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A. Simple Regression

Assume we have a data consisting of pairs of two variables and we denote them as (x.y,),
(%.¥2) s --es (% ¥n). FOr example, x and y might be measurements of height and weight of a set

of individuals from a well-defined cohort. Let’s assume that there is a linear relation between x
andy. We assume that the linear relation may be written as

y=a+px
Example 1.

For example let us consider this example taken from Draper and Smith (1981), Applied
Regression Analysis
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Wean Atmospherlc Temperature (deg F)
Figure 1. Relation between Monthly Steam Production and Mean Atmospheric
Temperature.

The variable y is the amount of steam produced per month in a plant and variable x is the mean
atmospheric temperature. There is an obvious negative relation.
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B. Model Assumptions
We assume

i) E[yIx =a +Bx
i) The x’ s are fixed non-random covariates
iii) They’s are independent Gaussian random variables with mean a + x and variance o2

C. Mod€ Fitting
Our objective is to estimate the parameters a,pand o?. Because y is assumed to have a

Gaussian distribution conditional on x, a logical approach is to use maximum likelihood
estimation. For these data the joint probability density (likelihood) is

f(yla.B.0%x)=
il f(yi la+B%,0 ) &TE exp g,_%i( i_aU;BXi) ED

Thelog likelihood is

logf (yIxa,p.0%) = —gmg(zﬂaz)_%im
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Differentiating with respect to a and g yields

6Iogf(y|x,a,ﬁ,a )_
oa =2

alogf(y|xa[30

Emery N. Brown, M.D., Ph.D.

S (4 -a -6%)

1=1

——ZZ —a ~Bx% )%
Setting the derivative equal to zero yields the normal equations
N N
aN+f Y;
|:l 1=1
N
a x+pB
REDRER
Or in matrix form
0 N 0O ON O
0N %0 0) y0
O 4 Do 04 O
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The solution for gand a are

N |:|N O N
Xy —H)y %[N (x =x)(v -Y)
BA: 1=1 1=1 e
N ON D2 N -
X2 - xiﬁ /N (% -%)°
1= 1= =1
G=y-pBx

We may write any estimate as
§=d+Bx=y -BX +px =y +B(x X)

If we go back and differentiate the log likelihood with respect to o2, we obtain the maximum
likelihood estimate

Remarks

1. Choosing a and g by the maximum likelihood is equivalent to the method of least square in

this case. By the method of least squares, we minimize the sum of the squared initial deviations
of the data from the regression line.

2. The estimate of a showsthat every regression line goes through the point (x,y).

3. Theresiduas are y. -y and are the components in the data which the model does not explain.
We note that
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4. The Pythagorean Relation

N.B.

and

Or

Tota sum of -
squares

(TSS)

WAND 2001

= (Yi -
1=1 1=1 1
N N
2% (% -9)B(x -%) = 2B
1=1 1=1
N
=26 (x -%)’

Explained sum of .
squares
(ESS)
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5. Correlation and Regression
Note that the correlation coefficient for x and y is

i(& %)% )

I =

Xy 1
N N DZ
@(x P (3 -9)0
= 1= D
and recdll that
N
(% -%x)(v% -Y)
B: 1=1 =
Z(& -x)°
Hence,

The regression coefficient is a scale version of the correlation coefficient.

D. Propertiesof the Parameter Estimates
The variances of the parameter estimates
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If we estimate o® by &%then 1-p confidence intervals for the parameters based on the t-
distribution are

ditn—Zl—p/ZSN—S g
—\2
N (x-%)7

g 1= U

We dso invert the above statistics to test hypotheses about the regression coefficients by
constructing a t-test.

