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SUMMARY

Neural circuits have long been known to modulate
myogenic muscles such as the heart, yet a mecha-
nistic understanding at the cellular and molecular
levels remains limited. We studied how light inhibits
pumping of the Caenorhabditis elegans pharynx, a
myogenic muscular pump for feeding, and found
three neural circuits that alter pumping. First, light in-
hibits pumping via the I2 neuron monosynaptic cir-
cuit. Our electron microscopic reconstruction of the
anterior pharynx revealed evidence for synapses
from I2 onto muscle that were missing from the pub-
lished connectome, and we show that these ‘‘missed
synapses’’ are likely functional. Second, light inhibits
pumping through the RIP-I1-MC neuron polysyn-
aptic circuit, in which an inhibitory signal is likely
transmitted from outside the pharynx into the phar-
ynx in a manner analogous to how the mammalian
autonomic nervous system controls the heart. Third,
light causes a novel pharyngeal behavior, reversal
of flow or ‘‘spitting,’’ which is induced by the M1
neuron. These three neural circuits show that neu-
rons can control a myogenic muscle organ not only
by changing the contraction rate but also by altering
the functional consequences of the contraction itself,
transforming swallowing into spitting. Our observa-
tions also illustrate why connectome builders and
users should be cognizant that functional synaptic
connections might exist despite the absence of a
declared synapse in the connectome.

INTRODUCTION

Animals rely on muscles for functions critical to their lives, from

the execution of behavior to internal processes such as digestion

and circulation. In general, animals have two kinds of muscles.

The first requires neural activity to contract, such as skeletal

muscle. The second, myogenic muscle, does not require neural

activity to contract, and neural activity instead serves a modula-

tory role. Cardiac muscle, including cardiomyocytes, and some

enteric muscles are myogenic [1, 2], and input from the auto-

nomic nervous system plays a modulatory role, such as altering
Current Biology 25, 2075–
heart rate [3]. Understanding the logic of such modulatory neural

circuits requires an understanding at the cellular level, which can

be difficult to achieve in vertebrates.

We sought to investigate neural control of a myogenic muscle

organ in an organism readily amenable to cellular and molecular

analyses. Neural circuits in invertebrates can be understood in a

‘‘gap-free’’ manner, meaning that the function of each individual

neuron that contributes to a larger neural circuit can be identified

[4–6]. We selected the nematode Caenorhabditis elegans to

study neural control of myogenic muscles because (1) its ner-

vous system has only 302 neurons, (2) its connectome (the

putatively complete set of all anatomical synapses among all

neurons) has been described [7, 8] and is easily accessed [9],

(3) neural circuits can be examined at the cellular level in vivo,

and (4) neural circuits can be analyzed at the molecular level

using genetic methods.

TheC. elegans pharynx is a myogenic muscle group that func-

tions as the worm’s feeding organ, pumping bacteria into the

intestine [10]. The pharyngeal nervous system consists of 20

neurons of 14 classes, and, as with the heart, neural innervation

serves a modulatory rather than necessary role for pumping [11].

Physiological or behavioral functions have been described for

nine neuron classes (MC, M2, M3, M4, I1, I2, I4, I5, and NSM)

[11–17].

We previously reported that short wavelength light (violet and

UV) interrupts the pumping rhythm of the pharynx and suggested

that light generates hydrogen peroxide or another reactive oxy-

gen species that is toxic to the worm [16]. In an effort to reduce

exposure to the toxic effects of light, the worm inhibits feeding

and avoids the light [18–20]. Here, we use the inhibition of

C. elegans pumping in response to light as a tool to analyze

how neurons control the worm’s myogenic muscular pump,

the pharynx. By studying this behavioral response using cellular

and molecular methods, we identify three neural circuits that

control this myogenic muscle organ.

RESULTS

The I2 Pharyngeal Neurons Can Function as Sensory
Neurons
In the presence of food, the C. elegans pharynx pumps rapidly

(4 to 5 Hz). Short-wavelength light (436 nm; 13 mW/mm2)

alters pumping in three distinct phases, as previously reported

[16]. First, pumping rapidly stops in response to light (the

‘‘acute’’ response; 0–5 s after light onset). Second, pumping

subsequently increases in the continued presence of light (the
2089, August 17, 2015 ª2015 Elsevier Ltd All rights reserved 2075
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Figure 1. The I2 Pharyngeal Neurons Can Function as Sensory Neurons

(A) Pumping response to 436 nm (13 mW/mm2) light, with the acute, burst, and recovery responses labeled. This result was previously described [16]. n = 20

worms. For all legends, if the number of trials is unspecified, each worm or cell was assayed once.

(B) Map of pharyngeal neuron nuclei; 14 of the 20 total neurons are shown, as neurons that are members of a pair are depicted as a single neuron. I2 is highlighted

in red. a, anterior; d, dorsal. The scale bar represents 15 mm.

(C) I2 ablation caused a defect in the acute response to light. n = 72 trials, 32 worms. Reproduced from [16].

(D) Quantification of acute response latency. Reproduced from [16].

(E) I2 responds to light in worms in which all pharyngeal neurons except I2, MC, and M4 have been ablated with a laser. n = 3 neurons.

(F) Quantification of the peak calcium response in I2.

(G) unc-31(u280) CADPS mutants, which are defective in humoral signaling, exhibit an I2 calcium response similar to that of the wild-type. n = 22 neurons.

(H) Quantification of the peak calcium response in I2.

The calcium response wasmeasured in the posterior neurite of I2. Error bars and shading around traces indicate SEM. ***p < 0.001; ns, not significant at p < 0.05;

t test compared to mock-ablated control or wild-type.

See also Figure S1.
‘‘burst’’ response; 5–10 s after light onset). Third, pumping slowly

begins to recover after light is removed (the ‘‘recovery’’

response; 0–10 s after light removal; Figure 1A).

