WORKSHOP ON THE ANALYSISOF NEURAL DATA 2001
MARINE BIOLOGICAL LABORATORY

WOODSHOLE, MASSACHUSETTS

A REVIEW OF STATISTICS

PART 2. STATISTICS

EMERY N. BROWN
NEUROSCIENCE STATISTICS RESEARCH L ABORATORY

DEPARTMENT OF ANESTHESIA AND CRITICAL CARE
MASSACHUSETTS GENERAL HOSPITAL

DIVISION OF HEALTH SCIENCESAND TECHNOLOGY
HARVARD MEDICAL ScHOOL / MIT

AucGusT 20, 2001



Wor kshop on the Analysis of Neural Data August 2001

STATISTICS
A. THE STATISTICAL PARADIGM
B. DATA REDUCTION PRINCIPLES
C. ESTIMATION THEORY
D. [HYPOTHESISTESTING]

E. CONFIDENCE INTERVALS

Page 2



Wor kshop on the Analysis of Neural Data August 2001

Definition. A family of pdf 'sand pnf ’'sis called an exponential family if it can be expressed

as
. H
f(x]6) =h(x)c(6) exp gz w (O)t (XE,
1=1

where h(x) >0, t(x),...,t(x) are real-valued functions of x, not depending on 6. c(©)=0 and
w(9), ..., w (8) arerea-vaued functionsof 8, not depending on x.

This family will play a centra role in our discussions. The binomial, Poisson, exponential,
gamma and Gaussian probability models are members of the exponential family.

Binomial Random Variable

o _
f (x| p)=%xmpx(1— p)"
0
O Op O
=g ga-p)" 0
5 -
thO g Op 00
0~ p)" expog X0
i 0 4~ p 0

Take h(x)=§:§, c(p) =(L-p)"w(p) =Ioggﬁ§, t,(x) =x. Hence the binomial model belongs to

the exponential family.

Gaussian Random Variable

foctno®) = oo o1

' 0% 1 § 20¢° 0
IS U w =Sl =D "
one? 820°0 O 2 '
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02 2

1 2 2
Take ho=1 o)) tentt d winc) =2 wnd) =t 4= 4, =x
g 20°0 o 2
The Gaussian isin the exponential family.

Exercise: Istheinverse Gaussian probability model in the exponential family?

I. STATISTICS
The science of making decisions under uncertainty using mathematical models derived

from probability theory.

A. THE STATISTICAL PARADIGM (Box, Tukey)
Question
Preliminary Data (Exploration Data Analysis)
Models <

v

Expfriment (Confirmatory Analysis)

Model Fit

Go%:ln%srof-fitgnm_saﬂstactoq;

Assessment

l Satisfactory

Make an Inference

Make a Decision
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Example: Neuroninhib

Question: Does neuroinhibin (a new GABA —a agonist, potential
new general anesthetic) decrease neuronal spiking
activity in neuronsin constant conditionsin isolated

cultures?
Preliminary Data: Recorded spiking activity from individual neuronsin
culture
v
Preliminary Model: 1. Poisson processwith constant 1
2. Gamma model with parameters a,A
v
Experiments: Several days of recording with and without neuroinhibi
Model Fit: 1. Poor fit
l 2. Better fit
Goodness-of-Fit Not satisfactory

Assessment: Satisfactory

'

Make an Inference: When neuroinhibin was applied to neuronsin culture,
therewas a 60% (statistically significant) decreasein
mean spiking activity

Make a Decision: Neuroinhibin isa potential inhibitor of neural spiking
activity

A. Data Reduction Principles
Notation

Observations. x,..., X, =X.
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Probability Model: f(x |8) k=1...,n f(x|6):H f(x 16). The parameters of the probability

are denoted by 6. Let T(x) = an arbitrary function of the data.

Definition: A statistic is any function of a set of data.

1. Sufficient Statistics

Definition: A dtatistic T(x) is a sufficient statistic for 6 if the conditional distribution of the
sample x given the value of T(x) does not depend on 4.

This statement says that once the statistic is computed, it summarizes all the information in the
data sample about the parameter. To find a sufficient statistic we can use the Factorization
Theorem.

Factorization Theorem: Let f(x|9) bethejoint pdf or pmf of asample x. A statistic T(x) is
sufficient for if and only if these exist functions g(t|8) and h(x) such that for all sample points x

and all parameter points @,

f(x[6) = g(T(x) | 6)h(x).
The dimension of the sufficient statistics equals the dimension of 6.

Example: Let x,..., x, be sample from a Poisson distribution with parameter A .

f(XIA)=ij(XkM)=Ij

Take g(T(x)|A) =exp(logA lek -m) and h(x) = H(Xk!)_l and we conclude that the sum of the

AXe™ . . ;
— =exp(logh Zxk —m)ﬂ (%7
X! 4 d

observations (sample mean) is the sufficient statistic for estimating A .