To construct a confidence interval for a predicted y, value a a given x value, x, , we note that
the

and hence an approximate 1- p confidenceinterval is

N
o s e

N -X .
Yk £th21-p/2 +,\$Xk—) o
> (x -%)°
1=

I:IDI%EI\DD

Example 1. (continued)
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Figure 2. Fit and Confidence Intervalsfor a Smple Linear Regression Model

E. Model Goodness-of-Fit

A crucial (if not the most crucial) step in statistical analyses of datais measuring goodness of fit.
That is, how well does the model agree with the data. We discuss three graphical and two
statistical measures of goodness-of-fit.

1. F-test
Given the null hypothesis H,: 3, =0, i.e. that there is no linear relation in x and y, we can test

this explicitly using an F-test defined as
ESS/(p- 1) _ /

Fo-tn-p = RSS/(N - p) N
Z (N-»)
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where ESS is the explained sum of squares; RSS is the residual sum. We rgect this null
hypothesis for large values of the F statistic. This suggests that if the amount of the variance in
the data that the regression explains is large relative to the amount which is unexplained then we
reject the null hypothesis.

2. R-Squared
Another measure of goodness-of-fit isthe R?. It isdefined as

The R? measures the fraction of variance in the data explained by the regression equation. The
R-Squared and the F-statistic are related as

2= F(P-1)/(N-p)
1+F(p-1)/(N-p)

Clearly, as the F-statistic increases, so does the R?.

Example 1. Data Analysis Summary (Continued)

Parameter Estimate | Standard Error | t-Statistic

a= 1362 0.582 23.41
g = -0.0798 0.010 -7.60
TSS= 63.82
ESS= 45.69
RSS=17.13

F-statistic (1, 23) = 57.52, R*=0.7144
Factoid: The square of the t-statistic (n-p degrees of freedom) isthe F-statistic (1, n-p).

3. Graphical Measures of Goodness-of-Fit
1. Plot the Raw Data Isthe relation linear?
2. Plot the Fit vs. the Residualsls there a relation between the explained and the
unexplained structure in the data?
3. Plot the Residuals Lack of fit of the model
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Figure 3. Plot of Residuals versus x.
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Figure 4. Plot of the Residuals against the Predicted y values.

F. The Geometry of Regression Analysis (M ethod of L east-Squar es)
Regression analysis has an intuitively appealing geometric interpretation.
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A2 ~112
=3 :M F - statistic U M

I eIl

|. Derivation and Properties of the L east Squares Estimates

The procedure used to estimate the parameters in the linear regression models in this study is
least squares. In this section we first derive the least squares estimates, and then by making
some distributal assumptions about our model, we next derive the statistical properties of the
estimates.

We begin by assuming amodel of the form

Y=XB+e )

where Y isan nx| vector of dependent observations.
X isan nx p matrix of explanatory observations, i.e. the matrix contains p nx|

dimensional vectors.
B isan nx| vector of parameters.

¢ isan nx| vector of errors.

In order to estimate our vector of parameters g using least squares, we assumethat X is of rank
p or, in other words, that the p column vectorsin X are linearly independent. Therefore, we
want to find the estimates of 8, 8, which minimizes

(1.2)
=YY =B XY -Y'XB+B XX
Because §'x'Y isascalar it equalsitstranspose Y'x 3. Consequently (1.2) smplifiesto
E'E=Y'Y-2B"X'Y +B'Xp (13)

we differentiate (1.3) with respect to g and set the

To find the least squares estimates of
derivative equal to zero.

R
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a((f;) =2 Y +(X'X) B (1.4)
Solving for 3 gives
B=(xx)"txy (15)
That
o(BXXB) . =

follows from the fact that §'(x'x) B isaquadratic form. Furthermore, we know that (X'X) has
an inverse since we initially assumed x had rank p. Hence, (X'X) is positive definite of rank

pand has inverse (x'x)™%. The second order conditions for the minimization of ¢'s follows
directly since (X'X) is positive definite. In order to test hypotheses about our data we need to

make some distributional assumptions about our model. The standard assumptions for the linear
regression model are:

. e~N (Q, qu). The ¢ ‘s are independent, normally distributed random errors with mean 0 and
common variance o?.
II. The p n-dimensional vectors comprising X are taken as fixed constants.