Previously, we showed that loss of the I2 pharyngeal neuron

pair (Figure 1B) causes a partial defect in the acute response

to light (Figures 1C and 1D) [16]. In addition, light causes an in-

crease in I2 calcium [16]. We concluded that I2 executes part

of the acute response to light.

The increase in I2 calcium caused by light could result either

from I2’s receiving a signal from another cell or from I2’s directly

sensing light without a cellular intermediary. If I2 receives a signal

from another cell, that signal could be communicated either via a

direct synapse or humorally. To identify candidate neurons that

directly synapse onto I2, we examined the connectome of the

pharynx [7]. The I1 neuron pair and the M1 neuron were reported

to form gap junctions with or provide chemical synaptic input to

I2. Our connectome analysis (see below) suggested that the orig-

inal connectome might be missing functional synapses, so we

used a laser to ablate all pharyngeal neurons that would not

affect the worm’s growth or health; specifically, the MC neuron
2076 Current Biology 25, 2075–2089, August 17, 2015 ª2015 Elsevie
pair, which promotes pumping, and the M4 neuron, which pro-

motes peristalsis, were not killed [11, 12]. Altogether, 15 of 20

pharyngeal neurons were killed in each worm. Ablated worms

exhibited an I2 response at 56% of the level of mock-ablated

worms (Figures 1E and 1F). This result shows that I2 can respond

to light in the absence of 11 of 13 pharyngeal neuron classes,

although part of the I2 response depends on other pharyngeal

neurons.

We next sought to determine whether the I2 response to light

requires a humoral signal. Humoral signaling is partiallymediated

by dense-core vesicle release, which requiresUNC-31, theworm

ortholog of human CADPS/CAPS [21]. Putative null mutants of

unc-31(u280) showed an I2 response similar to that of wild-

type (Figures 1G and 1H), suggesting that I2 does not receive a

dense-core vesicle-mediated signal to trigger its response to

light. Because neither direct synaptic input nor dense-core

vesicle input appears to be necessary for I2 to respond to light,

I2 likely senses light without a neuronal intermediary.

A third reason to think that I2 functions as a cellular sensor

for light is that it expresses a putative molecular sensor for a
r Ltd All rights reserved



light-generated molecule, hydrogen peroxide. The molecular re-

ceptor GUR-3 functions in I2 to detect hydrogen peroxide and in-

crease calcium [16]. Taking these results together, we conclude

that the I2s can function as sensory neurons, although the I2

response to light is alsomodulated by other pharyngeal neurons.

To identify regions of I2 that when exposed to light are suffi-

cient to induce the cellular response, we restricted light to the

anterior neurite, the soma, or the posterior neurite (Figure S1A).

We found that illumination of the posterior neurite caused a large

increase in fluorescence throughout I2, whereas anterior neurite

or soma illumination caused little increase in fluorescence (Fig-

ures S1B–S1D). To determine which of the two neurites is

necessary for the light-induced response, we cut the anterior

or posterior neurite using a laser, killing the severed neurite,

and then exposed the worm’s head to light. We found that I2 re-

sponded in the absence of either the anterior or the posterior

neurite, although the response in the anterior neurite after the

posterior neurite was cut was significantly smaller than the

response in the anterior neurite in the intact control (Figures

S1E–S1H). Overall, these results suggest that, whereas the pos-

terior neurite is the most light-sensitive compartment, the soma

and anterior neurite are also light sensitive and can be sufficient

to trigger an influx of calcium into I2.

I2 Activation Depends in Part on the Voltage-Gated
Calcium Channels UNC-2 and UNC-36
To determine the molecular source of the increase in I2 calcium

in response to light, we tested mutants disrupted in calcium

influx. Although most of these mutants had a normal I2 response

(Figures S2A–S2G), we found that mutants carrying nonsense

alleles of unc-2(e55) (a1 subunit; N/P/Q-type voltage-gated cal-

cium channel [VGCC]) [22] or unc-36(e251) (a2d subunit;

VGCC) [23] exhibited a partial defect: the calcium response

latency was approximately doubled and the peak amplitude of

the response was approximately halved (Figures 2A, 2B, 2D,

and 2E). The unc-36; unc-2 mutant was no more defective in

the I2 response than the unc-2mutant (Figures 2C–2E), suggest-

ing that unc-2 and unc-36 function in the same pathway.

We next assayed the pumping response of calcium channel

mutants to determine whether any mutant exhibited an acute

response defect similar to I2-ablated animals. Whereas several

mutants showed differences from wild-type in the burst and re-

covery responses (Figures 2F, 2G, and S2H–S2N), only unc-36

mutants exhibited a small but statistically significant defect in

the latency of the acute response to light (Figures 2G, 2I, and

2J). unc-36; unc-2 double mutants had a latency defect similar

to that of unc-36 mutants (Figures 2H–2J). In addition, the re-

maining double mutants among unc-36, unc-2, egl-19, and

cca-1 were either wild-type or no more defective than unc-36

or unc-2 mutants in the I2 response (Figures S2O–S2S). Finally,

the unc-36; egl-19; cca-1 triple mutant was only modestly more

defective than the unc-36 single mutant in the I2 response (Fig-

ure S2T). We conclude that unc-2 and unc-36 are partially

required for the I2 calcium response to light and likely function

in the same pathway.

The I2 Neurons Are Glutamatergic
To identify cells downstreamof I2, we took amolecular approach

and sought to determine the neurotransmitter(s) that I2 secretes,
Current Biology 25, 2075–
the receptor(s) functioning downstream, and the cells in which

the receptor(s) functions. Whereas most neurotransmitter mu-

tants showed a normal acute pumping response to light (Figures

S3A–S3H), mutants defective in glutamate neurotransmission

because of a deletion in eat-4 (allele ky5), a vesicular glutamate

transporter (VGLUT) [24], exhibited a severe defect in the latency

and amplitude of the acute response (Figures 3A, 3E, and 3F).