Example: x,...,x, ~ N(u,0%) with g and o? unknown
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-1

o _0 1 0°  Bi1x-wE
"Wkl **E2 7 -

= (210%) % exp{ ~(n(t, - )? +(n Dt)/ 207
=gt | u,az)h(x),

wheret,=x and t, = Z (% —X)?/(n-1), where h(x) =1.
=1

If x,..,x, ae iid observation from a pdf or pmf, f(x|0). Suppose f(x|6) belongs to an

exponential family given by
k O
f(x16) =h(x)c(6) expéz W (@H(X)@-

n

On
Then T(x) = ﬁZtl(xj) ..... Ztk(xj)D.
]= J=

2. Likeihood Principle
Definition: Let f(x|8) denote the joint pdf or pmf of the sample x=(x,...,x,). Then given
X =x is observed, the function of 6 defined as

L@ |x) = f(x]6),
is called the likelihood function.
Likelihood Principle. If x and y are two samples points such that L(@|x) is proportional to
L@ |y), that is, there exists a constant c(x,y) such that L@ |x)=c(x,y)L(@|y) for al 6 then the

conclusions drawn from x and y should be identical.
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Remarks. The Likelihood Principle states how the likelihood should be used as a data reduction
device. Likelihoods that are proportional contain the same information. It depends critically on the
specification of a parametric model. Hence it requires diagnostics. Information comes only from
the current data sample and prior knowledge may not be “formally” used in the estimation and
inference process.
ESTIMATION THEORY
Definition: An estimator is any function of the data sample used to determine a parameter. As
estimate is the estimator evaluated for a given data sample.
1. Method of Moment

Given (x,...,x,) asample from a pdf or pmf f(x|6,,...,6,). The method of moments
estimate is obtained by equation the first k moments to their sample values.
Example: Gaussian Random Sample

X % ~ N(u,0%) and p and o? are unknown
n
m=X m= n‘lz X
h=H =0+
The method of moments estimates are
p=x 0t =505 %)%,

Example: Gamma Random Sample

X,....% ~T (@A) a and A areunknown
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w=2 =9
1 A 2 Az
X:g 52:1
A A AZ
—_2 —
X ~ X
a=— A=—.
6'2 6.2

2. Maximum Likelihood Estimators

Given x,,...,x, iid samplefroma pdf or pnf .

f(x|6y,...,6,), isthelikelihood function
L@ =] f(%16).
]

For each sample point x let 6(x) be a parameter value of which L@ |x) attains a maximum as a
function of 6 for fixed x. 6(x) isamaximum likelihood estimator of the parameter 6.

Problems. Finding agloba maximum

numerical sensitivity

If L@ |x) isdifferentiable we can consider g—; =0 and check the conditions on 92L/4% . Usualy

easier towork withlog L instead of L.

Example: Gaussian Random Sample

x isthe ML estimate of u .

g2isthe ML estimate of o?.
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This is straightforward to show by differentiating the Gaussian log likelihood equating
the set of 1% partials to zero and solving for ¢ and . A check of second derivatives shows that

this point is an interior maximum.

Example: Gamma Random Sample

If a isknown then

£ ons % l0,2) = H%Aaxﬁ—m
log f(x|a,A) =nl(@)+rxlogh +@ _1)Z|09(Xk)7\ Zxk

alogf(x|a/\) Zxk

>
I
x|

If =1 we have A=x" is ML for exponential model. If a is unknown then there is no closed
form solution for either @ and A. The estimates must be found numerically. Good starting

values can be obtained from the method of moments estimates. Notice that the sufficient

statistics for a and A are Zlog(xk) and Zxk . This shows that the simple method of moments

estimates are not efficient.
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Exercise: Inverse Gaussian Distribution. If x,...,x, is a random sample from an inverse
Gaussian distribution with parameters a and A. Recall that the mean is a and the variance

isa®/A . Find the ML estimate isit the same as the method of moments estimate. The pdf is

f(x|0(/\):D A |:%exp%—}\(x—_a)zg.
’ b B 2xa® g

Answer: The ML estimate is o?:n"lzxi, At=n?

n
1=1 1=1

( ). What is the method of moments

|-

1
X
estimate.

Bayes Estimator

f(x|8) sample probability density
Assuming 6 isarandom variable the

f(0) prior probability density

£(0)f(x|6)

£(0]x) = ——2 X9
[0)f(x]|6)d8

posterior density.