From these two assumptions we see that Y being a linear function of €, is also normally

distributed with mean xg and variance | o2. Using these distributional properties we now

derive the distributions of the least squares estimates.

Proposition 1.1 The least squares estimate of g, /3 is normally distributed with means g and

variance o2 (x'x) ",

Proof: Toshow that g isnormally distributed we have only to notice that g isalinear function

of Y, since linear functions of independent normally distributed random variables are also
normally distributed.

To find the mean of the distribution of g consider
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£(B)={(xx) g =0 x) e xp+(x ) X Ee) (16)

But from Assumption |, we know that E(¢) =0, and since (>§'>§)‘1>5'>5 =1, it follows that
E(8)=p. Todeterminethevariance of 3, we consider

Var (8) =Var{0x" ) 1x )

17)
= (X" %) "I var(ry ) x (x'x) 7t
But Var(YY') =02l , S0 we can rewrite (7) as
Var () = (X' X) "1 x)(x ' X) Lo?1
(1.8)

=(X'x) 10?2

Proof: the fact that Y has a normal distribution follows directly from the fact that it is a linear
combination of Y. We find the mean of Y by considering

e0) = E{xf =e{x00hexpxx0xEeE) (1.9)

Because (X'X) }(X'X) =1 andE(g) =0, we get E(Y) = X4.
To find the variance of Y we write

Var (%) =var{ X 0¢ )X
(1.10)
= X (X' %) EX Var (Y )X (X' X) T1X!

Since we know that Var (YY) = o? |, substituting thisinto (1.10) and rearranging terms gives
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(1.11)

Proposition 1.3 The least squares estimate of ¢, £, where £=Y-Y is N(0,(1 -H)o?), where
H=X(X'X)"X"'. To complete the proof of this Proposition, we need the fact that the matrix
| -H is symmetric and idempotent. A matrix A is said to be idempotent is A>=A and A is
symmetricif A'=A.

Proof: The fact that £ has a normal distribution follows directly since it is a linear function of
Y. Inorder to find the mean of ¢ to consider

£@ = e{y -4 =ed1 -xx 07} v) (112)
Werecall that E(Y) = XB. Therefore, (1.12) simplifiesto
E(€) = XB-X(X'X) " X'XB=XB~-XB=0 (1.13)
Wefind the variance of £ by first rewriting ¢ as
E=Y-Y=(L-H)Y (1.14)
Hence,
Var (€) = (1 —H)Var(YY)(I -H)' (1.15)
But | -H issymmetric, and Var(YY") =c?l , so from (1.15) we get
Var(g) = (L —H)(L —H)o’L . (1.16)
Werecall that | -H isidempotent and finally we have
Var(£) = (1 - H)o?
We notice that all the estimates just derived are unbiased in that the expected values of their

distributions are the parameters they estimate. Now we can find an unbiased estimate of ¢?. In
the next Proposition we demonstrate that such an estimate is o, where
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Proposition 1.4

=<
=<
|
>
<
<

is an unbiased estimate of o?. In order to complete the proof of this Proposition we need the
following two results from the theory of matrix algebra, and the distribution theory of quadratic

forms: For two conforming matrices A and B trace (AB)=trace (BA). If A is a symmetric
matrix and e is a vector of uncorrelated random variables with common variance 2 and mean
0,

E(e'Ag) = o’ trace (A).