Multiple alleles of eat-4 (n2458, n2474, ad819, ad572, and

ok2233) exhibited a similar defect (data not shown), and a

genomic eat-4 transgene (njEx378) [25] fully rescued the defect

of eat-4(ky5) mutants (Figures 3B, 3E, and 3F). Thus, mutation

of eat-4 causes the acute response defect of eat-4 strains.

We next sought to determine whether eat-4 is expressed in I2

by examining transgenic worms carrying the njEx378[eat-4::gfp]

transgene. We observed fluorescence in I2 (Figure 3C), indi-

cating that I2 is likely glutamatergic. A recent study also

observed eat-4 expression in I2 [26]. To determine whether

eat-4 functions in I2 for the pumping response to light, we

expressed eat-4 cDNA using an I2-specific promoter [27]

(flp-15prom::eat-4 cDNA::gfp). I2-specific expression of eat-4

partially rescued the acute latency and amplitude defects of

eat-4 mutants (Figures 3D–3F), whereas eat-4 expression in I1,

AWC, and AWB (gcy-10prom::eat-4 cDNA::gfp) had no effect

(Figure S3I).

We previously showed that mutants of lite-1, which encodes a

gustatory receptor ortholog critical for light avoidance [18, 20],

exhibit a partially defective acute response and a completely

defective recovery response [16]. Strikingly, eat-4; lite-1 double

mutants were nearly completely defective in the pumping

response to light (Figures 3G, 3I, and 3J). I2-specific eat-4

expression partially rescued the acute pumping response defect

of eat-4; lite-1 mutants (Figures 3H–3J). Together, these I2-spe-

cific expression experiments suggest that I2 secretes glutamate

in response to light. The partial nature of these rescues, as well

as the fact that eat-4mutants had amore-severe acute response

defect than I2-ablated worms, suggests that glutamatergic neu-

rons in addition to I2 function in the acute response to light.

I2 also expresses several neuropeptide genes: flp-5; flp-15;

nlp-3; and nlp-8 [27, 28]. Mutants defective in these neuropep-

tide genes had a normal acute pumping response to light

(Figures S4A–S4E). Moreover, mutants defective in the neuro-

peptide-processing enzymes egl-3 (PC2) and egl-21 (CPE) also

had a normal acute pumping response to light (Figures S4F–

S4H). unc-31 mutants defective in dense-core vesicle release

exhibited a normal acute latency in response to light, although

they did exhibit a small but statistically significant defect in acute

amplitude (Figure S4I). Finally, genetic ablation of I2 did not

further enhance the acute defect of eat-4 mutants, suggesting

that the entirety of I2’s function in acute pumping is mediated

by eat-4 (Figure S4J). Altogether, it appears unlikely that neuro-

peptide signaling from I2 plays a critical role in the I2-mediated

acute response to light.

The AVR-15 GluCl Glutamate Receptor Functions in
Pharyngeal Muscle
Next, we sought to identify the glutamate receptor(s) that func-

tions downstream of I2 for the acute response to light. We tested

mutants of all 18 glutamate receptors and found defective acute

responses in avr-15(ad1051), avr-14(ad1032), glc-2(gk179), and
2089, August 17, 2015 ª2015 Elsevier Ltd All rights reserved 2077
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Figure 2. The UNC-2 and UNC-36 Voltage-Gated Calcium Channels Are Partially Required for the Calcium Response of I2

(A) unc-2(e55) mutants were partially defective in the calcium response of I2. n = 19 neurons.

(B) unc-36(e251) mutants were partially defective in the calcium response of I2. n = 19.

(C) unc-36; unc-2 double mutants were not enhanced over the single mutants in their defects in the calcium response of I2. n = 21.

(D) Quantification of calcium response latency.

(E) Quantification of the peak calcium response.

(F) unc-2 mutants showed a normal acute pumping response to light. n = 20 worms.

(G) unc-36 mutants showed a small but significant defect in acute response latency. n = 20.

(H) unc-36; unc-2 double mutants showed a small but significant defect in acute response latency. n = 20.

(I) Quantification of acute response latency, briefly defined as the time between light onset and the first missed pump.

(J) Quantification of acute response amplitude, briefly defined as theminimumof the pumping rates soon after light onset normalized to the pre-light pumping rate.

The calcium response wasmeasured in the posterior neurite of I2. Error bars and shading around traces indicate SEM. ***p < 0.001; **p < 0.01; ns at p < 0.05; t test

compared to corresponding wild-type or indicated strain.

See also Figure S2.

2078 Current Biology 25, 2075–2089, August 17, 2015 ª2015 Elsevier Ltd All rights reserved



A B C

D E F

G H I J

K L M

Figure 3. The I2 Neurons Secrete Glutamate to Rapidly Block Muscle Contraction

(A) Mutants of eat-4(ky5) VGLUT were defective in the acute response to light. n = 60 worms.

(B) Expression of genomic eat-4 (njEx378) completely rescued the defective acute response of eat-4 mutants. n = 20.

(C) Top: Nomarski differential interference contrast optics (DIC) image of an L4 worm head. Bottom: expression pattern of eat-4 as indicated by a transgene

carrying njEx378[eat-4prom::eat-4::gfp]. Expression was observed in I2, but not in the NSM neuron. The scale bar represents 7 mm.

(D) I2-specific expression of the wild-type eat-4 gene (flp-15prom::eat-4 cDNA::gfp) in eat-4 mutants partially restored the acute response to light. Three inde-

pendent eat-4 strains carrying transgenes showed a quantitative improvement in the acute response (see E and F). The trace from strain no. 1 is shown. n = 55.

(E and F) Quantifications of acute response latency (E) and acute response amplitude (F) are shown. # indicates independently integrated transgenic strains.

n = 55–60.

(G) eat-4(ky5); lite-1(ce314) double mutants were nearly completely defective in the pumping response to light. The lite-1(ce314) trace includes data previously

published [16]. n = 80.

