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STATISTICS

The science of making decisions under uncertainty using mathematical models from
probability theory.

1.  Statistical Analysis Paradigm (Box, Tukey)
Question

Preliminary Data (Exploration Data Analysis)

Models

Experiment                                                      (Confirmatory Analysis)

Model Fit

Goodness-of-fit           not satisfactory

Assessment

                    Satisfactory

Make an Inference

Make a Decision
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          c)       d)

Figure 1: a) This panel shows a slice taken from a combined visual and motor fMRI experiment.
The subject was presented with a full-field flickering checkerboard, in a 12.8-s OFF, 12.8-s ON
pattern, repeated 8 times. The slice shown was chosen to transect both the visual and motor
cortices, and was imaged once every 800ms for the duration of the experiment. Three regions of
interest have been selected, corresponding to the motor cortex 1), the visual cortex 2), and the white
matter 3). Figures b) – d) illustrate the raw timeseries taken from each of these regions, along with
timing diagrams of the input stimulus.

Question:  Is there significant activation in the visual and motor cortices during
combined motor and visual tasks? Is the level of activation greater in the visual area than
in the motor area?

a) b)
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2.  What Makes Up An fMRI Signal
Hemodynamic Response/MR  Physics
 i)  stimulus paradigm

a)  event-related
b)  block

    ii)  blood flow
   iii)  blood volume
   iv)  hemoglobin and deoxy hemoglobin content

Noise
  Stochastic
     i)  physiologic
    ii)  scanner noise

  Systematic
     i)  motion artifact
    ii)  drift
   iii)  [distortion]
   iv)  [registration]

v) [susceptibility]

3.  Statistical Model
A fMRI Bold Signal (Neurovascular Coupling)

In a small time interval t∆  we have on a given pixel

0 0( ) ( ) ( ( )) ( )V t Hb t V V t Hb Hb t× = + ∆ × + ∆ . (1)

0V  initial blood volume
( )V t∆  change in blood volume

0Hb  is the baseline deoxygenated hemoglobin
( )Hb t∆ change in deoxygenated hemoglobin

Assume that there is linear coupling of the stimulus to

1 2( ) ( )aHb t k k g c= + ∗ (2)

/ /2( ) (1 ) ( 1)a at d t d
ag t e t e− −= − + , (3)

where 1k  and 2k  are constants, ( )c t  is the stimulus input, ( )ag t  is a hemodynamic impulse
response, chosen to be a discrete gamma function, ad  is a time constant

0
( ) ( )a ag c g u c t u

∞∗ = −∑ . (4)
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Figure 2: Examples of the gamma function when calculated with some different choices
of α.
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Now, the response to the blood volume is

3 4( ) ( )bV t k k g c= + ∗ (5)

/ /( ) (1 )a bt d t d
bg t e e− −= − , (6)

where 3k  and 4k  are constants, ( )c t  is the stimulus, ( )bg t  is an exponential impulse
response function with time constant bd .

The responses most likely have a delay D. Multiplying Eq. 5 by Eq. 6 and
collecting terms, we obtain

( ) ( ) ( ) ( )t a a t D b b t D c a t D b t Ds f g c f g c f g c g c− − − −= ∗ + ∗ + ∗ ∗ ,

where 2 3af k k= , 1 4bf k k=  and 2 4cf k k= . Physiologically af  corresponds to the flow
response, bf  the volume response, and cf represents their interaction.

Figure 3 Sequence of steps followed when estimating a model for an fMRI experiment.
We take advantage of the input function (top) and the physiology of the bold response
(second down), to formulate a likely response for the brain (third and fourth panels). This
is shown for the simplest case of convolution with one basis function.
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Figure 4 Same sequence of steps as for Figure 3 except the input function is now event
related rather than blocked-periodic. Furthermore the time intervals between consecutive
responses is random.
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Figure 5 Illustration of BOLD signal model for a block-paradigm stimulus. The
contribution of flow (fa), volume (fb), and interaction (fc) terms combine to form an
overall signal.
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B.  fMRI noise model (stochastic)
Physiologic low frequency noise and scanner noise is generally modeled as

1 ,

t t t

t t t

v w n

w wρ ε−

= +

= +

tw  first order Gaussian AR(1) process, ρ is the correlation coefficient, tε  is zero mean
Gaussian white noise with variance 2

tσ , tn  is zero mean Gaussian white noise with
variance 2

ησ .