Proof: We consider first

E{yy-4'xv}
E(62)= = 117
)= (L17)
Substituting for 3' gives
E{Y'Y -Y' X (X' X)X
E(6?)= QY Y X7y (1.18)
(n-p)
If we now substitutefor Y* and v, (1.18) becomes
E(62
CE{(B'X+)(XB+8) ~(B' X +£)X (X X)X (X +¢ (1.19)
0= -
Expanding (1.19), taking expectations and simplifying yields
E{e'le—g'X(X'X) X"
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In equation (1.20) we have the expectation of two quadratic forms. Applying the first of two
results stated initially, we get

{o? trace(1) - o?trace (x(x " x) ™" X}

E(6)* =
) (n-p)

(1.21)

Since | is an nxn identity matrix its trace is n. Applying the second of the two results, we
stated, we find that

trace (X(X'X) X" = trace (X' X(X'X)™). (1.22)

Because (X'x) and (X'x)™* are pp, trace (X'X(X' X)) =p.
Substituting back into (1.21) gives

2. 2
E(6?) = %‘;p =g? (1.23)

Having found the least squares estimates for our linear regression model and derived their
statistical properties, we now would like to demonstrate an important optimality property
associated with our estimate g Specificaly, we want to show that g IS the best linear unbiased

estimate of g. That is, in the class of linear unbiased estimates of g, B has the smallest

variance-covariance matrix. This well-known property of the least squares estimates is known as
the Gauss-Markov Proposition. It is stated and proved below as Proposition 1.5.

Proposition 1.5 In the class of linear unbiased estimates of g, the least squares estimate B has
the smallest variance.

Proof: Consider an alternative linear estimate of B, and call it B*, where
B* =AY

Let A=(XX)™"X+C. We now want to determine C such that *is unbiased with the smallest
variances of al linear estimates. Therefore, we consider

E(BD= AE(Y)= (X' X)™(X'X)B+ CXC’

(1.24)
=B -CXC'
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In order for g* to be unbiased we require that X =0. Now we want to find the variance of g+

var(B*) = E{(B* -B)(B* -B} (1.25)

Substituting for g in (1.25) gives

Var (0= E{[{x"x) " x+ CHxp+ - {Hx ) x+ CIpx B+ e 4 (1.26)
Expanding terms, taking expectations and simplifying yields
Var (BD= (X' X)X 'E(gg)X (X' X) ™+ Ceg'C'= o? X' X) '+ CCH (1.27)
We now notice that

Var (B*) - Var () 20 (1.28)

The equality in (1.28) holds if and only if we choose cCc'=0. Thisimplies that the elements of
cmust al be zero. We have demonstrated that the least squares estimate of 3, g has the

smallest variance-covariance matrix among the class of al linear unbiased estimates. We note
however that B is not the only estimate in this class with the smallest variance. Moreover, it is

possible to construct biased linear estimates or unbiased nonlinear estimates whose variance is
smaller than [} By making similar arguments for Y and £, we can also prove that they being

linear functions of [},they aretheb.l.u.e. of Y and ¢, respectively.

We now illustrate one final mathematical property of our least squares estimates, which is
helpful for understanding the theory behind this method of estimation.

Proposition 1.6 £'(Y)=0

To prove this Proposition, we need the same result for the matrix X(X'X)™X that we stated in
the proof of Proposition 1.3 for the matrix |-X(X'X)™X'. That is X(X'X)™X"' is aso
symmetric and idempotent.

Proof: Againlet X(X'X)™X'=H and recall from (1.14) that £=(1 -H)Y . Hence,

&'(Y)=Hu-H)YEHY =Y'(1-H)HY (1.29)
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since Y =HY . But both | -H and H are symmetric and idempotent, so that
E(Y)=Y'(H-H)Y =0 (1.30)

What this result saysis that the vector of estimated errorsis orthogonal to the vector of predicted
values of the dependent variable. In other words, regression decomposes Y into two orthogonal

components Y and ¢ . The predicted values of Y, Y, is the orthogonal projection of Y on to the
subspace determined by x . Weillustrate this geometrically in Figure A.1 for the case when n=3

and p=2. We return to this geometric interpretation of regression in this next section, where we
discuss the F-test.