(H) I2-specific expression of the wild-type eat-4 gene in eat-4; lite-1 double mutants partially restored the acute pumping response to light. n = 40.

(legend continued on next page)
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glc-4(ok212) (Figures 3K and S5). Here, we report our detailed

analysis of avr-15, because these mutants exhibited a defect in

the latency of the acute response similar to that of I2-ablated

worms (Figures 3K and 3M). avr-15 is expressed in pharyngeal

muscle [29], and we found that pharyngeal-muscle-specific

expression of avr-15 (myo-2prom::avr-15 cDNA) fully rescued

the latency defect of avr-15 mutants (Figures 3L and 3M). This

result indicates that the AVR-15 glutamate receptor functions

in pharyngeal muscle to reduce the latency of the acute response

to light.

The I2 Neurons Synapse onto Pharyngeal Muscle
Our findings that I2 secretes glutamate and that the AVR-15

glutamate receptor functions in muscle suggest that I2 signals

directly to muscle after being activated by light. However, the

described connectome does not include any synapses from

I2 to muscle but rather identifies synapses from I2 to five

neuron classes (NSM, I4, I6, M1, and MC) and gap junctions

with two neuron classes (M1 and I1; Figure 4A, derived from

[7]). If some or all of these neurons function together as relay

stations between I2 and muscle, ablating them together would

be expected to cause a defect at least as severe as that

caused by I2 ablation. Worms lacking all pharyngeal neurons

except I2, M4, and MC (15 neurons killed per animal) did not

exhibit a defect in the acute response to light (Figures 4B–

4D), consistent with the hypothesis that I2 signals directly to

muscle.

To further explore this possibility, we searched for additional

synapses from I2 by examining the pharynx using transmission

electron micrographs of serial sections (ssTEM). We identified

an area as a synapse if it contained two or more synaptic or

dense-core vesicles near the plasma membrane or a clearly

visible presynaptic dense projection (DP) [30]. We confirmed

the previous finding of synapses from I2 onto NSM, I4, and I6

and found that these synapses had an average dense projection

volume of nearly 1,500,000 nm3 (Figure S6). Additionally, we

found 13 to 14 synapses from each I2 neuron onto pharyngeal

muscle 3 (PM3) and a smaller number of synapses onto pharyn-

geal muscles 1 (PM1), 4 (PM4), and 5 (PM5) (Figures 4E–4H and

S6). These neuromuscular synapses localized primarily to the

anterior neurite of I2 and had much-smaller dense projections

(average of �80,000 nm3). The presence of synapses from I2

to PM3 was confirmed in a second worm (worm no. 5; data not

shown). Furthermore, when we re-examined the imagery used

to generate the published connectome (the N2T series) with

our criterion for identifying a synapse, we found six synapses

from I2R onto PM3 and 15 synapses from I2L onto PM3. These

synapses from I2 directly onto pharyngeal muscle could be the

sites of I2 neurotransmission in response to light. Together,

these data suggest that the I2 neurons function not only as sen-
(I) Quantification of acute response latency.

(J) Quantification of acute response amplitude.

(K) avr-15(ad1051) glutamate-gated chloride channel (GluCl) mutants had a dela

(L) Pharyngeal muscle (PM)-specific expression of the wild-type avr-15 gene (m

latency. n = 60.

(M) Quantification of acute response latency.

Error bars and shading around traces indicate SEM. ***p < 0.001; **p < 0.001; t t

See also Figures S3–S5.
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sory neurons but also as motor neurons to inhibit the pumping

rhythm by directly silencing muscle.

The I1 and RIP Interneurons Function in the Same
Pathway in Parallel to I2
We next sought to identify additional neural circuits that could

account for the acute response that remained after I2 ablation.

We used laser microsurgery to kill each of the remaining 13

neuron classes in the pharynx. Although ablation of most neu-

rons had minimal to no effect on the pumping response to light

(Figure S7), we found that ablation of the I1, MC, andM1 neurons

had effects.

Ablation of the I1 neuron pair impaired the acute response, as

measured by both response latency and amplitude (Figures 5A,

5G, and 5H). This result indicates that I1 promotes the acute

response to light.

To determine whether I1 functions in the same neural pathway

as I2, we conducted double ablations with the goal of interpret-

ing our results as double mutants are interpreted in genetic

studies [31]. Double ablation of I1 and I2 caused a defect in the

acute response that was more severe than either single ablation

(Figures 5B, 5G, and 5H), suggesting that I1 and I2 function in

parallel. To assess whether other pharyngeal neurons might

also be involved, we ablated all pharyngeal neurons except I1,

I2, M4, andMC. These animals retained a normal acute response

to light (Figures 5C, 5G, and 5H), making it unlikely that any other

pharyngeal neurons beyond I1, I2, M4, andMCplay a critical role

in the acute response.

We next sought neurons that might function upstream of I1.

The pharyngeal nervous system is anatomically connected to

the main nervous system through gap junctions between the I1

and RIP neurons [7]. Ablation of the RIP neuron pair did not affect

the acute response (Figures 5D, 5G, and 5H). Because I2 abla-

tion enhanced the defect of I1 ablation, we suspected that I2

ablation might serve as a sensitized background with which to

observe more-subtle functions for neurons in the I1 circuit.

Worms lacking both RIP and I2 showed a significant enhance-

ment of the acute latency and amplitude defects of I2-ablated

worms (Figures 5E, 5G, and 5H). Consistent with the hypothesis

that RIP acts in the same pathway as I1, ablation of RIP and I1

together did not enhance the defect of I1-ablated animals (Fig-

ures 5F–5H). Taken together, these results suggest that RIP

and I1 function in the same neural pathway in parallel to I2.

