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STATISTICS

A. THE STATISTICAL PARADIGM

B. DATA REDUCTION PRINCIPLES

C. ESTIMATION THEORY

D. [HYPOTHESIS TESTING]

E. CONFIDENCE INTERVALS
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Definition. A family of pdf ’s and pmf ’s is called an exponential family if it can be expressed

as

1
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where 1( ) 0, ( ), , ( )kh x t x t x> …  are real-valued functions of x , not depending on θ . ( ) 0c θ ≥  and

1( ), , ( )kw wθ θ…  are real-valued functions of θ , not depending on x .

This family will play a central role in our discussions. The binomial, Poisson, exponential,

gamma and Gaussian probability models are members of the exponential family.
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 Hence the binomial model belongs to

the exponential family.
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The Gaussian is in the exponential family.

Exercise:  Is the inverse Gaussian probability model in the exponential family?

II. STATISTICS

The science of making decisions under uncertainty using mathematical models derived

from probability theory.

A. THE STATISTICAL PARADIGM (Box, Tukey)

Question

Preliminary Data (Exploration Data Analysis)

Models

Experiment                                                     (Confirmatory Analysis)

Model Fit

Goodness-of-fit           not satisfactory

Assessment

                    Satisfactory

Make an Inference

Make a Decision
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Example:        Neuroninhib

Question: Does neuroinhibin (a new GABA – a agonist, potential
new general anesthetic) decrease neuronal spiking
activity in neurons in constant conditions in isolated
cultures?

Preliminary Data: Recorded spiking activity from individual neurons in
culture

Preliminary Model: 1. Poisson process with constant λ
2. Gamma model with parameters ,α λ

Experiments: Several days of recording with and without neuroinhibin

Model Fit: 1. Poor fit
2. Better fit

Goodness-of-Fit
Assessment:  Satisfactory

Not satisfactory

Make an Inference: When neuroinhibin was applied to neurons in culture,
there was a 60% (statistically significant) decrease in
mean spiking activity

Make a Decision: Neuroinhibin is a potential inhibitor of neural spiking
activity

A. Data Reduction Principles

Notation

Observations:  1, , nx x x=… .
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Probability Model: 
1

( | ) 1, , ( | ) ( | ).
n

k k

k

f x k n f x f xθ θ θ
=

= =∏…  The parameters of the probability

are denoted by .θ  Let ( )T x =  an arbitrary function of the data.

Definition:  A statistic is any function of a set of data.

1. Sufficient Statistics

Definition:  A statistic ( )T x  is a sufficient statistic for θ  if the conditional distribution of the

sample x  given the value of ( )T x  does not depend on θ .

This statement says that once the statistic is computed, it summarizes all the information in the

data sample about the parameter. To find a sufficient statistic we can use the Factorization

Theorem.

Factorization Theorem:  Let ( | )f x θ  be the joint pdf  or pmf  of a sample x . A statistic ( )T x  is

sufficient for if and only if these exist functions ( | )g t θ  and ( )h x  such that for all sample points x

and all parameter points θ ,

( | ) ( ( ) | ) ( ).f x g T x h xθ θ=

The dimension of the sufficient statistics equals the dimension of θ .

Example:  Let 1, , nx x… be sample from a Poisson distribution with parameter λ .
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=∏  and we conclude that the sum of the

observations (sample mean) is the sufficient statistic for estimating λ .

Example:  2
1, , ( , )nx x N µ σ… ∼  with µ  and 2σ  unknown
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If 1, , nx x…  are iid  observation from a pdf or pmf , ( | )f x θ . Suppose ( | )f x θ  belongs to an

exponential family given by

1
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2. Likelihood Principle

Definition:  Let ( | )f x θ  denote the joint pdf  or pmf  of the sample 1( , , )nx x x= … . Then given

X x=  is observed, the function of θ  defined as

( | ) ( | )L x f xθ θ= ,

is called the likelihood function.

Likelihood Principle. If x  and y  are two samples points such that ( | )L xθ  is proportional to

( | )L yθ , that is, there exists a constant ( , )c x y  such that ( | ) ( , ) ( | )L x c x y L yθ θ=  for all θ  then the

conclusions drawn from x  and y should be identical.
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Remarks:  The Likelihood Principle states how the likelihood should be used as a data reduction

device. Likelihoods that are proportional contain the same information. It depends critically on the

specification of a parametric model. Hence it requires diagnostics. Information comes only from

the current data sample and prior knowledge may not be “formally” used in the estimation and

inference process.

ESTIMATION THEORY

Definition:  An estimator is any function of the data sample used to determine a parameter. As

estimate is the estimator evaluated for a given data sample.