. TheF-Test
Our primary method for testing hypotheses about our regression models is the F-test. In this
section, we outline its derivation and give its geometric interpretation.

Let’swrite Bas

O
B= églm where B, isa kxI column vector (2.1)
- B ~

B, isa (p-k)xI column vector

If we wish to test the hypothesis that B, =0 we can do so by using the following steps to

construct the F-test.
1) Compute the Regression Sum of Squares (SSRq) under H, that g, =0.

2) Subtract (SSRp) from the Regression Sum of Squares (SSRa) obtained under the
aternative hypothesis H, 3, #0.

3) Dividethisdifference by k, the number of parametersin g, .
4) Divide this new statistic by the Mean-Squared Error under Ha(M SEa).

If the normality assumptions regarding ¢ stated in Section | hold, under Ho the ratio

($RAM- :\%)/ k (2.2)

has an F-distribution with k and n-p degrees of freedom. We rgect Hy a the a level of
significance if our observed F-statistic exceeds the (1-a) quantile of the F-distribution with k, n-
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p degrees of freedom. Although we do not prove here that this statistic has an F-distribution, we
show geometrically why thisratio is reasonable for the test of this hypothesis.

For the geometric argument, we again consider the case where n=3 p=2, shown in Figure A.2.
Here the null hypothesisisthat the coefficient of X, iszero, and therefore K =1.

From Figure A.2 we see that
SR, = 0AZ —ny2
SR, = OB? —ny? (2.3)
MSE, = AC?
To test the hypothesisthat g, =0, we find that the appropriate F statistic is
F.. = ABY/AC? (2.4)
We notice that AB is the difference between the projections of Y under H, and Y under H,.

This geometric description of the F-test shows that H, is rejected if Y is significantly closer to
the subspace spanned by X, and X, than the one spanned by X, alone.

G. Generalized Linear Model (GLM)

Linear Model
Y=XB+e £~ N(0,021)
y=u+e where u isthe mean of
y nx1 X nxp B px1

Components of the Generalized Linear Model
1. Random Component for y is chosen from the exponential family

2. Systematic Component are covariates x,x,, ..., X, produce alinear predictor n given by

/7=Jij[3j :

3. The link between the random and systematic components n =g(u) where g is monotonic
differentiable function.
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Revisit the Exponential Family of Distribution
Given y adata vector from a probability distribution belonging to the exponential family. We

may express the probability density or mass function of y as

f,(y.6,9) = exp{y8 —b(6))/ a(¢) +c(y, @} -

a(),b() and ¢() functions to be specified if ¢ is known then we have an exponential family
model with a canonical parameter.

Example 2: Gaussian M odel

(6.0 =[5t ep{-y - 0?20}
= exp%(yu -u?12)/20° —%(y2 /o? +Iog(2rr02))§,

where 9=y, @=02, b@) =6%/2, c(y,) = —%{yzlaz +og(2rro} .

Example 3: Binomial Model

' —_
PI(Y =) = — o p’@-p)"™
(n=y)'y!
:exp%/logD p E+n|09(1—p)+log% n! DE
SN Hn-yivHs
0
where 6 =log(p/1-p)), =1 b(€) =nlog(L-p), oy, =logri——p

aon=-y'y'g

Example 4: Poisson Model
Pr(iY =y) =AY exp(-A)/ y!
=exp(ylogA -A ~log y!)

where 6 =logA, @=1 b(6) =-A c(y,® =logy!
Mean and Variance of y (We will skip this stuff in the lecture; we can revisit it in a

tutorial).
Let ¢(6,0.y)=log f,(y,0,¢) . Two standard properties of likelihood functions
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0o/ 0

E Eﬁ_QH: 0.
The expected value of the score function is zero

Do2¢0 _por [ f
E E =0.
o7 ~Hher

The expected Fisher Information is the negative of the variance of the score function