6 has dl its uncertainty characterized by its posterior density. We can take a summary statistic

(function) from f(8|x) to be apoint estimate of 6. [Get the interval estimate first].
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F(y ) O f(p)f (x| p)

L T@+p)
r@)r ()

P p)f l%/Dp & p)"
0p @& pfrp'e p"

Op™?t@E p)"*

Hence by the definition of a g pdf

- MNa+pB+n) G+y-17q _ \n-y+B -
f(pIx) far -y " TA-ptT

The g distribution is a conjugate prior distribution for the binomial.
Example: Gaussian Likelihood and Gaussian Prior

x~N(6,0?%)

6~ N(u,7?).

We want to find the posterior distribution of 8. The posterior is Gaussian (why?) and given as

2 2
T o)
E[6|X] = X+
o’r?
M1 =
241
Now let 6, =E[6|x] and u=6,,
72
0 =64 +—5——(X=-84),
T°+0

we obtain the ssimplest version of the Kalman filter. This is a part of departure for a recursive-
decoding scheme for neural spike trains.

Evaluating Estimators
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Let w(x) be an estimator of @ then we can suggest severa criteria for evaluating how well it

performs,

Criteriafor Evaluation

1. Mean-Squared Error E,[wW(x) —0]?

2. Unbiasedness By (W(X)) =6
3. Consistency WX) ~ 6 asn- o
4. Efficiency Achieves a minimum variance (Cramer-Rao Lower Bound)

Cramer-Rao Lower Bound. Given x;,...,x, be a sample from of pdf f(x|8), w(x) IS an
estimator and E[6(w(x))] isadifferentiable function of 6. Suppose also that

1091 (x10) = fhx )df(x'e)d

for Oh(x) with E, |(x)|<». Then

(JE W),
do
dlog f(x1),.
06

var(w(x)) =

B ((

CRLB give the lowest bound on the variance of an estimate. And if the estimate is unbiased, then
the numerator is 1 and the denominator is the Fisher information. If 6 isap x 1 vector then the

Fisher information isa pxp matrix given by

alogf(x|9) 0Iogf(x|6)] [azlogf(x|9)]

'6)=El—75 20 2600

We will make extensive use of the Fisher information to derive confidence intervals for our
estimates.

Factoids about Maximum Likelihood Estimates
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1. ML Estimates are generaly biased.
2. ML Estimates are consistent, they are hence asymptotically unbiased.
3. ML Estimates are asymptotically efficient.

4. Thevariance of ML estimate may be approximated by the inverse Fisher information matrix

0 plog f f0 Q)ZIong_l
(E 0 =-EF—-10
§ H a0 Eg 0 06% .

5. If 6 isthe ML estimate of 6 then h(d) isthe ML Estimate of h(®) .
Exercise: Gaussian Random Sample

X, ... % ~ N(u,0%) with ¢® unknown. The ML estimate of u is x. Use the definition of the

2
Fisher information to show that var(x)=Z—.
n

Exercise: IsaBayes estimator unbiased? How can Zhang et al. 1998 use the CRLB to evauate
the optimality of aBayes estimator?
Exercise. Gaussian Random Sample Revisited

X0 Xy ~ N(u,02) u and o? are unknown.

N
Z(&—Y)Z
The ML estimate of o? is 62 ::T' Is 62 an unbiased estimate?

D. HYPOTHESIS TESTING (To Appear)

E. CONFIDENCE INTERVALS

Definition (Classic): A 1-a confidenceinterval for 6 has probability 1-a of covering the true
parameter. There are several methods of construction.

1. InvertingaTest
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2. Finding a Pivot

3. ML Approximation

4. CLT and Slutsky’s Theorem

Example: Gaussian Random Sample (Pivot)

Definition: Q(x,0) is a pivot if the distribution of Q(x,0) is independent of all parameters, i.e.
x~ F(x|0) has the same distribution for al 6. x,.., x, ~ N(u,0?) . We want a Cl for u given o2

isknown x isthe ML estimate of u .

Pr(am E< C) =1-a
g

_1 _ -1
Pr(X—n 2co <u <X +n 2co =1 -a.

1 (y . . . . 2
nt &1 jsapivot. Pick c=z,, thenwehavea 1-a Cl since x = N(u,Z-)
n

g

Example: Maximum Likelihood
6y ~ N@,[-14 (O™  where 1,(8) isthe Fisher information.
By Taylor series approximation
h@w.) ~ N(h(B), (' (6))[~1 ()] ") -
Therefore an approximate 1-a Cl is
h(9) + z,,['(6)[ -1, (B)] 1.
Bayes Credibility Interval. A Bayesian credibility interval evaluates the probable values of the

parameter relative to the posterior density. The parameter is a random variable and not a fixed

quantity.
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