Figure 6 Illustration of two major noise classes encountered in fMRI. The left hand
column summarizes the associated spectra.
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C.  Drift Term
Slow drifts of the static magnetic field and residual motion not accounted for by prior
motion correction.

drift = m bt+

D.  Complete Model is
fMRI signal = drift + hemodynamic response + noise

t t tY m bt s v= + + +

for 1, ,t N= … . In matrix notation

1 1 1 1 1 11 1 * * ( * ) ( * )

1 * * ( * ) ( * )

a D b D a D b D

a

b

c

N a N D b N D a N D b N D N

Y g c g c g c g c v

m

b

f

f

f

Y N g c g c g c g c v

− − − −

− − − −

=     
                         +=                        
               

" " " " " " "

Or we have
2 2( , , ) ( , , )a bY X D d d v ε ηβ ρ σ σ= + , (7)

where [ , , , , ]a b cm b f f fβ =  is the set of linear parameters and , ,a bD d d  are the nonlinear

parameters for the signal and 2 2,   andε ησ σ  are the nonlinear parameters for the noise

process.

Alternative fMRI Signal Model

Harmonic Regression Model

1

2 2
cos( ) sin( )

q

t r r t
r

y t A rt B rt
π πµ β ε
τ τ=

= + + + +∑

In matrix notation becomes
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2 22 1 2 1
1 1

1

1

2 22 2

1 1 cos( ) sin( ) cos( ) sin( )

1 cos( ) sin( ) cos( ) sin( )

q q

q

q

qN qNN NN N

y

A

b

A

B

y N

π ππ π
τ τ τ τ

π ππ π
τ τ τ τ

ε
µ
β

ε

                          =                                

#

"

" " " " " "
"









 
 
 
 
 
  

We can define the activation as 
1
22 2

1

( )
t

q

c r r
r

A A B
=

= +∑ .

The joint probability of the signal plus noise model is the n-dimensional Gaussian
density

2 1
22 2 11 1

( | , , ) | | exp
2 2

N

T
v vf v v vε ηρ σ σ

π
− −   = ∑ − ∑     

, (8)

where v∑  is  n n×  the covariance matrix v . Now because v Y X β= −  and the Jacobian of
the transformation is 1, we have the joint distribution of

2
1
22 2 11 1

( | , , , , , , , ) | | exp ( ) ( )
2 2

N

T
a b v vf Y X D d d Y X Y Xε ηβ ρ σ σ β β

π
− −   = ∑ − − ∑ −     

. (9)

Our objective is to estimate the parameters. This problem is complicated, we therefore
study it as a set of simpler problems. Taking the log of both sides we obtain

1
22 2 11 1

log ( | , , , , , , ) log | | ( ) ( )
2 2

T
a b v vf Y X D d d Y X Y Xε ηβ ρ σ σ β β− −∝ − ∑ − − ∑ − ,

which is the log likelihood. The likelihood is the probability density of Y  viewed now as
a function of the parameters.

E. Maximum Likelihood Estimation for the fMRI Signal + Noise Model

Case I.  , ,a bD d d  are known and 2
v I εσ∑ = . In this case the data are assumed to be

independent identically distributed with common error tε ’s which have zero mean and

common variance 2
εσ . The ML estimates are just the least squares estimates. (See WAND

2001 Notes on Regression and the Generalized Linear Model).
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Case II.  , ,a bD d d  are known and v∑  is known. The data are assumed to be correlated.
The maximum likelihood estimates are the generalized least squares estimates
(Homework, Problem 4).

Case III.  , ,a bD d d  are unknown and v∑ , i.e. 2 2,ε ησ σ  and ρ  are unknown. We must do full

maximum likelihood estimation. (Homework, Problem 5 illustrates with a simple
example how the model parameters can be estimated simultaneously using cyclic
descent).

Let 2 2( ) log ( , , , , , , )a bg f X D d d Yε ηθ β ρ σ σ=  where 2 2( , , , , , )aD d ε ηθ β ρ σ σ=  and suppose we knew

, ,a bD d d  then compute ˆ
GLSβ  (Homework, Problem 4) and now ( )g θ  only depends

2 2( , , , , , )a bD d d ε ηθ ρ σ σ′ =

1
2 11 1 ˆ( ) log | | ( ) ( )

2 2
T

v GLS v GLSg Y X Y Xθ β β− −′ = − ∑ − − ∑ − .