To determine whether acute physiological changes in I1 are

sufficient to inhibit pumping, we manipulated the voltage of I1

using optogenetics. Worms removed from food pump at a low

rate (1 to 2 Hz), and optogenetic depolarization of I1 using chan-

nelrhodopsin (ChR2) [32, 33] (gcy-10prom::chr2::yfp) expressed in

otherwise light-insensitive worms (lite-1 gur-3) [16] caused an

immediate increase in the pumping rate of freely moving animals
yed pumping response to light. n = 60.

yo-2prom::avr-15A cDNA) in avr-15 mutants restored normal acute response

est compared to wild-type, lite-1, or indicated strain.
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(Figures 5I and 5K). Because the gcy-10 promoter drives expres-

sion in neurons in addition to I1, we confirmed that I1 was

necessary for the optogenetic effect on pumping by ablating I1

and observing that ChR2 activation no longer increased pump-

ing (Figures 5J and 5K). Reciprocally, optogenetic hyperpolar-

ization of I1 using halorhodopsin (eNpHR3) [34] (gcy-10prom::

enphr3::yfp) caused an immediate decrease in pumping rate of

worms on food (Figures 5L and 5N). Ablation of I1 led to loss of

the optogenetic effect on pumping (Figures 5M and 5N), indi-

cating that optogenetic inhibition of pumping required I1. Opto-

genetic manipulations of I1 have previously been reported to

result in similar effects on the pumping of immobilized worms

[15]. Although we were unable to observe changes in calcium

in I1 and RIP in response to light using GCaMP3 [35] (data not

shown), the effect on pumping of depolarizing and hyperpolariz-

ing I1 suggests that light might inhibit pumping via the I1 circuit

by causing hyperpolarization of I1.

The MC Motor Neurons Function Serially with I1 and in
Parallel to I2
To identify cells that function downstream of I1, we examined I1

connectivity within the pharynx. I1 synapses onto several neu-

rons, including the pair of MC motor neurons [7]. MC-ablated

worms had a modest acute response to light, although quantifi-

cation could not be directly compared with that of wild-type

because of the substantial reduction of baseline pumping (Fig-

ures 6A and 6D). Using logic similar to that used to identify a

role for RIP, we sought evidence for a function of MC in the I1

pathway by ablating MC in the sensitized I2-ablated back-

ground. Worms lacking MC and I2 exhibited essentially no acute

response to light, and the acute response latency was signifi-

cantly lengthened over that of MC-ablated worms (Figures 6B

and 6D). I1 ablation in addition to MC ablation did not alter the

response to light of MC-ablated worms (Figures 6C and 6D).

These results suggest that I1 and MC function in the same

pathway and act in parallel to I2.

If MC functions downstream of I1, optogenetic depolarization

of I1 might be expected to increase calcium in MC. Immobiliza-

tion for calcium imaging caused worms to completely inhibit

pumping, and essentially no calcium transients were observed
Figure 4. The I2 Neurons Synapse Directly onto Pharyngeal Muscle

(A) Schematic of I2 synapses previously identified [7]. Arrows indicate chemical

(B) Laser ablation of all pharyngeal neurons except I2, MC, and M4 did not affec

(C) Quantification of acute response latency.

(D) Quantification of acute response amplitude.

(E) Electron micrographs of two synapses from the anterior neurite of I2L (the lef

epithelial cell (e3VL) as well as muscle (PM3). The left panel displays a synapse

synapse with only vesicles. DP, dense projection; SV, synaptic vesicles. The sca

(F) Table showing measurements for synapses identified between I2 and PM. Th

synapses with the specific partners indicated by the row in the table.

(G) Morphological reconstruction of parts of four I2 neurons in two worms. The I2

nerve ring, which was lost. This missing area was reconstructed in worm no. 4, as

(including dyadic synapses in which muscle is one of the partners), and green c

Circles are scaled to synapse size, as defined by the sum of the dense projection v

represents 5 mm.

(H) Morphological reconstruction of the anterior half of the pharynx, including

pharyngeal muscles are shown; only part of pharyngeal muscle 3 (PM3) and the lu

and 5 are not shown. View is from the dorsal side. The scale bar represents 5 mm

Error bars and shading around traces indicate SEM. nd, not determined. ns at p

See also Figure S6 for electron micrographs and quantification of all observed I2
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in MC (flp-21prom::gcamp3; lite-1 gur-3). Strikingly, ChR2-medi-

ated depolarization of I1 and other gcy-10-expressing neurons

induced pumping as well as rhythmic bursts of calcium in MC,

M4, and M2 (Figures 6E–6K; Movie S1). For MC, the most sub-

stantial calcium increase occurred in the posterior ventral neu-

rite. Hyperpolarization of gcy-10-expressing neurons, including

I1, did not cause a calcium reduction in MC (data not shown),

perhaps because MC was already inhibited by immobilization.

A behavioral function of MC downstream of I1 was also recently

demonstrated [15]. Altogether, these results are consistent with

a model in which light hyperpolarizes I1 to inhibit MC to inhibit

pumping.

The M1 Motor Neuron Promotes Spitting of Pharyngeal
Contents
In addition to the acute inhibition of pumping observed on light

onset, prolonged light exposure caused a subsequent increase

in pumping, which we named the ‘‘burst’’ response (Figure 1A).

In our study of neural function by systematic ablation, we discov-

ered that the M1 motor neuron reduced the burst response to

light (Figures 7A and 7B). M1 ablation did not affect the acute

response (Figures 7C and 7D), indicating that M1 is not a neces-

sary component of the acute response circuit.

We occasionally observed bubbles emerging from the

worm’s mouth during the burst response (9 of 40 trials), sug-

gesting that light might reverse the flow of material within

the pharynx. To gain further insight, we used high-frame-rate

videos to observe flow direction in worms ingesting mineral

oil or 1-mm beads. Normal feeding pumps in the absence of

shortwave light corresponded to corpus (anterior pharynx)

contraction-relaxation cycles with oil or beads being sucked

into the corpus and retained there (Figure 7E) [10]. We were

surprised to observe that after light exposure inhibited pump-

ing, light altered the corpus contraction-relaxation cycles,

such that the oil or beads sucked into the corpus were expelled

rather than retained (Figures 7F, 7G, and 7L; Movie S2). We

conclude that a spitting-like response occurs during the burst

response to light.

