-16 in a 14-
3-3-dependent manner. By contrast, low insu-
lin-like signaling does not promote SIR-2.1/
DAF-16 interaction, and sir-2.1 and the 14-3-3
genes are not required for the regulation of life
span by the insulin-like signaling pathway. We
propose the existence of a stress-dependent
pathway in which SIR-2.1 and 14-3-3 act in par-
allel to the insulin-like pathway to activate DAF-
16 and extend life span.

INTRODUCTION

C. elegans life span is controlled by an insulin/IGF signal-

ing pathway, which includes the DAF-2 transmembrane

receptor, a series of intracellular kinases, and the DAF-

16 forkhead-family transcription factor (Guarente and

Kenyon, 2000; Finch and Ruvkun, 2001; Kenyon, 2005).

This insulin/IGF pathway regulates the generation of dauer

larvae, which are long-lived developmental variants that

arise from second-stage (L2) larvae when conditions are

harsh (Larsen et al., 1995; Vanfleteren and Braeckman,

1999). Mutations that decrease signaling by the DAF-2 re-

ceptor pathway cause an extension of the life span of

adults (and more frequent entry into the dauer develop-

mental state by larvae) by triggering the nuclear localiza-

tion of DAF-16 (Henderson and Johnson, 2001; Lee

et al., 2001; Lin et al., 2001). Such mutations also increase
the resistance of animals to oxidative and genotoxic

stress. The longevity and stress resistance engendered

by a reduction in insulin/IGF signaling is abolished in mu-

tants defective in daf-16 (Murakami and Johnson, 1996;

Lin et al., 1997; Paradis and Ruvkun, 1998; Honda and

Honda, 1999). The forkhead family of transcription factors

includes mammalian FOXO1, 3, and 4. In mammals, acti-

vation of the insulin/IGF pathway causes phosphorylation

of forkhead proteins and their retention in the cytoplasm

(Brunet et al., 1999; Nakae et al., 1999; Tang et al.,

1999). Nuclear localization of forkhead proteins can be eli-

cited by depletion of insulin from serum or by stress (Tran

et al., 2003; Brunet et al., 2004; Essers et al., 2004; Van

Der Heide et al., 2004; van der Horst et al., 2004).

C. elegans sir-2.1 and its orthologs in Saccharomyces

cerevisiae and Drosophila melanogaster can regulate life

span (Kaeberlein et al., 1999; Tissenbaum and Guarente,

2001; Rogina and Helfand, 2004). Transgenic worms

with extra copies of sir-2.1 live longer than the wild-type.

Because this longevity requires daf-16, it was proposed

that sir-2.1 works by downregulating insulin signaling (Tis-

senbaum and Guarente, 2001). This genetic inference was

bolstered by the finding that transgenes overexpressing

SIR-2.1 conferred no further extension in life span to

daf-2 mutants (Tissenbaum and Guarente, 2001). Never-

theless, the mechanistic link between sir-2.1, the insulin/

IGF pathway, and its target daf-16 is unknown.

The proteins encoded by yeast SIR2 and its orthologs

are NAD-dependent deacetylases (Blander and Guarente,

2004). The mammalian homolog Sirt1 interacts with many

proteins, including transcription factors, such as p53,

PPARg, and NF-kB, and transcriptional cofactors, such

as p300 and CBP (Luo et al., 2001; Langley et al., 2002;

Takata and Ishikawa, 2003; Picard et al., 2004; van der

Horst et al., 2004; Vaquero et al., 2004; Yeung et al.,

2004; Bouras et al., 2005). In mammals, Sirt1 can bind to

and deacetylate forkhead proteins. Deacetylation of fork-

head transcription factors by Sirt1 can result in either re-

pression or activation of the transcription of their target

genes (Brunet et al., 2004; Motta et al., 2004; Bouras

et al., 2005) and appears to increase the resistance of

mammalian cells to DNA-damage-induced apoptosis
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(Luo et al., 2001; Brunet et al., 2004; Cohen et al., 2004;

Motta et al., 2004).

14-3-3 proteins are highly conserved small acidic pro-

teins that bind phosphoserine and phosphothreonine res-

idues in a context-specific manner (Durocher et al., 2000).

Through interactions with their partners, 14-3-3 proteins

regulate key biological processes, such as the cell cycle,

apoptosis, and transcription (Tzivion et al., 2001). 14-3-3

proteins affect their targets by multiple mechanisms, in-

cluding by activating or inhibiting intrinsic protein activi-

ties, by altering subcellular protein localization, and by

scaffolding interactions between two binding partners. In

mammalian cells, 14-3-3 proteins bind to phosphorylated

forkhead (Brunet et al., 1999; Durocher et al., 2000; Obsil

et al., 2003), and this binding leads to retention of forkhead

in the cytoplasm, rendering it inactive. Mammalian 14-3-3

proteins can also bind the C. elegans forkhead protein

DAF-16 when it is phosphorylated (Cahill et al., 2001). In

C. elegans, two genes, par-5 and ftt-2, encode 14-3-3-

like proteins, both of which are enriched in the embryo

and the gonad (Wang and Shakes, 1997; Morton et al.,

2002). Mutations in par-5 affect the asymmetry of early

embryonic cell divisions and cause maternal-effect lethal-

ity (Morton et al., 2002). ftt-2 is expressed in the soma

(Wang and Shakes, 1997); the effect of the loss of ftt-2

function has not been described.

In this report, we show that SIR-2.1 acts with 14-3-3

proteins to affect DAF-16 activity and life span. Our find-

ings suggest that SIR-2.1 and 14-3-3 may act in parallel

to the insulin-like pathway to regulate DAF-16 and extend

life span.