Now suppose θ′  is close to the maximum likelihood estimate then by Taylor series
expansion we get

2( ) ( ) ( )( )ML MLg g g Rθ θ θ θ θ′ ′ ′ ′∇ = ∇ + ∇ − + .

At the maximum likelihood estimate 0g∇ =  so we can write the following Newton’s
algorithm, by rearranging the Taylor series expansion

( ) ( 1) 2 ( 1) 1 ( 1)( ) (g gθ θ θ θ− − − −′ ′ ′ ′= − ∇ ∇$ $ $ $ ,

where ( )θ ∞′  is the maximum likelihood estimate. By our factoids

ˆ ˆ( )ML MLβ β θ′= .

Note that

2( ) ( )I E gθ θ ′ ′= − ∇  ,

and hence an estimate of the Fisher information for θ′  is

2( ) ( )ML MLI gθ θ′ ′= −∇ ,

which is called the observed Fisher information.

Remarks
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1. Starting values are important.

2. Computing | |v∑  and 1
v
−∑  are in general hard. Note it is N N× . Computation must be

carried out so that parameter values are admissible, e.g. 2 20 1, 0, 0ε ηρ σ σ< < > > .

3. We can use alternatives to Newton’s method.

i) Fisher scoring algorithm.
ii) Cyclic descent (Homework Problem 5).

4. Once we have the maximum likelihood estimates computing confidence intervals is
straightforward, because of our factoids.

G. Examples of Data Analyses

G.0 Model Selection Techniques: (Akaike’s Information Criterion)
We saw in the least squares analyses that increasing the number of model

parameters to equal the number of data points leads to a perfect model fit. Various criteria
to measure the parasimony of statistical models have been proposed. Intuitively, the least
squares or  log likelihood function is penalized for each increase in the number of
parameters in order to measure the trade-off between improving goodness of fit and
increasing the number of parameters. The  criterion we use to measure this trade-off is
Akaike’s Information Criterion (AIC) (Box, Jenkins and Reinsel, 1994). It is defined as

P is the number of the parameters in the model parameters and the remaining expression
on the rhs is the log likelihood function. AIC can be used to compare different models as
we illustrate below. The smaller the AIC the more parsimonious the model.

G.1 Harmonic Regression Hemodynamic Response Model

ˆ2 log ( ) 2MLAIC f pθ= − +
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Figure 7 This figure shows the effect of fitting a simple harmonic model to the time
series in the presence of an assumed white noise. The top panel exhibits the
reconstruction of the model from the estimated regression parameters, the middle panel
indicates the extent to which a linear drift was present in the data. The bottom panel
merges these two effects into one graph. Note the Akaike Information criterion (AIC) for
this method was 1.66e+03, c.f. Figure 9.
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Figure 8 Raw activation map of the Visual experiment when analyzed using the
harmonic regression method. Some strong activation is seen in the visual cortex (bottom
center), however there is a large amount of background noise in the overall estimate.
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G.2. Simple Convolution  Plus Correlated Noise Model
We assume only a flow component in our model and that there is no volume or
interaction between the flow and volume components of our model. We also assume that
the scanner noise is zero, so that we have just the AR(1) noise model.

Figure 9 This figure illustrates the effect of each component in the convolution model
within the context of regression. The top panel shows the reconstructed model alone,
superimposed on the observation. The subsequent figure shows the linear trend estimated
in the method, while the next reconstructs the estimated AR(1) process only. Finally the
bottom panel shows the reconstruction when all the regression parameters have been
taken into consideration. For this pixel, the AIC was calculated to be 1.53e03 to facilitate
a simple comparison with the harmonic regression, which for this pixel was larger, hence
inferior.
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Figure 10 Raw activation map of the visual paradigm using the simple convolution
model and assuming AR(1) noise in the regression.

Figure 11 Difference between AIC map of the convolution model and the harmonic
model, respectively. This map indicates the convolution model has the smaller AIC of the
two methods.
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Figure 12 Activation maps for the convolution model at the upper (left), and lower
(right) extremities of the fisher information confidence limits. The central map lies in the
middle of this bound and has been normalised, in this instance, by the variance of β.
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