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A.  Simple Regression

Assume we have a data consisting of pairs of two variables and we denote them as ( )1 1,x y ,

( )2 2,x y , …, ( ),n nx y .  For example, x and y might be measurements of height and weight of a set

of individuals from a well-defined cohort.  Let’s assume that there is a linear relation between x
and y.  We assume that the linear relation may be written as

y xα β= +

Example 1.
For example let us consider this example taken from Draper and Smith (1981), Applied
Regression Analysis

Figure 1.  Relation between Monthly Steam Production and Mean Atmospheric
Temperature.
The variable y is the amount of steam produced per month in a plant and variable x is the mean
atmospheric temperature. There is an obvious negative relation.
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B.  Model Assumptions
We assume

i) [ ]|E y x xα β= +

ii) The x’s are fixed non-random covariates
iii) The y’s are independent Gaussian random variables with mean ixα β+  and variance 2σ

C.  Model Fitting
Our objective is to estimate the parameters ,α β and 2σ .  Because y is assumed to have a
Gaussian distribution conditional on x, a logical approach is to use maximum likelihood
estimation.  For these data the joint probability density (likelihood) is

                            ( )2| , , ,f y xα β σ =

( ) 22
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( ) ( ) ( )2
2 2

2
1

1
| , , , log 2

2 2

N
i

i

y xN
logf y x

α β
α β σ πσ

σ=

− −
= − − ∑



Regression Analysis/GLM WAND 2001 Emery N. Brown, M.D., Ph.D.

Page 5

Differentiating with respect to α and β yields

( )
( )
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1
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i i
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y x
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Setting the derivative equal to zero yields the normal equations
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The solution for β and α are

( )( )

( )

1 1 1
1 1 1

2
2

2

11 1

/

ˆ

/

N N N

i i
i i i

NN N

ii i
ii i

x y x N x x y y

x xx x N
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∑ ∑ ∑

∑∑ ∑

ˆ y xα β= −

We may write any estimate as

( )ˆ ˆ ˆ ˆˆ ˆy x y x x y x xα β β β β= + = − + = + −

If we go back and differentiate the log likelihood with respect to 2σ , we obtain the maximum
likelihood estimate

( )22

1

ˆˆ ˆ /
N

i i
i

y x Nσ α β
=

= − −∑

Remarks

1.  Choosing α and β by the maximum likelihood is equivalent to the method of least square in
this case.  By the method of least squares, we minimize the sum of the squared initial deviations
of the data from the regression line.

2.  The estimate of α̂ shows that every regression line goes through the point ( ),x y .

3.  The residuals are ˆi iy y− and are the components in the data which the model does not explain.
We note that

( )ˆi iy y x xβ= + −

          ( ) ( ) ( )
1 1 1

ˆ 0
N N N

i i i i
i i i

y y y y x xβ
= = =

− = − + − =∑ ∑ ∑
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4.  The Pythagorean Relation

( ) ( )ˆ ˆi i i iy y y y y y− = − − −

( ) ( ) ( ){ }2 2
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squares
(RSS)
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5. Correlation and Regression
Note that the correlation coefficient for x and y is
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( ) ( )
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and recall that
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The regression coefficient is a scale version of the correlation coefficient.

D.  Properties of the Parameter Estimates
The variances of the parameter estimates
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If we estimate 2σ  by 2σ̂ then 1 ρ− confidence intervals for the parameters based on the t-
distribution are
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We also invert the above statistics to test hypotheses about the regression coefficients by
constructing a t-test.

To construct a confidence interval for a predicted ky  value at a given x value, kx , we note that
the

( ) ( )

( )

2 22
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and hence an approximate 1 ρ−  confidence interval is
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Example 1. (continued)
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Figure 2. Fit and Confidence Intervals for a Simple Linear Regression Model

E.  Model Goodness-of-Fit
A crucial (if not the most crucial) step in statistical analyses of data is measuring goodness of fit.
That is, how well does the model agree with the data.  We discuss three graphical and two
statistical measures of goodness-of-fit.

1.  F-test
Given the null hypothesis 0 1: 0H β = , i.e. that there is no linear relation in x and y, we can test
this explicitly using an F-test defined as
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where ESS is the explained sum of squares; RSS is the residual sum. We reject this null
hypothesis for large values of the F statistic.  This suggests that if the amount of the variance in
the data that the regression explains is large relative to the amount which is unexplained then we
reject the null hypothesis.

2.  R-Squared
Another measure of goodness-of-fit is the 2R .  It is defined as

( )
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2

2 1
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y y
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y y
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The 2R  measures the fraction of variance in the data explained by the regression equation.  The
R-Squared and the F-statistic are related as

( ) ( )
( ) ( )

2 1 /

1 1 /

F p N p
R

F p N p

− −
=

+ − −

Clearly, as the F-statistic increases, so does the 2R .