RESULTS

C. elegans SIR-2.1 Interacts with 14-3-3 Proteins

To identify SIR-2.1-interacting proteins in C. elegans, we

raised a polyclonal antibody that recognizes worm SIR-

2.1. Immunofluorescence studies using this antibody

showed nuclear staining in wild-type animals (Figure 1A,

left), consistent with the reported nuclear localization of

the mammalian homolog Sirt1 (Langley et al., 2002). No

staining was seen in sir-2.1(ok434) mutants, which are de-

leted for the sir-2.1 gene (Figure 1A, right), indicating that

this antibody is specific to SIR-2.1. We isolated SIR-2.1

protein complexes by coprecipitation with the anti-SIR-

2.1 antibody and analyzed the complexes by mass spec-

trometry. We assayed lysates of three different strains: the

wild-type (N2), sir-2.1(ok434D) (which does not produce

full-length SIR-2.1 protein), and a transgenic sir-2.1 over-

expressor (O/E). We detected SIR-2.1 and one additional

protein in the sir-2.1(O/E) lysate (Figure 1B). This protein

was subjected to mass spectrometry, which revealed

that it contained both C. elegans 14-3-3-like proteins,

PAR-5 and FTT-2, and no other proteins (Figure 1C).

PAR-5 and FTT-2 share 88% sequence identity and are

78% (PAR-5) and 82% (FTT-2) identical to human 14-3-3z.

To address whether SIR-2.1/14-3-3 interaction also

occurs in wild-type animals with endogenous levels of
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SIR-2.1, we repeated the anti-SIR-2.1 immunoprecipita-

tions and analyzed the precipitates by Western blotting

using antibody raised against mouse 14-3-3 recognizing

both C. elegans 14-3-3 proteins (Figure 1D). We detected

14-3-3 immunoreactivity in SIR-2.1 precipitates isolated

from both the wild-type and the sir-2.1-overexpressing

strain. The precipitation of another C. elegans deacetylase

protein, HDA-1, from wild-type worm lysates did not con-

tain 14-3-3, indicating that the interaction is specific to

SIR-2.1 (see Figure S1A in the Supplemental Data avail-

able with this article online).

14-3-3 proteins in C. elegans are mostly localized to the

cytoplasm (Wang and Shakes, 1997). In mammals, 14-3-3

proteins are known to shuttle between the cytoplasm and

the nucleus (Brunet et al., 2002; Van Der Heide et al.,

2004). To see whether 14-3-3 proteins are present in

C. elegans nuclei, we performed cell fractionation experi-

ments. While we detected SIR-2.1 protein in the nuclear

fraction but not in the cytosolic fraction, 14-3-3 proteins

were present in both nuclear and cytosolic fractions

(Figure 1E). These observations are consistent with the hy-

pothesis that the interaction between SIR-2.1 and 14-3-3

proteins occurs in the nucleus.

C. elegans 14-3-3 Proteins Can Act to Retain

DAF-16::GFP in the Cytoplasm

Since mammalian 14-3-3 proteins bind phosphorylated

FOXO proteins (the homologs of DAF-16) and control their

subcellular localization (Brunet et al., 1999, 2002; Cahill

et al., 2001; Obsil et al., 2003), we investigated whether

C. elegans 14-3-3 proteins can affect the localization of

DAF-16.

We used RNA-mediated gene interference (RNAi) to re-

duce the expression of the 14-3-3 genes. Progeny of ani-

mals fed with bacteria expressing par-5 RNAi expressed

a maternal-effect lethal phenotype similar to that previ-

ously described for par-5 loss-of-function (lf) mutants

(Morton et al., 2002). The progeny of animals fed with ftt-

2 RNAi frequently retained eggs and died of internally

hatched progeny, a phenotype similar to that of ftt-2(lf)

mutants (see below). Feeding par-5 or ftt-2 RNAi did not

cause any apparent abnormalities in animals that were

transferred to RNAi plates as L4 larvae or as adults. At

the protein level, par-5(RNAi) had a minimal effect on the

level of total 14-3-3 proteins (data not shown), whereas

ftt-2(RNAi) caused substantial reduction in 14-3-3 protein

level (see below). It is important to note that the two

C. elegans 14-3-3 genes are very similar, so it is possible

that RNAi of one gene would result in reduction of function

of the other. Nevertheless, we believe that at least some of

the RNAi effects are gene specific since par-5(RNAi) but

not ftt-2(RNAi) resulted in a maternal-effect lethal pheno-

type similar to that caused by mutation in par-5, and ftt-

2(RNAi) but not par-5(RNAi) resulted in a lower level of

14-3-3 proteins.

First, we examined DAF-16 localization in animals ex-

pressing lower levels of 14-3-3 using a functional DAF-

16::GFP (Lee et al., 2001). In this experiment, we used



Figure 1. C. elegans SIR-2.1 Interacts with 14-3-3 Proteins
(A) SIR-2.1 is a nuclear protein. Whole-mount larvae and adults were incubated with anti-SIR-2.1 antibody followed by washes and incubation with

FITC-conjugated secondary anti-rabbit antibody. Fluorescence microscopy revealed nuclear staining in wild-type adult hermaphrodites (WT, left), but

not in sir-2.1(ok434) mutants (sir-2.1(D), right). Black arrows point at intestinal nuclei; the white arrow points at germline nuclei. * marks nonspecific

staining of the pharynx muscle.

(B) 14-3-3 proteins coimmunoprecipitate with SIR-2.1. Sonicates were prepared from synchronized 1-day-old adults of three strains with different

levels of sir-2.1: sir-2.1(ok434) (sir-2.1(D)), the N2 wild-type strain (WT), and the sir-2.1 high-copy transgenic overexpressor geIn3 (sir-2.1(O/E)). All

samples contained 10 mg of total protein. The SIR-2.1 band and a 30 kDa coprecipitating protein band are indicated by arrows. H, heavy chain;

L, light chain.

(C) Peptides identified by mass spectrometry of the 30 kDa band. The numbers represent the first and the last amino acids of each recovered peptide.

(D) SIR-2.1 and 14-3-3 interact in wild-type animals. SIR-2.1 was precipitated from lysates of wild-type, sir-2.1(D), and sir-2.1(O/E) animals, and pre-

cipitates were analyzed using Western blots with the indicated antibodies. Input lanes contained 50 mg of lysate proteins. Mock IP: To control for

nonspecific antibody interactions, we substituted the preimmune serum for the SIR-2.1 antibody.