1. Method of Moment

Given 1( , , )nx x…  a sample from a pdf  or pmf  1( | , , ).kf x θ θ…  The method of moments

estimate is obtained by equation the first k  moments to their sample values.

Example:  Gaussian Random Sample

2
1, , ( , )nx x N µ σ… ∼  and µ  and 2σ  are unknown

1 2
1 2

1

n
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i

m x m n x−

=

= = ∑

2 2
1 2µ µ µ σ µ= = +

The method of moments estimates are

2 21
( )ix x x

n
µ σ= = ∑ −# # .

Example: Gamma Random Sample

1, , ( , )nx x α λΓ… ∼     α  and λ  are unknown
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1 2 2
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λ λ
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2. Maximum Likelihood Estimators

Given 1, , nx x…  iid  sample from a pdf  or pmf .

1( | , , )kf x θ θ… , is the likelihood function

1

( | ) ( | )
n

k

k

L x f xθ θ
=

=∏#
.

For each sample point x
#

 let ˆ( )xθ
#

 be a parameter value of which ( | )L xθ  attains a maximum as a

function of θ  for fixed x . ˆ( )xθ  is a maximum likelihood estimator of the parameter θ .

Problems:  Finding a global maximum

        numerical sensitivity

If ( | )L xθ
#

 is differentiable we can consider 0
L

θ
∂ =
∂

 and check the conditions on 2 2/L θ∂ ∂ . Usually

easier to work with log L  instead of L .

Example:  Gaussian Random Sample

2
1, , ( , )nx x N µ σ… ∼ ,

x  is the ML estimate of µ .

2σ# is the ML estimate of 2σ .
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This is straightforward to show by differentiating the Gaussian log likelihood equating

the set of 1st partials to zero and solving for µ  and 2σ . A check of second derivatives shows that

this point is an interior maximum.

Example:  Gamma Random Sample

1, , ( , )nx x α λΓ… ∼ .

If α  is known then

1
1

1

1 1

1

1
( , , | , )

( )

log ( | , ) ( ) log ( 1) log( )

log ( | , )

0

ˆ .

k

n
x

n k
k

n n

k k
k k

n

k
k

f x x x e

f x n n x x

f x n
x

x

x

λα αα λ λ
α

α λ α α λ α λ

α λ α
α λ

α
λ

αλ

−−

=

= =

=

=
Γ

= Γ + + − −

∂ = −
∂

= −

=

∏

∑ ∑

∑

…

If 1α =  we have 1ˆ xλ −=  is ML for exponential model. If α  is unknown then there is no closed

form solution for either α  and λ . The estimates must be found numerically. Good starting

values can be obtained from the method of moments estimates. Notice that the sufficient

statistics for α  and λ are 
1

log( )
n

k
k

x
=
∑  and 

1

n

k
k

x
=
∑ . This shows that the simple method of moments

estimates are not efficient.
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Exercise: Inverse Gaussian Distribution. If 1, , nx x…  is a random sample from an inverse

Gaussian distribution with parameters α  and λ . Recall that the mean is α  and the variance

is 3 /α λ .  Find the ML estimate is it the same as the method of moments estimate. The pdf  is

1
2 2

3 2

( )
( | , ) exp

2 2

x
f x

x x

λ λ αα λ
π α

 −  = −      
.

Answer: The ML estimate is 1 1 1

1 1

1 1ˆˆ , ( )
ˆ

n n

i
ii i

n x n
x

α λ
α

− − −

= =

= = −∑ ∑ . What is the method of moments

estimate.

Bayes’ Estimator

( | )f x θ      sample probability density

Assuming θ  is a random variable the

( )f θ         prior probability density

( ) ( | )
( | )

( ) ( | )

f f x
f x

f f x d

θ θθ
θ θ θ

=
∫

             posterior density.

θ  has all its uncertainty characterized by its posterior density. We can take a summary statistic

(function) from ( | )f xθ  to be a point estimate of θ . [Get the interval estimate first].

Example:  1, , ( , )nx x B n p… ∼ , ( , )p etaβ α β∼  Find the posterior distribution of p . Take 
1

n

k
k

y x
=

=∑
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Hence by the definition of a β  pdf
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The β  distribution is a conjugate prior distribution for the binomial.

Example:  Gaussian Likelihood and Gaussian Prior

2

2

( , )

( , ).

x N

N

θ σ

θ µ τ

∼

∼

We want to find the posterior distribution of θ . The posterior is Gaussian (why?) and given as

2 2

2 2 2 2

2 2

2 2

[ | ]

[ | ] .

E x x

v x

τ σθ µ
τ σ σ τ

σ τθ
σ τ

= +
+ +

=
+

Now let [ | ]t E xθ θ=  and 1tµ θ −=

2

1 12 2
( ),t t tx

τθ θ θ
τ σ− −= + −

+

we obtain the simplest version of the Kalman filter. This is a part of departure for a recursive-

decoding scheme for neural spike trains.