06,y) ={y(6) -b(6} /a(g) +c(y. 9 ,

whence
o ;o
%—{y b'(6} / a(p)

9%¢
2 =p'(O) ae).
357 6)/a(p)

Egs. (1) and (4) imply

0=E 52 b={u -6} /alp)

or
Elyl=u=0'0) .
Using Egs. 4 and 5in EQ. 2, we obtain

0=_0®) Var(y)
alp)  a*(p)

Hence

Var (y) =b'(6)a(@) -

(1)

2

©)

(4)

©)

The variance depends on the mean and a function, which depends on the dispersion parameter;

b’(8) isthe variance function.
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Model Summary Table

Gaussian Poisson Binomial Gamma Inverse
Gaussian
Canonical H logA log2 P O 1 1
link: g(u) “B-pH A A2

MAIN POINT. WE MAY WRITE EXPLICITLY THE LINK OF THE SYSTEMATIC AND RANDOM
STRUCTURE AS g(u) =X . IN THISWAY, WE EXTEND THE SIMPLE REGRESSION MODEL WITH

GAUSSIAN ERRORS TO REGRESSION MODELS FOR THE ENTIRE EXPONENTIAL FAMILY OF
PROBABILITY DISTRIBUTIONS.

Deviance (Goodness of Fit Criterion)

N
Let /(u;y) = zlog f(y;;6,) and define the deviance as
Eil

D*(y; 1) = 20(y; y) —2((1; Y)
Note that the second expression is the —2log likelihood of the data. Hence minimizing D* (y;u) is
equivalent to maximizing the log likelihood. Notice that in the Gaussian case, the deviance is

N
D*(y;f1) = z(Yi -)?10°
=

which isjust the residual sum of squares (RSS).

Analysis of Deviance. Instead of analysis of variance we use analysis of deviance, which is
additive for nested sets of models fit by maximum likelihood. D*(y;u)is anayzed as an

approximately chi-squared quantity.

N
Deviance Residuals. The deviance residuals are defined as D*(y;ﬁ):Zdi where we

definery; = sign(di)di% . Plots of these quantities can be analyzed in the same way the regression
residuals are analyzed.

For generalized linear models in which there is a natural time dependence in the observations we

will show that a global measure of model goodness of fit may be constructed using the time-
rescaling Proposition (Berman, 1983; Ogata, 1988; Brown et al., 2001).
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Remarks

GLM allows generalization (extension) of linear models to non-Gaussian setting.
A unified computational approach.

Can use non-canonical link and variance functions.

Widely distribution Splus and non Matlab.

Now there’ s Bayesian GLM.

Assess goodness-of -fit with an analysis of deviance.

Sk wdpE

Neuroscience Data Analysis Examples Using GL M
1. Random Threshold Model (Brillinger (1988, 1992))

Simplified version

IOQDTpxtD u+Jaxt +k/3y
D: . s .
_pxtD ]Z j i ; k Yt—k

p,t probability of aspikeat t from neuron x.

2. Prospective and Retrospective Encoding by Hippocampal Place Cells (Frank, Brown
and Wilson, 2000)
A rat running on a W-maze, multiple single unit activity is recorded from CA1 region of the
hippocampus and the entorhinal cortex.
t indexestrial
R probability of going right on an outbound journey from the center arm of the W-maze.
Op 0 iSan
|Og HE u JZGJA] (t) ’

where A, (t) isthefiring rate of the neuron at location j prior to the choice point on pass t.

3. Cockroach Cercal System Responseto Wind Stimuli (Davidowitz and Rimberg, 2000).
n = number of spikesat time t (discrete time bins of 10msec)
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v, (t) x—direction wind velocity
vy (1) y - direction wind velocity
a,(t) x—direction wind acceleration
a, (1) y - direction wind acceleration

Poisson link function
logA(t) = p +ayvy (t) +apvy (1) +Biac(t) +Byay(t),
A(t) spikerateattime t.
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