(E) Both SIR-2.1 and 14-3-3 are present in worm nuclear fractions. Western blot of subcellular fractionations of wild-type embryos separated into

nuclear and cytosolic fractions is shown. The first lane contains crude extract prior to separation. N, nuclear extract; C, cytosolic extract. Ce-lamin,

a nuclear fraction marker; SQV-4, C. elegans UDP glucose dehydrogenase, a cytosolic marker.
four nonoverlapping RNAi clones, two targeting each of

the two 14-3-3 genes, par-5 and ftt-2 (see Experimental

Procedures). Under normal conditions, DAF-16::GFP has
a diffuse, mostly cytoplasmic localization. Reducing

the expression of par-5 or ftt-2 or both by RNAi caused

a pronounced nuclear accumulation of DAF-16::GFP
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(Figure 2A). Nuclear DAF-16::GFP localization was most

prominent in the intestinal cells but was also apparent in

muscle and hypodermis (we scored animals as positive

for nuclear DAF-16::GFP if most or all intestinal cells

showed nuclear GFP). We did not see GFP accumulation

in neuronal nuclei, perhaps because of the previously de-

scribed insensitivity of this tissue to RNAi (Timmons et al.,

2001). RNAi targeting of ftt-2 led to nuclear DAF-16::GFP

in 68% or 100% of animals, depending on the RNAi clone

used, while par-5 RNAi caused nuclear DAF-16::GFP in

about 50% of animals (Table 1). The par-5 RNAi result sug-

gests that this biological assay of DAF-16::GFP localiza-

tion is likely more sensitive than Western blots, in which

we could not detect a significant reduction in 14-3-3 level

following par-5(RNAi) feeding. In addition to altering the lo-

calization of DAF-16::GFP, ftt-2(RNAi) but not par-5(RNAi)

Figure 2. 14-3-3 Proteins Affect DAF-16 Localization

(A) Reducing par-5, ftt-2, or both by RNAi results in nuclear accumula-

tion of DAF-16::GFP. Top left panel shows control animals fed bacteria

carrying the RNAi vector. Top right panel shows DAF-16::GFP accu-

mulation in the nuclei of intestinal cells in worms treated with par-5

RNAi. Bottom panels show nuclear accumulation of DAF-16::GFP in

the intestinal and hypodermal cells of ftt-2 RNAi (left) or double par-5 +

ftt-2 RNAi animals (right). White arrows mark GFP accumulation in

hypodermal nuclei; white arrowheads mark nuclei of intestinal cells.

Images of L3 progeny of animals fed with bacteria expressing the

RNAi clones indicated were taken at 4003 magnification using Nomar-

ski fluorescence microscopy, 2000 ms exposure time.

(B) ftt-2 deletion results in nuclear DAF-16::GFP. Left, DAF-16::GFP in

animals with wild-type ftt-2. Right, nuclear accumulation of DAF-

16::GFP in ftt-2(n4426D) animals. Images of L1 larvae were taken at

10003 magnification using fluorescence microscopy, 1000 ms expo-

sure time.
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caused arrest at the L2–L3 larval stages of the progeny of

daf-16::gfp animals. Larval arrest was not observed when

wild-type animals were subjected to ftt-2(RNAi) and may

have been a consequence of the increased nuclear local-

ization of overexpressed DAF-16::GFP.

To confirm that loss of ftt-2 function can alter DAF-16 lo-

calization, we generated an ftt-2 mutant strain by screen-

ing a library of chemically mutagenized animals using PCR

(Jansen et al., 1997; Liu et al., 1999). ftt-2(n4426D) worms

bear a 668 bp deletion that removes part of the promoter

and the start codon of the predicted ftt-2 gene and there-

fore is a good candidate for being a null allele of ftt-2.

These mutants develop normally but die in early adulthood

because of bursting at the vulva or internal hatching of

progeny (data not shown). We introduced the daf-16::gfp

transgene into the ftt-2(n4426D) strain. Larvae homozy-

gous for ftt-2(D) had nuclear DAF-16::GFP, similar to ani-

mals treated with ftt-2(RNAi) (Figure 2B), indicating that

ftt-2 function may be required for the proper subcellular lo-

calization of DAF-16. These experiments suggest that, as

proposed for the homologous proteins in mammals,

C. elegans 14-3-3 proteins can act to retain the forkhead

protein DAF-16 in the cytoplasm.

We next asked whether SIR-2.1 levels could also affect

the cellular localization of DAF-16. We crossed the daf-

16::gfp transgene into two different long-lived strains

that overexpress SIR-2.1, geIn3 and pkIs1642. The DAF-

16::GFP localization in these strains was cytoplasmic,

as in the control strain with wild-type levels of SIR-2.1

(data not shown). We conclude that, under normal condi-

tions, SIR-2.1 overexpression does not affect DAF-16

localization.

Table 1. Reducing par-5 and ftt-2 by RNAi Results in
Nuclear Accumulation of DAF-16::GFP

% Nuclear DAF-16::GFP % Arrested

LarvaeL3 Larvae (n) Adults (n)

RNAi vector 0 (123) 0 (>200) 0

par-5 RNAi
(N-terminal)

18 (82) 50 (80) 0

ftt-2 RNAi

(N-terminal)

100 (91) NA 100

par-5+ftt-2 RNAi

(N-terminal)

100 (66) NA 96

par-5 RNAi

(C-terminal)

ND 48 (219) 0

ftt-2 RNAi
(C-terminal)

68 (520) NA 80

GFP localization was scored using fluorescence microscopy

to observe the progeny of young adults fed the indicated
RNAi bacteria. All animals with any cells containing nuclear

GFP were scored as positive for nuclear DAF-16::GFP. n =

total number of animals examined, ND = not determined,
NA = nonapplicable because of larval arrest.



Figure 3. ftt-2 and par-5 Are Required for sir-2.1-Mediated Life-Span Extension

Life-span analyses were performed using RNAi plates as described in Experimental Procedures.