Evaluating Estimators
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Let ( )w x  be an estimator of  θ  then we can suggest several criteria for evaluating how well it

performs.

Criteria for Evaluation

1.  Mean-Squared Error          2[ ( ) ]E w xθ θ−

2.  Unbiasedness                       ( ( ))E w xθ θ=

3.  Consistency                          ( )w x θ→  as n →∞

4.  Efficiency                             Achieves a minimum variance (Cramer-Rao Lower Bound)

Cramer-Rao Lower Bound. Given 1, , nx x…  be a sample from of pdf  ( | ), ( )f x w xθ  is an

estimator and [ ( ( ))]E w xθ  is a differentiable function of θ . Suppose also that

( | )
( ) ( | ) ( )

d df x
h x f x h x dx

d d

θθ
θ θ
∫ = ∫ ,

for ( )h x∀  with | ( ) |E xθ < ∞ . Then

2

2

( )
( )

var( ( ))
log ( | )

(( )

dE w x

dw x
f x

E

θ

θ

θ
θ

θ

≥
∂

∂

.

CRLB give the lowest bound on the variance of an estimate. And if the estimate is unbiased, then

the numerator is 1 and the denominator is the Fisher information. If θ  is a p x 1 vector then the

Fisher information is a  pxp matrix given by

2

'

log ( | ) log ( | ) log ( | )
( ) [( ] [ ]

Tf x f x f x
I E Eθ θ

θ θ θθ
θ θ θ θ

∂ ∂ ∂= = −
∂ ∂ ∂ ∂

We will make extensive use of the Fisher information to derive confidence intervals for our

estimates.

Factoids about Maximum Likelihood Estimates
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1. ML Estimates are generally biased.

2. ML Estimates are consistent, they are hence asymptotically unbiased.

3. ML Estimates are asymptotically efficient.

4. The variance of ML estimate may be approximated by the inverse Fisher information matrix

1 12 2

2

log logf f
E E

θ θ

− −   ∂ ∂  = −    ∂ ∂     

5. If θ̂  is the ML estimate of θ  then ˆ( )h θ is the ML Estimate of ( )h θ .

Exercise: Gaussian Random Sample

2
1, , ( , )xx x N µ σ… ∼  with 2σ  unknown. The ML estimate of µ  is x . Use the definition of the

Fisher information to show that 
2

( )Var x
n

σ= .

Exercise:  Is a Bayes’ estimator unbiased? How can Zhang et al. 1998 use the CRLB to evaluate

the optimality of a Bayes’ estimator?

Exercise:  Gaussian Random Sample Revisited

2
1, , ( , )nx x N µ σ… ∼           µ  and 2σ  are unknown.

The ML estimate of 2σ  is 

2

2 1

( )

ˆ

N

i
k

x x

N
σ =

−
=
∑

. Is 2σ̂  an unbiased estimate?

D. HYPOTHESIS TESTING (To Appear)

E. CONFIDENCE INTERVALS

Definition (Classic):  A 1 α−  confidence interval for θ  has probability 1 α−  of covering the true

parameter. There are several methods of construction.

1. Inverting a Test
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2. Finding a Pivot

3. ML Approximation

4. CLT and Slutsky’s Theorem

Example:  Gaussian Random Sample (Pivot)

Definition: ( , )Q x θ  is a pivot if the distribution of ( , )Q x θ  is independent of all parameters, i.e.

( | )x F x θ∼  has the same distribution for all θ . 2
1, , ( , )nx x N µ σ… ∼ . We want a CI for µ given 2σ

is known x  is the ML estimate of µ .

1
2

1 1
2 2

( )
Pr( ) 1

Pr( 1 .

n x
c

x n c x n c

µ α
σ

σ µ σ α− −

 −  < = −
  

− < < + = −

1
2 ( )xn µ

σ
−  is a pivot. Pick / 2c zα=  then we have a 1 α−  CI since 

2

( , )x N
n

σµ≈

Example: Maximum Likelihood

1ˆ ˆ ˆ( ,[ ( )] )ML NN Iθ θ θ −−∼       where ( )NI θ  is the Fisher information.

By Taylor series approximation

2 1ˆ( ) ( ( ), ( ( )) [ ( )] )ML Nh N h h Iθ θ θ θ −′ −∼ .

Therefore an approximate 1 α−  CI is

2

2 1ˆ ˆ ˆ( ) [ ( ) [ ( )] ]Nh z h Iαθ θ θ −′± − .

Bayes’ Credibility Interval. A Bayesian credibility interval evaluates the probable values of the

parameter relative to the posterior density. The parameter is a random variable and not a fixed

quantity.
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