M1-ablated worms were defective in the emission of bubbles

from the pharynx during light exposure (0 of 53 trials). Moreover,
synapses; barred lines indicate gap junctions. r, right. Scale bar, 6 mm.

t acute response latency. n = 6 trials, 2 worms.

t I2 neuron) to pharyngeal muscle. These synapses are dyadic and oppose an

with both a dense projection and vesicles, whereas the right panel displays a

le bar represents 100 nm.

e listed DP volumes and vesicle areas are the sum of these values across all

neurons in worm no. 1 were completely reconstructed except in the posterior

well as the entire posterior neurite. Red circles indicate synapses onto muscle

ircles indicate synapses onto neurons and occasionally onto epithelial cells.

olume and synaptic vesicle volume. View is from the dorsal side. The scale bar

part of the extrapharyngeal RIP neurites. Ventral left (VL) epithelial cells and

menal cuticle are shown. Gland cells, marginal cells, and pharyngeal muscles 4

.

< 0.05; t test compared to mock control.

synapses.
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Figure 5. The I1 and RIP Interneurons Likely Constitute a Neural Pathway that Controls Acute Inhibition in Parallel to I2
(A) I1 ablation caused a defect in the acute response to light. n = 138 trials, 74 worms.

(B) I2/I1 double ablation enhanced the acute response defects caused by either single ablation. n = 75 trials, 25 worms.

(C) Laser ablation of all pharyngeal neurons except I2, I1, MC, and M4 did not affect the acute response. n = 4 trials, 4 worms.

(legend continued on next page)
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M1 ablation caused a complete loss of spitting during light expo-

sure (Figures 7H and 7L), indicating that M1 promotes spitting.

We next sought to determine whether M1 functions down-

stream of the acute response circuit. Ablation of I1 and I2 sepa-

rately or together did not result in a loss of spitting (Figures 7I–

7L), indicating that I1 and I2 do not have a necessary function

upstream of M1 for spitting. These results demonstrate that

the M1-defined spitting circuit can function independently of

the acute inhibition circuits.

DISCUSSION

By studying theC. elegans pharyngeal response to light, we have

identified three neural circuits that control a myogenic muscular

pump. Light rapidly inhibits rhythmic feeding, and this acute inhi-

bition is promoted by the I2 pharyngeal neurons [16]. Here, we

show that I2 is activated in the absence of neural input, suggest-

ing that the I2 neurons function as sensory neurons. The I2 cal-

cium response to light is partially mediated by the voltage-gated

calcium channel proteins UNC-2 and UNC-36. Moreover, con-

trary to previous reports, our electron microscopic analysis

indicates that I2 directly synapses onto pharyngeal muscle, sug-

gesting that the I2 neurons function as motor neurons and there-

fore constitute a monosynaptic circuit. I2 secretes glutamate,

which stimulates the AVR-15 glutamate-gated chloride channels

in muscle to acutely inhibit the pumping rhythm. Additionally, we

identify a second neural pathway for acute inhibition that con-

sists of the RIP and I1 interneurons and the MC motor neurons,

which act in the same pathway in parallel to I2. Optogenetic hy-

perpolarization of I1 inhibits pumping, suggesting that light could

inhibit pumping by hyperpolarizing I1. Finally, a third pathway

that includes the M1 motor neuron promotes spitting (flow

reversal) during continued light exposure.

Functional Modularity as a Principle in the Evolution of
Neural Circuits
Our findings are summarized in amodel (Figure 8). During normal

feeding, MC promotes a high rate of pumping via innervation of

marginal cells and pharyngeal muscle 4 (PM4) [7, 17]. Exposure

to light causes acute inhibition of pumping via two pathways. In

the first pathway, I2 detects light via the GUR-3 gustatory recep-

tor and blocks pumping by directly inhibiting muscle. To rein-
(D) RIP ablation did not affect the acute response. n = 21 trials, 6 worms.

(E) I2/RIP double ablation enhanced the acute response defect of I2 ablation. n =

(F) I1/RIP double ablation did not enhance the acute response defect of I1 ablati

(G) Quantification of acute response latency.

(H) Quantification of acute response amplitude.

(I) Optogenetic depolarization of gcy-10prom::chr2; lite-1 gur-3worms caused an in

not in its absence (ATR�). n = 50 worms.

(J) Optogenetic depolarization of gcy-10prom::chr2; lite-1 gur-3 worms failed to in

requires I1. n = 9 trials, 8 worms.

(K) Quantification of the average pumping rate during 10 s of optogenetic depola

(L) Optogenetic hyperpolarization of gcy-10prom::enphr3worms caused a decreas

(ATR�). n = 47 worms.

(M) Optogenetic hyperpolarization of gcy-10prom::enphr3 worms failed to inhib

requires I1. n = 11 worms.

(N) Quantification of the average pumping rate during 10 s of optogenetic hyperp

Error bars and shading around traces indicate SEM. ***p < 0.001; **p < 0.01; ns

See also Figure S7.
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force this block, we speculate that sensory neurons outside

the pharynx detect light via LITE-1 [16] and transmit a signal to

RIP, RIP hyperpolarizes I1, and I1 inhibits MC, the primary driver

of pumping. This pathway is inferred from laser ablation and

optogenetic experiments and would be more compellingly

demonstrated if corresponding physiological signals can be

observed. This partially redundant strategy acts more potently

to inhibit pumping than does either single pathway alone.