(A–E) The black dashed line represents the life spans of wild-type (N2) control animals fed bacteria carrying control RNAi vector, and solid lines rep-

resent life spans of animals of indicated genotypes fed with bacteria carrying control vector (black), par-5 RNAi (magenta), ftt-2 RNAi (blue), or daf-16

RNAi (red). The sir-2.1(wt) animals in (A) and pk1642[sir-2.1O/E] animals carried the unc-119 coinjection marker. Experiments were performed at 20ºC.

(A) par-5 and ftt-2 RNAi shorten the life spans of animals with endogenous SIR-2.1 levels by �20%–25%.

(B) RNAi targeting par-5 or ftt-2 prevents the life-span extension by extra copies of sir-2.1. Worms fed ftt-2 RNAi had life spans similar to those of

animals fed daf-16 RNAi (�50% reduction compared to the vector control), and par-5 RNAi had a weaker effect, as life spans were shortened to

the level of the wild-type (�30% reduction relative to the vector control).

(C) Effects of par-5, ftt-2, and daf-16 RNAi on the short life span of sir-2.1 loss-of-function animals. Reductions in the expression levels of any of the

three genes resulted in a similar slight (<10%) shortening of the life span of sir-2.1(ok434) animals.

(D) par-5 and ftt-2 RNAi do not significantly shorten the life span of daf-16(mgDf50) animals.

(E) par-5 and ftt-2 RNAi do not significantly shorten the long life span of daf-2(e1370) animals.

(F) Loss of sir-2.1 function does not shorten the life span of daf-2(e1370) animals. Epistasis analysis of sir-2.1 and daf-2 genes showed that double

mutants bearing loss-of-function mutations in both genes had long life spans, similar to those of daf-2(lf) animals. The experiment in (F) was performed

at 25ºC.
The 14-3-3 Genes ftt-2 and par-5 Are Required

for sir-2.1-Mediated Life-Span Extension

As FTT-2 and PAR-5 interact with SIR-2.1 and affect DAF-

16 localization, we asked whether 14-3-3 genes regulate

C. elegans life span. We used RNAi to reduce the levels of
par-5 and ftt-2 inadultsand assayed their life spans.Ascon-

trols, we measured life spans of animals fed bacteria ex-

pressing a control RNAi vector and animals fed daf-16

RNAi. RNAi reduction of par-5, ftt-2, and daf-16 had similar

effects on the life spans of worms with wild-type levels of
Cell 125, 1165–1177, June 16, 2006 ª2006 Elsevier Inc. 1169



Figure 4. Overexpression of sir-2.1 Leads to Stress Resistance and Activation of the daf-16 Target Gene sod-3 in an ftt-2-Depen-

dent Manner

(A and B) sir-2.1 and ftt-2 promote stress resistance. sir-2.1(D), sir-2.1(ok434); ftt-2(D), ftt-2(n4426); sir-2.1(O/E), pkIs1642.

(A) Young adults of the indicated genotypes were subjected to heat shock at 32ºC, and their viability was scored over the next 40 hr at the indicated

time points.

(B) Synchronized L1 larvae were transferred to plates containing 0.25 mM paraquat. The number of animals that developed past the L4 stage was

assessed 96 hr later. Error bars represent standard deviations from triplicate experiments. The p values versus wild-type are sir-2.1(D), p = 0.012;

sir-2.1(O/E), p = 0.001; ftt-2(D), p = 0.004; sir-2.1(O/E); ftt-2(D) relative to sir-2.1(O/E), p = 0.001.

(C–K) SIR-2.1 overexpression promotes activation of sod-3 transcription in a daf-16- and ftt-2-dependent manner. The psod-3::gfp(muIs84) reporter

was crossed into the indicated genetic backgrounds, and the expression of the reporter was observed using fluorescence microscopy. Note higher

levels of SOD-3::GFP expression in both strains overexpressing SIR-2.1, the high-copy overexpressor geIn3 (D) and the low-copy overexpressor

pkIs1642 (E), relative to that in the wild-type (C). In daf-16(mgDf50) animals, SOD-3::GFP expression was not increased by transgenes carrying extra
1170 Cell 125, 1165–1177, June 16, 2006 ª2006 Elsevier Inc.



SIR-2.1:They resulted ina shorteningof lifespanbyapprox-

imately 20%–25% compared to the vector control (see

Figure 3A).

Next we asked whether downregulation of 14-3-3 genes

would affect life span in long-lived animals with extra cop-

ies of sir-2.1. The sir-2.1 gene R11A8.4 is predicted to be a

downstream gene of a two-gene operon (CEOP4372). To

overexpress sir-2.1 with its regulatory regions, we made

a new transgenic strain NL3909 pkIs1642 by microparticle

bombardment. The construct in the NL3909 strain contains

the entire operon, including the sir-2.1 coding sequence

plus 2.5 kb of sequence upstream of sir-2.1 containing the

gene R11A8.5, predicted to encode a glutathione S-trans-

ferase-related protein, as well as 600 bases further up-

stream. Animals carrying the pkIs1642 transgene showed

marked extension of life span relative to the wild-type

(Figure 3B). Control experiments indicated that overexpres-

sion of SIR-2.1, but not of R11A8.5, is required for life-span

extension of pkIs1642 transgenic animals (see Experimen-

tal Procedures and Figure S2). Reduction of 14-3-3 levels

in animals with extra copies of sir-2.1 fully suppressed

the life-span extension observed in this strain (Figure 3B).

While ftt-2 RNAi resulted in a shortened life span indistin-

guishable from the effect of daf-16 RNAi, par-5 RNAi sup-

pressed the life span of the sir-2.1 overexpressor to a wild-

type duration. Table S1 details the data for these and all

other life-span experiments presented in Figure 3.