Example 1.  Data Analysis Summary (Continued)

Parameter Estimate Standard Error t-Statistic

α̂ =     13.62 0.582 23.41
β̂ =  -0.0798 0.010 -7.60

TSS =  63.82
ESS =  45.69
RSS = 17.13

F-statistic (1, 23) = 57.52,  R2= 0.7144
Factoid: The square of the t-statistic (n-p degrees of freedom) is the F-statistic (1, n-p).

3.  Graphical Measures of Goodness-of-Fit
1.   Plot the Raw Data Is the relation linear?
2.  Plot the Fit vs. the ResidualsIs there a relation between the explained and the

unexplained structure in the data?
3.  Plot the Residuals Lack of fit of the model



Regression Analysis/GLM WAND 2001 Emery N. Brown, M.D., Ph.D.

Page 12

Figure 3. Plot of Residuals versus x.
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Figure 4. Plot of the Residuals against the Predicted y values.

F.  The Geometry of Regression Analysis (Method of Least-Squares)
Regression analysis has an intuitively appealing geometric interpretation.
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I.  Derivation and Properties of the Least Squares Estimates
The procedure used to estimate the parameters in the linear regression models in this study is
least squares.  In this section we first derive the least squares estimates, and then by making
some distributal assumptions about our model, we next derive the statistical properties of the
estimates.
We begin by assuming a model of the form

Y X β ε= +
! ! !!

(1)

where Y
!

 is an n l×  vector of dependent observations.
X
!

 is an n p×  matrix of explanatory observations, i.e. the matrix contains p  n l×
    dimensional vectors.
β
!

 is an n l×  vector of parameters.

ε
!

 is an n l×  vector of errors.

In order to estimate our vector of parameters β
!

 using least squares, we assume that X
!

 is of rank

p
!

 or, in other words, that the p  column vectors in X
!

 are linearly independent.  Therefore, we

want to find the estimates of β
!

, β̂
!

, which minimizes

ˆ ˆˆ ˆ' ( ) '( )

ˆ ˆ ˆ ˆ' ' ' ' ' '

Y X Y X

Y Y X Y Y X X X

ε ε β β

β β β β

= − −

= − − +

! ! ! !! ! ! !

! ! ! ! ! ! ! !! ! ! !

(1.2)

Because ˆ ' 'X Yβ
! !!

 is a scalar it equals its transpose ˆ'Y X β
! ! !

.  Consequently (1.2) simplifies to

ˆ ˆ ˆˆ ˆ' ' 2 ' ' 'Y Y X Y Xε ε β β β= − +
! ! ! ! !! ! ! !

(1.3)

To find the least squares estimates of β
!

 we differentiate (1.3) with respect to β̂
!

 and set the

derivative equal to zero.
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( ) ( )ˆ ˆ' ˆ2 ' '
ˆ

X Y X X
ε ε

β
β

∂
= − +

∂
! !

! ! ! ! !
!

(1.4)

Solving for β̂
!

 gives

( ) 1ˆ ' 'X X X Yβ −=
! ! ! !!

(1.5)

That

( ) ( )
ˆ ˆ' '

ˆ'
ˆ

X X
X X

β β
β

β

∂
=

∂
! !! !

! ! !
!

follows from the fact that ( )ˆ ˆ' 'X Xβ β
! !! !

 is a quadratic form.  Furthermore, we know that ( )'X X
! !

 has

an inverse since we initially assumed X
!

 had rank p .  Hence, ( )'X X
! !

 is positive definite of rank

p and has inverse ( ) 1'X X −
! !

.  The second order conditions for the minimization of 'ε ε
! !

 follows

directly since ( )'X X
! !

 is positive definite.  In order to test hypotheses about our data we need to

make some distributional assumptions about our model. The standard assumptions for the linear
regression model are:

I.  ( )2~ 0,N Iε σ
! ! !

. The iε ‘s are independent, normally distributed random errors with mean 0 and

common variance 2σ .

II.  The p n -dimensional vectors comprising X
!

 are taken as fixed constants.
From these two assumptions we see that Y

!
 being a linear function of ε

!
, is also normally

distributed with mean X β
! !

 and variance 2Iσ
!

.  Using these distributional properties we now

derive the distributions of the least squares estimates.

Proposition 1.1  The least squares estimate of ˆ,β β
! !

, is normally distributed with means β
!

 and

variance ( ) 12 'X Xσ −
! !

.

Proof:  To show that β
!

 is normally distributed we have only to notice that β
!

 is a linear function

of Y
!

, since linear functions of independent normally distributed random variables are also
normally distributed.

To find the mean of the distribution of β
!

 consider
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( ) ( ){ } ( ) ( ) ( )1 1 1ˆ ' ' ' ' ' 'E E X X X Y X X X X X X X Eβ β ε− − −= = +
! ! ! ! ! ! ! ! ! ! ! ! !! !