Remarkably, a distinct neural circuit adds a new degree of

freedom to the behavioral repertoire of the pharynx. The M1

neuron causes flow reversal or ‘‘spitting’’ and does not require

the I1 or I2 neurons involved in acute pumping inhibition. This

modular design suggests how this neural system might have

evolved, with new circuits being added in parallel to modulate

an existing behavior, without compromising the effects of a pre-

viously existing neural circuit. Examination of the cell types and

connectomes in related nematodes might provide further insight

into the evolution of these three neural circuits. The synapses

from I2 to pharyngeal muscle, as well as the gap junctions be-

tween RIP and I1, are present in the predatory nematode Pris-

tionchus pacificus, but the chemical synapses from I1 to MC

seem to be missing [36]. Additionally, whereas I2, RIP, I1, MC,

and M1 are present in the nematode Aphelenchus avenae, the

morphologies of RIP, I1, and I2 are altered relative to those of

the corresponding neurons in C. elegans [37]. By studying the

functional and behavioral consequences of these morphological

and synaptic variations across species, the evolutionary history

of these neural circuits might elucidate fundamental kinds

of changes that can occur at the neural-circuit level during evo-

lution and reveal principles that apply to a broad range of

animals.

The Challenge of Inferring Function from Structure in
Connectomics
Our work highlights a challenge in using a connectome to identify

a functional neural circuit. The C. elegans pharyngeal connec-

tome has been available since 1976 [7]; however, this connec-

tome, established from serial section electron micrographs

from multiple animals, lacked the functional synapses that we

found between I2 andmuscle. One possible reason for this omis-

sion is that those authors used a stricter criterion for identifying a

synapse than we used. For example, perhaps they required that
26 trials, 9 worms.

on. n = 18 trials, 6 worms.

crease in pumping rate off of food in the presence of all-trans retinal (ATR+), but

duce pumping after laser ablation of I1, indicating that the optogenetic effect

rization.

e in pumping rate on food in the presence of ATR (ATR+), but not in its absence

it pumping after laser ablation of I1, indicating that the optogenetic effect

olarization.

at p < 0.05; t test compared to wild-type or as indicated.
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Figure 6. The MC Neurons Likely Act in the Same Neural Pathway as I1 and in Parallel to I2

(A) MC-ablated worms displayed a modest acute response. n = 49 trials, 20 worms.

(B) I2/MC double ablation caused a severe acute response defect. n = 17 trials, 11 worms.

(C) I1/MC double ablation did not cause a severe acute response defect. n = 9 trials, 9 worms.

(D) Quantification of acute response latency. Comparison with mock-ablated animals was not done because of the substantial difference in baseline

pumping rate.

(E) An example of calcium responses observed in the MC soma, MC neurite, M4 soma, and M2 soma (flp-21prom::gcamp3) in response to ChR2 depolarization of

I1 and other gcy-10-expressing neurons in a lite-1 gur-3 mutant. The scale bar represents 10 mm.

(F) Quantification of the calcium response of the MC soma shown in (E).

(G) Quantification of the calcium response of the MC neurite shown in (E).

(H) Quantification of the calcium response of the M4 soma shown in (E).

(I) Quantification of the calcium response of the M2 soma shown in (E).

(J) Quantification of the amplitude of the first calcium spike observed in each labeled compartment in response to ChR2 depolarization of I1 and other gcy-10-

expressing neurons in lite-1 gur-3 mutants. n R 13 worms.

(K) ChR2 depolarization of I1 and other gcy-10-expressing neurons caused pumping by immobilized lite-1 gur-3 worms. n R 17 worms.

In (J) and (K), data were pooled across two independent transgene integrands (nIs551 and nIs552). Error bars and shading around traces indicate SEM. ***p <

0.001; **p < 0.01; ns at p < 0.05; t test compared double ablations to MC single ablation; Mann-Whitney test compared ATR� to ATR+.

See also Movie S1.
both a presynaptic dense projection and a large number of ves-

icles be visible in the relevantmicrographs. In our study, because

functional rescue experiments strongly suggested a direct syn-

aptic connection between I2 and muscle, we re-examined the

connectivity using newly acquired image series. Using a more-

permissive criterion to identify a synapse (either a presynaptic

dense projection or two or more vesicles near the plasma mem-

brane), we found many synapses from I2 to muscle. Our experi-

ence using an established connectome suggests that functional

analyses remain a requisite step in the mapping of functional

neural circuits.

New Cellular Targets for Ivermectin
Avermectins, including ivermectin, are a potent class of anthel-

mintics widely used to promote both animal and human health
Current Biology 25, 2075–
[38]. We speculate that the molecular and cellular pathways for

pumping inhibition identified here are shared with the pathways

involved in the function of ivermectin, which is known to inhibit

nematode pumping [39, 40]. First, the avr-15 and avr-14 gluta-

mate-gated chloride channels that we have found to function

in light-induced inhibition of pumping also function in iver-

mectin-induced inhibition of pumping [14]. Second, the I1 neu-

rons identified here to function in light-induced inhibition of

pumping also promote sensitivity to ivermectin [14]. Because

I1 functions for responses to both light and ivermectin, the

RIP-I1-MC neural circuit that functions in the light response

might also function in the ivermectin response. These novel neu-

rons (RIP and MC) that might function in the ivermectin effect

might also define new cellular substrates for the development

of novel anthelmintics. Because homologous neurons exist in
2089, August 17, 2015 ª2015 Elsevier Ltd All rights reserved 2085
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Figure 7. The M1 Motor Neuron Promotes Spitting

(A) M1 ablation diminished the burst response while leaving the acute response intact. n = 74 trials, 31 worms.

(B) Quantification of burst response amplitude.

(C) Quantification of acute response latency.

(D) Quantification of acute response amplitude.

(E) Image sequence showing one normal feeding pump before thewormwas illuminated with light. The black arrow indicates oil that was present before the pump

began, and the white arrow indicates oil that was sucked in from the environment during the pump. After completion of the pump, oil was retained in the pharynx.