To address the possibility that the worms fed with the

par-5 or ftt-2 RNAi bacteria have nonspecifically short-

ened life spans because they are sick, we tested the

effects of par-5 and ftt-2 RNAi on the life spans of sir-

2.1(ok434D) and daf-16(lf) mutants, both of which have

slightly shorter life spans than the wild-type. In these

strains, reducing 14-3-3 gene expression caused little or

no reduction in life span (see Figures 3C and 3D). More

strikingly, reducing 14-3-3 gene expression in a daf-2 mu-

tant, which, like the sir-2.1-overexpressing strain, displays

an increased life span, did not shorten life span (see be-

low). Thus, the effects of par-5 and ftt-2 RNAi on life

span probably are not caused by nonspecific sickness.

Rather, par-5 and ftt-2 appear to be specifically required

for the sir-2.1-dependent life-span extension.

Our findings indicate that reduction of either par-5 or

ftt-2 triggered nuclear localization of DAF-16 but did not

promote longevity. This observation suggests that nuclear

localization of DAF-16 may not be sufficient to activate

target genes and extend life span.

sir-2.1, par-5, and ftt-2 Are Not Required

for Life-Span Extension in Animals with

Reduced Insulin/IGF Signaling

C. elegans sir-2.1 has been suggested to affect life span

via the insulin-like pathway (Tissenbaum and Guarente,
2001). To analyze the interactions of the 14-3-3 genes

with the insulin-like pathway, we tested the effects of

reducing par-5 and ftt-2 in a daf-2 mutant, which has ex-

tended life span. In this experiment, the life-span exten-

sion of daf-2(e1370) mutants was fully suppressed by

daf-16 RNAi, as expected. By contrast, par-5 RNAi and

ftt-2 RNAi had no effect (Figure 3E). Likewise, the loss of

sir-2.1 did not reduce the long life span of the daf-2 mutant

and may have lengthened it slightly (Figure 3F). These

findings indicate that sir-2.1, par-5, and ftt-2 do not func-

tion in the insulin-like pathway downstream of daf-2. In-

stead, sir-2.1 and the 14-3-3 genes may act upstream of

the DAF-2 insulin-like receptor (for instance, by controlling

production of its ligands) or in a pathway of life-span de-

termination parallel to that of insulin signaling. Since daf-

16 is required for the life-span extension by extra copies

of sir-2.1, any parallel pathway must converge on the

DAF-16 transcription factor.

sir-2.1 Can Promote Resistance to Stress

in an ftt-2-Dependent Manner

DAF-16 function is important for the stress response (Hsu

et al., 2003; Lamitina and Strange, 2005; Lin et al., 1997).

As SIR-2.1 overexpression led to extension of life span in

a daf-16- and ftt-2-dependent manner, we asked whether

sir-2.1 and ftt-2 might also be involved in stress resis-

tance. We examined the effects of sir-2.1 and ftt-2 on re-

sistance to heat stress by determining the survival of ani-

mals subjected to 32ºC heat shock (Figure 4A) and to

oxidative stress by assaying development in 0.25 mM

paraquat (Figure 4B). In both cases, the sir-2.1-overex-

pressing strain was stress resistant compared to the

wild-type and the sir-2.1 deletion strain was stress

sensitive (Figures 4A and 4B). Moreover, an ftt-2 loss-of-

function mutation also caused sensitivity to stress and

completely abolished the stress resistance of the sir-2.1-

overexpressing strain (Figures 4A and 4B). These findings

show that sir-2.1 and 14-3-3 function together in deter-

mining stress resistance.

sir-2.1 Can Promote daf-16-Dependent

Transcription in an ftt-2-Dependent Manner

The genetic interactions between sir-2.1 and daf-16 led us

to speculate that sir-2.1 may activate daf-16. To test this

hypothesis, we used a GFP reporter for a known daf-16 tar-

get, sod-3 (Cahill et al., 2001; Honda and Honda, 1999; Lee

et al., 2003; McElwee et al., 2003). This sod-3::gfp reporter,

which has been used to assay daf-16 activity (Libina et al.,

2003), was crossed into strains with high-copy-number

(geIn3) or low-copy-number (pkIs1642) transgenes carry-

ing extra copies of sir-2.1, and the sod-3::gfp signal in

these strains was visualized by fluorescence microscopy

(Figures 4C–4E). In both sir-2.1-overexpressing strains,
copies of sir-2.1 (compare [D] to [G] and [E] to [H]). The ftt-2 deletion did not have a pronounced effect on SOD-3::GFP expression in the wild-type

background (J) but totally prevented induction of SOD-3::GFP expression in worms with extra copies of sir-2.1 (compare [K] to [E]). This effect of ftt-

2(D) was specific for sir-2.1 since an ftt-2 deletion did not reduce elevated SOD-3::GFP expression in the daf-2(lf) strain (compare [I] to [F]). All images

were taken at 503 magnification using Nomarski fluorescence microscopy with an exposure time of 300 ms.
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the GFP signal was much stronger than in the wild-type, in-

dicating that transcription from the sod-3 promoter was

upregulated. A loss-of-function mutation in daf-16 elimi-

nated this upregulation of sod-3 (Figures 4G and 4H), sug-

gesting that it results from the activation of DAF-16 by the

elevated levels of SIR-2.1. Transcriptional array data also

indicated an elevated expression of sod-3 and other

DAF-16 targets in animals overexpressing SIR-2.1 (Table

S2; Viswanathan et al., 2005).

Next we tested whether this activation of DAF-16 by

SIR-2.1 would be influenced by reducing the levels of

14-3-3. Animals bearing a deletion in ftt-2 did not show up-

regulation of sod-3::gfp expression (Figure 4J), although

these mutants displayed a nuclear localization of DAF-

16::GFP (Figure 2B). However, the upregulation of sod-3

by the sir-2.1-overexpressing transgene was abolished

by deletion of ftt-2 (Figure 4K). Moreover, the requirement

for ftt-2 was specific for the activation of DAF-16 by SIR-

2.1 overexpression, as the ftt-2 deletion did not reduce

the high sod-3::gfp expression seen in the daf-2(e1370)

mutant (see Figures 4F and 4I). In summary, overexpres-

sion of SIR-2.1 appears to promote DAF-16 transcriptional

activity and requires 14-3-3 to do so.

Following Stress, SIR-2.1 Interacts with DAF-16

in a 14-3-3-Dependent Manner

In mammals, both 14-3-3 proteins and a SIR-2.1 homolog,

Sirt1, can physically interact with mammalian FOXO pro-

teins (Brunet et al., 1999, 2002, 2004; Obsil et al., 2003;

Motta et al., 2004; van der Horst et al., 2004). To ask

whether comparable interactions occur among the related

proteins of C. elegans, we used a functional DAF-16::GFP

(Lee et al., 2001) and antisera to GFP and SIR-2.1 for

coimmunoprecipitation experiments and analyzed the

precipitates using Western blots (Figure 5A). Since SIR-

2.1 is a nuclear protein and DAF-16 is normally cytoplas-

mic (Henderson and Johnson, 2001; Lee et al., 2001; Lin

et al., 2001), we reasoned that any interaction would re-

quire nuclear entry of DAF-16. Heat stress causes nuclear

accumulation of DAF-16 (Henderson and Johnson, 2001;

Lin et al., 2001). Thus, we immunoprecipitated DAF-

16::GFP or SIR-2.1 from untreated animals and from ani-

mals that had been heat shocked and assayed for coim-

munoprecipitation of SIR-2.1 and DAF-16. As expected,

no SIR-2.1/DAF-16 complex was observed in the absence

of heat shock. After heat shock, SIR-2.1 coimmunopreci-

pitated with DAF-16 (Figure 5A). Thus, following stress,

DAF-16 can physically interact with SIR-2.1 proteins in

C. elegans. Notably, 14-3-3 was found in the DAF-

16::GFP immunoprecipitate before and after heat shock

and not in that of the control animals lacking DAF-

16::GFP (Figure 5A). Immunoprecipitates of the C. elegans

protein LIN-53 fused to GFP did not contain 14-3-3

(Figure S1B). Thus, DAF-16 can physically interact with

14-3-3 proteins in C. elegans.

One of the known biological roles of 14-3-3 proteins is to

act as a scaffold, promoting interactions between two dif-

ferent proteins (Tzivion et al., 2001). We asked whether 14-
1172 Cell 125, 1165–1177, June 16, 2006 ª2006 Elsevier Inc.
3-3 proteins were important for the interaction between

SIR-2.1 and DAF-16. We immunoprecipitated DAF-16::GFP

protein from lysates of animals grown on ftt-2(RNAi) or

vector RNAi and subjected to heat shock and assessed

the levels of SIR-2.1 in the precipitates. ftt-2(RNAi) mark-

edly reduced the amount of SIR-2.1 that coprecipitated

with DAF-16 (Figure 5B). par-5(RNAi) had no effect on

the level of 14-3-3 proteins in worms or the coimmunopre-

cipitation of SIR-2.1 with DAF-16 (data not shown). We

conclude that, following heat stress, SIR-2.1 interacts

with DAF-16 in a 14-3-3-dependent manner.

We tested whether reducing insulin-like signaling, which

should cause accumulation of dephosphorylated nuclear

DAF-16, affects interactions between DAF-16, 14-3-3,

and SIR-2.1 proteins. RNAi reduction of daf-2 results in

decreased insulin-like signaling leading to life-span exten-

sion and accumulation of DAF-16::GFP in the nucleus

(Figure S3; Henderson and Johnson, 2001; Murphy

et al., 2003). However, unlike heat shock, daf-2(RNAi)

did not promote the interaction between SIR-2.1 and

DAF-16 (Figure 5B). After heat shock of the daf-2 RNAi-

treated worms, a low level of DAF-16/SIR-2.1 interaction

was observed, which may be due to a fraction of DAF-

16 that was not affected by daf-2 RNAi. These findings

suggest that DAF-16 phosphorylation and interaction

with 14-3-3 may be important for the formation of SIR-

2.1/DAF-16 complex.

DISCUSSION

C. elegans SIR-2.1 and 14-3-3 Proteins Can Function

in a Stress-Response Pathway of Longevity

The longevity of C. elegans is increased by extra copies of

the sir-2.1 gene, and this effect is dependent on daf-16

(Tissenbaum and Guarente, 2001). Here we provide evi-

dence for a mechanistic basis of this genetic interaction:

SIR-2.1 and DAF-16 proteins can physically interact. We

found that SIR-2.1 functions in stress responses, as

worms overexpressing SIR-2.1 were resistant to heat

and oxidative stresses and sir-2.1 loss-of-function mu-

tants were stress sensitive. We also found that SIR-2.1

can activate DAF-16-dependent transcription, as overex-

pression of SIR-2.1 increased transcription of the DAF-16

target gene sod-3 in a daf-16-dependent manner.

Moreover, we found that 14-3-3 proteins are required

for the life-span extension, stress resistance, and sod-3

activation conferred by extra copies of sir-2.1. Deletion

of ftt-2 prevented stress resistance and sod-3 activation

by SIR-2.1 overexpression, and RNAi of either par-5 or

ftt-2 suppressed the SIR-2.1-mediated life-span exten-

sion. We are not certain that par-5 functions in the

life-span extension caused by SIR-2.1 overexpression

because RNAi of par-5 may also target ftt-2.

Mammalian 14-3-3 proteins can interact with phosphor-

ylated FOXO proteins and cause their retention in the cyto-

plasm (Brunet et al., 1999; Durocher et al., 2000; Obsil

et al., 2003). Insulin signaling promotes this retention by

causing phosphorylation of FOXO proteins. Here we



Figure 5. DAF-16 and SIR-2.1 Interact in Worms Following Stress, and this Interaction Depends on 14-3-3

(A) Coimmunoprecipitation of SIR-2.1 with DAF-16::GFP and 14-3-3 proteins following heat shock. Worm lysates were prepared from geIn3 worms

(lacking DAF-16::GFP) or animals overexpressing DAF-16::GFP fusion protein. SIR-2.1 or DAF-16::GFP was precipitated from worm lysates using

SIR-2.1 antibody or an anti-GFP monoclonal antibody. Precipitates were separated by SDS PAGE and analyzed using Western blots with antibodies

to DAF-16 (polyclonal serum), SIR-2.1, and 14-3-3. +, animals were heat shocked for 45 min at 37ºC prior to lysis.