(F) Image sequence showing one spitting pump that occurred during illumination with light. The black arrow indicates oil that was present before the pump began

that is expelled from the pharynx after completion of the pump.

(G) For mock-ablated worms, pumps during light exposure correspond to spitting, as assayed with 1-mmbeads. A ‘‘spit’’ was scored if beads were released from

the corpus into the environment or if beads ingested during corpus contraction were not retained after corpus relaxation. n = 13 worms.

(H) For M1-ablated worms, pumping is reduced during light exposure relative to mock ablation and no spitting occurs. n = 13.

(I) For I2-ablated worms, pumping is increased during light exposure relative to mock ablation and spitting still occurs. n = 9.

(J) For I1-ablated worms, pumping is increased during light exposure relative to mock ablation and spitting still occurs. n = 11.

(K) For I1/I2 double-ablated worms, pumping is increased during light exposure relative to mock ablation and spitting still occurs. n = 10.

(L) Quantification of average spitting rate during light exposure.

In (G)–(L), assays were done with 1-mm beads. Error bars and shading around traces indicate SEM. ***p < 0.001; ns at p < 0.05; t test compared to mock control.

See also Movie S2.
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Figure 8. Neural Circuit Control of Rhythm Inhibition and Spitting by

the Myogenic Pharynx

An expanded view of the pharynx with neurons and neurites depicted in their

anatomical locations. Blue lines indicate functional activation, and red lines

indicate functional inhibition. For each behavior, active neurons and neurites

are in black and inactive neurons and neurites are in gray. The acute inhibition

pathways are anatomically bilaterally symmetric; only one side is shown.

(A) During a normal feeding pump that occurs in the absence of shortwave

light, the MC motor neurons drive muscle contractions via direct synapses

onto pharyngeal muscle 4 (PM4) and marginal cells (not shown).

(B) When the worm is exposed to light, pumping is acutely inhibited via two

pathways. In the first, intrinsic pathway, light directly activates the I2 senso-

rimotor neurons to directly inhibit PM3. In the second, extrinsic pathway, light

is detected outside the pharynx and its signal is propagated via the non-

pharyngeal RIP interneurons and the pharyngeal I1 interneurons to block MC

function. The double arrow from light to RIP indicates that additional neurons

are likely to sense light and relay the signal to RIP.

(C) When the worm is exposed to prolonged periods of light, pumping in-

creases (the burst response) and spitting occurs via a neural pathway requiring

Current Biology 25, 2075–
other nematodes [36, 37], molecular processes within these neu-

rons could serve as targets for future drug discovery.

Valve Control by the M1 Neuron
As we describe elsewhere [16], we believe that the pumping

response to light is caused by reactive oxygen species, such

as hydrogen peroxide, which can be generated by light. The

worm likely senses that it is ingesting toxic material and re-

sponds by inhibiting feeding and promoting spitting using the

neural circuits identified here. M1 likely functions as a sensory

neuron for reactive oxygen species, because M1 expresses

LITE-1 [16]. How might M1 reverse flow in the pharynx to induce

spitting? During normal feeding, the anterior tip of pharyngeal

muscle closes when the corpus relaxes, retaining particulates

such as bacteria [10]. We speculate that, because M1 makes

neuromuscular synapses at the anterior tip [7], activation of M1

could result in sustained contraction of these muscles and

hold the anterior valve open. The corpus contraction-relaxation

cycle would no longer retain particulates that were sucked

into the corpus but instead spit them out, resulting in rinsing of

the corpus. Agriculturally significant entomopathogenic nema-

todes regurgitate bacteria to infect their insect hosts [41], and

we speculate that the M1 neuron might also function in this

regurgitation.

The spitting caused by M1 is reminiscent of valvular heart dis-

ease, a pathological condition in which blood flows in the oppo-

site direction within the heart [42]. Whereas the leading causes of

valvular heart disease include valve degeneration and endocar-

ditis, our work suggests the possibility of a novel mechanism.

Specifically, in valvular heart disease, valve closure might be in-

hibited by intrinsic neurons that detect stimuli in the blood-

stream, such as dissolved gases, metabolites, or hormones.

Such a neural mechanism would be similar to how we propose

the C. elegans M1 neuron detects reactive oxygen species to

inhibit valve closure and induce spitting. If this analogy is

confirmed, novel therapeutics might provide an alternative to

surgery to remedy valvular heart disease by inhibiting the func-

tion of such neurons.

Additional questions remain regarding the I1 circuit. First, I1

appears to play a more-significant role than RIP in the acute light

response (Figures 5A and 5D) and therefore likely has inputs in

addition to RIP. Second, the physiological mechanism by which

RIP, I1, and MC inhibit pumping remains uncertain. Although hy-

perpolarization of I1 is sufficient to inhibit pumping, whether light

results in hyperpolarization of RIP, I1, and MC awaits further

investigation.

In short, our studies have established that three neural circuits

alter the autonomous rhythm and dynamics of a myogenic

muscular pump, the C. elegans pharynx. Future work using

physiological imaging, ablations, and neural activation and

silencing will use this foundation to clarify precisely how the

signal is transformed as it is relayed from neuron to neuron within

each circuit. The C. elegans pharynx and the mammalian heart

share molecular and functional features [43]. We suggest that

the cellular level understanding of the modulatory neural system
the M1 motor neuron. We speculate that M1 is directly activated by light,

because M1 expresses the light-sensitive gustatory receptor LITE-1 [16].
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we describe for the C. elegans pharynx will provide insight into

other neural systems that control myogenic muscle organs,

such as the neural circuits that modulate heart function.

EXPERIMENTAL PROCEDURES

Experimental Procedures are available in the Supplemental Informa-

tion. Custom MATLAB programs used in this study are available at

http://www.wormweb.org. Electron microscopy datasets are available at

http://www.openconnecto.me/catmaid/.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2015.06.052.
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