(B) Upper panels show coimmunoprecipitation of SIR-2.1 and DAF-16::GFP in animals with low insulin signaling and reduced levels of 14-3-3 pro-

teins. Lysates were made as in (A). Worms were grown on RNAi plates containing L4440 vector control bacteria (vector), daf-2 RNAi bacteria, or ftt-2

RNAi bacteria. The lysates were analyzed as in (A). Lower panel shows a summary of the immunoprecipitation data above: associations between SIR-

2.1, 14-3-3, and DAF-16 under normal conditions, following stress, and upon low insulin-like signaling.
demonstrate that 14-3-3 proteins appear to be important

for the cytoplasmic localization of DAF-16 since reducing

the expression levels of par-5 or ftt-2 results in nuclear ac-

cumulation of DAF-16::GFP. Thus, C. elegans 14-3-3 pro-

teins can act to retain the C. elegans forkhead protein DAF-

16 in the cytoplasm, similar to their mammalian homologs.
Our data thus suggest that two different 14-3-3 protein

complexes are present in C. elegans: a DAF-16/14-3-3

complex in the cytoplasm and a SIR-2.1/14-3-3 complex

in the nucleus. Consistent with this hypothesis, we could

not detect an interaction between DAF-16 and SIR-2.1 un-

der normal conditions. However, heat shock, which is
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Figure 6. A Model for the Roles of SIR-2.1 and 14-3-3 in DAF-16 Regulation of Stress Resistance and Life Span

We propose that, following stress, SIR-2.1 binds DAF-16 in the nucleus in a 14-3-3-dependent manner, and the resulting complex participates in

transcriptional activation of DAF-16 target genes. 14-3-3 may promote the interaction between SIR-2.1 and DAF-16 either by scaffolding the complex

or through a modification of DAF-16 or SIR-2.1 following stress. Under low insulin-like signaling conditions, DAF-16 is not phosphorylated at the Akt

sites, becomes dissociated from 14-3-3, and accumulates in the nucleus. Nuclear DAF-16 produced by low insulin-like signaling does not bind SIR-

2.1 and does not require sir-2.1 and 14-3-3 function for activation. It is possible that another nuclear cofactor promotes DAF-16 activity under low

insulin conditions.
known to promote DAF-16 localization to the nucleus

(Henderson and Johnson, 2001; Lin et al., 2001), triggered

the formation of a SIR-2.1/DAF-16 complex. Both phos-

phorylation of DAF-16 at the Akt sites and FTT-2 appear

to be required for this interaction between DAF-16

and SIR-2.1 since RNAi of daf-2 or ftt-2 reduced their

association.

In summary, 14-3-3 proteins are required for the daf-16-

dependent biological effects of SIR-2.1 as well as for the

physical association of SIR-2.1 and DAF-16. Our results

suggest that 14-3-3 genes and sir-2.1 act together in

a stress-mediated pathway of longevity. Even under nor-

mal conditions, animals may experience a basal level of

stress, which may explain the effects of SIR-2.1 and 14-

3-3 in an absence of a specific stress treatment. Our

data indicate that 14-3-3 proteins play two antagonistic

roles in DAF-16 regulation. First, as previously described

in mammals, 14-3-3 proteins bind to phosphorylated

DAF-16 and promote its retention in the cytoplasm. Sec-

ond, 14-3-3 proteins function in a previously unknown

pathway to facilitate the association of DAF-16 with SIR-

2.1 in the nucleus to elicit activation of sod-3, stress resis-

tance, and extension of life span. A recent report suggests

that the C. elegans b-catenin ortholog bar-1 can activate
1174 Cell 125, 1165–1177, June 16, 2006 ª2006 Elsevier Inc.
DAF-16 following stress (Essers et al., 2005). It will be in-

teresting to see whether bar-1 participates in the 14-3-3/

SIR-2.1-mediated mechanism of DAF-16 regulation.

SIR-2.1 and 14-3-3 May Affect Longevity by

Regulating DAF-16 Forkhead in Parallel

to the Insulin-like Pathway

It has been suggested that sir-2.1 promotes longevity by

downregulating the insulin-like signaling pathway (Tissen-

baum and Guarente, 2001). We observed that sir-2.1, par-

5, and ftt-2 were not required for life-span extension in

a daf-2 mutant. Furthermore, ftt-2 was not required for

the activation of sod-3 by a reduction in insulin-like signal-

ing, even though ftt-2 was required for activation of sod-3

by SIR-2.1 overexpression. Our findings therefore indicate

that sir-2.1 and ftt-2 do not act in the insulin/IGF pathway

downstream of DAF-2. We cannot rule out the possibility

that SIR-2.1 functions upstream of the DAF-2 receptor,

for example, by regulating insulin production. However,

the stress-inducible 14-3-3-dependent physical interac-

tion between SIR-2.1 and DAF-16 suggests that SIR-2.1

and 14-3-3 act in a pathway parallel to insulin-like signal-

ing that, like the insulin-like pathway, converges on the

DAF-16 transcription factor.



A Model for the Roles of SIR-2.1 and 14-3-3 in DAF-16

Activation and Longevity

Our results suggest the following model for the role of SIR-

2.1 in DAF-16 activation (Figure 6). Under normal condi-

tions, DAF-16 is mostly inactive, is present in the cyto-

plasm, and is bound by 14-3-3 proteins. A reduction in in-

sulin/IGF signaling, for example in daf-2 mutants, renders

DAF-16 nuclear by reducing its state of phosphorylation

by Akt kinase, thereby dissociating it from 14-3-3. Nuclear

localization of DAF-16 is not sufficient for activation of its

target genes since reducing expression of ftt-2 rendered

DAF-16 nuclear but did not activate the DAF-16 target

sod-3 or extend life span. That nuclear DAF-16 is not nec-

essarily active is consistent with the finding that overex-

pression of DAF-16 mutated at all known Akt sites leads

to constitutively nuclear DAF-16 localization but does

not extend life span (Lin et al., 2001). It is possible that

DAF-16 requires an additional cofactor that acts with

DAF-16 to regulate transcription when insulin/IGF signal-

ing is reduced. Alternatively, the nuclear DAF-16 that ac-

cumulates in worms with low ftt-2 levels may be nonfunc-

tional because DAF-16 is insufficiently dephosphorylated.

In response to stress, forkhead proteins translocate to

the nucleus (Brunet et al., 2004; Henderson and Johnson,

2001; Lin et al., 2001; Tran et al., 2003) in a process that

may involve the JNK kinase signaling pathway (Oh et al.,

2005). We propose that SIR-2.1 binds the nuclear DAF-16

produced by stress but not the nuclear DAF-16 produced

by low insulin-like signaling. The resulting SIR-2.1/DAF-

16 complex promotes DAF-16-dependent transcription,

stress resistance, and longevity in a manner dependent

on 14-3-3 proteins. One possibility is that 14-3-3 scaffolds

the interaction between SIR-2.1 and DAF-16 and a ternary

complex among SIR-2.1, DAF-16, and 14-3-3 participates

in the transcriptional activation of DAF-16 target genes.

Another possibility is that 14-3-3 mediates a modification

of DAF-16 and/or SIR-2.1 following stress, triggering the

association of a binary complex of DAF-16 and SIR-2.1.

This alternative model requires two additional steps

involving an unknown 14-3-3-mediated modification of

either SIR-2.1 or DAF-16 and dissociation of 14-3-3 from

both SIR-2.1 and DAF-16.

Our proposed activation of FOXO proteins by a pathway

involving SIR-2.1 and 14-3-3 may be a general molecular

mechanism for the regulation of longevity by Sir2 ortho-

logs in metazoa.

EXPERIMENTAL PROCEDURES

Antibody Production, Immunofluorescence,

Immunoprecipitation, and Cell Fractionations

Rabbit polyclonal anti-SIR-2.1 antiserum was raised against purified

full-length His-tagged SIR-2.1 protein and was affinity purified using

His-tagged SIR-2.1 bound to nitrocellulose membranes. The mouse

monoclonal antibody to GFP was anti-AFP mAb 3E6 (Qbiogene). The

anti-DAF-16 rabbit polyclonal antibody was a gift from G. Ruvkun.

The mouse monoclonal anti-14-3-3b(H8) antibody was purchased

from Santa Cruz Biotechnology. To control for total protein content

in loading, we used the anti-a-tubulin mouse monoclonal antibody
Dm1a (Sigma). HDA-1 rabbit polyclonal antibody was purchased

from Santa Cruz.

Whole-mount immunofluorescence of larvae and adult animals was

performed as described (Finney and Ruvkun, 1990) with purified

anti-SIR-2.1 antibody and visualized by Nomarski fluorescence

microscopy.

Cell fractionations were performed as described (Chen et al., 2000).

Ce-lamin antibody was from Y. Gruenbaum (Liu et al., 2000). SQV-4

antibody was obtained from Ho-Yon Hwang (Hwang and Horvitz,

2002). Worm lysates for immunoprecipitation (IP) were made by soni-

cation. For mass spectrometry analysis, ten milligrams of total protein

was used per IP. For Western blot analysis, 1–3 mg of total protein was

used per IP. Input lanes contained 20–50 mg of total protein. For a more

detailed description of the immunoprecipitation experiments, see Sup-

plemental Experimental Procedures.

Life-Span, Stress-Resistance, and RNAi Analyses

Unless stated otherwise, life-span assays were performed at 20ºC and

initiated by transferring L4 larvae of the indicated genotypes to plates

containing 10 mM fluorodeoxyuridine (FUDR). Heat-shock assays were

performed at 32ºC using one-day-old adults. Paraquat sensitivity was

determined by assessing development on plates containing 0.25 mM

paraquat. For RNAi analysis of DAF-16::GFP localization, L4 animals

were transferred to RNAi plates containing bacteria induced to express

an RNAi clone or carrying empty RNAi feeding vector as a control (Ka-

math et al., 2003). The phenotype of progeny was scored after 48–72 hr

at 20ºC. See Supplemental Experimental Procedures for details.

Strains

Standard nematode growth medium (NGM) (Brenner, 1974) was used

for C. elegans growth and maintenance at 20ºC. Unless otherwise

stated, plates were seeded with E. coli OP50 bacteria (Brenner, 1974).

NL3909 pkIs1642 [unc-119 sir-2.1] is a low-copy sir-2.1 transgenic

overexpressor strain produced by microparticle bombardment. The

transgene in pkIs1642 includes the sir-2.1 coding sequence plus 2.5

kb of upstream sequence, including the predicted gene R11A8.5,

subcloned into a pRP2510 vector (a gift of E. Ivanov). Control experi-

ments indicated that overexpression of the R11A8.5 gene is not re-

sponsible for the life-span extension and stress resistance observed

in the NL3909 strain (See Supplemental Experimental Procedures).

Strain VC199 sir-2.1(ok434) was obtained from the C. elegans Gene

Knockout Consortium via the Caenorhabditis elegans Genetics Center

and was outcrossed five times to the wild-type prior to use.

ftt-2(n4426) was obtained by screening a deletion library. This mu-

tant has a 668 bp deletion of the promoter and most of the first exon

of the predicted ftt-2 gene, from 22920 to 23598 on cosmid F52D10.

The strain was outcrossed six times to the wild-type. Presence of

the deletion was verified by PCR.

The muIs84[sod-3::gfp] transgene from strain CF1553 was from the

CGC. The daf-16::gfp transgene xrIs87 [daf-16a::GFP::DAF-16b rol-

6(su1006)] was a gift from R. Lee and G. Ruvkun (Lee et al., 2001).

More information about strain constructions is available in Supple-

mental Experimental Procedures.

Molecular Biology

See Supplemental Experimental Procedures.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

three figures, two tables, and Supplemental References and can be

found with this article online at http://www.cell.com/cgi/content/full/

125/6/1165/DC1/.
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