(1.6)

But from Assumption I, we know that ( ) 0E ε =
!

, and since 1( ' ) 'X X X X I− =
! ! ! ! !

, it follows that

( )ˆE β β=
! !

.  To determine the variance of β̂
!

, we consider

{ }1ˆ( ) ( ' ) '

1 1( ' ) " ( ') ( ' )

Var Var X X X Y

X X X Var YY X X X

β −=

− −=

"! ! !!

! ! ! ! ! ! ! !

(1.7)

But 2( ')Var YY Iσ=
! ! !

, so we can rewrite (7) as

1 1 2ˆ( ) ( ' ) ( ' )( ' )

1 2( ' )

Var X X X X X X I

X X I

β σ

σ

− −=

−=

! ! ! ! ! ! !!

! ! !

(1.8)

Proposition 1.2  The least squares estimate of ˆ,Y Y
! !

, where ˆŶ X β=
! ! !

 is ( )2 1, ( ' ) 'N X X X X Xβ σ −
! ! ! ! !!

.

Proof:  the fact that Ŷ
!

 has a normal distribution follows directly from the fact that it is a linear

combination of Y
!

.  We find the mean of Ŷ
!

 by considering

{ } { }1 1ˆˆ( ) ( ' ) ' ( ' ) ' ( )E Y E X E X X X X X X X X X Eβ β ε− −= = +
! ! ! ! ! ! ! ! ! ! ! !! !

. (1.9)

Because 1( ' ) ( ' )  and ( ) 0X X X X I E ε− = =
! ! ! ! ! ! !

, we get ˆˆ( )E Y X β=
! ! !

.

To find the variance of Ŷ
!

 we write

{ }1ˆ( ) ( ' ) '

1 1( ' ) ' ( ') ( ' ) '

Var Y Var X X X X Y

X X X X Var YY X X X X

−=

− −=

! ! ! ! ! !

! ! ! ! ! ! ! ! ! !

(1.10)

Since we know that 2( ')Var YY Iσ=
! ! !

, substituting this into (1.10) and rearranging terms gives
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1 1 2ˆ( ) ( ' ) ( ' )( ' ) '

1 2( ' ) '

Var Y X X X X X X X X I

X X X X I

σ

σ

− −=

−=

! ! ! ! ! ! ! ! ! !

! ! ! ! !

(1.11)

             
Proposition 1.3 The least squares estimate of ˆ,ε ε

! !
, where ˆˆ Y Yε = −

! !!
 is 2(0, ( ) )N I H σ−

! !!
, where

1( ' ) 'H X X X X−=
! ! ! ! !

.  To complete the proof of this Proposition, we need the fact that the matrix

I H−
! !

 is symmetric and idempotent.  A matrix A
!

 is said to be idempotent is 2A A=
! !

 and A
!

 is
symmetric if 'A A= .

Proof:  The fact that ε̂
!

 has a normal distribution follows directly since it is a linear function of
Y
!

.  In order to find the mean of ε̂
!

 to consider

{ } { }1ˆˆ( ) ( ( ' ) ' )E E Y Y E I X X X X Yε −= − = −
! ! ! ! ! ! ! !!

(1.12)

We recall that ( )E Y X β=
! ! !

.  Therefore, (1.12) simplifies to

1ˆ( ) ( ' ) ' 0E X X X X X X X Xε β β β β−= − = − =! "! ! ! ! ! !! ! ! ! !
(1.13)

We find the variance of ε̂
!

 by first rewriting ε̂
!

 as

ˆˆ ( )Y Y I H Yε = − = −
! ! ! ! !!

(1.14)

Hence,

ˆ( ) ( ) ( ')( ) 'Var I H Var YY I Hε = − −
! ! ! ! ! !!

(1.15)

But I H−
! !

 is symmetric, and 2( ')Var YY Iσ=
! ! !

, so from (1.15) we get

2( ) ( )( )Var I H I H Iε σ= − −
! ! ! ! !!

. (1.16)

We recall that I H−
! !

 is idempotent and finally we have

2( ) ( )Var I Hε σ= −
! !!

We notice that all the estimates just derived are unbiased in that the expected values of their
distributions are the parameters they estimate.  Now we can find an unbiased estimate of 2σ .  In
the next Proposition we demonstrate that such an estimate is 2σ , where
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Proposition 1.4

2
ˆ' '

ˆ
( )

Y Y X Y

n p

β
σ

−
=

−
! ! ! !!

is an unbiased estimate of 2σ . In order to complete the proof of this Proposition we need the
following two results from the theory of matrix algebra, and the distribution theory of quadratic
forms: For two conforming matrices A

!  and B
!

 trace ( )AB =
! !

trace ( )BA
! !

. If A
!

 is a symmetric

matrix and e
!
 is a vector of uncorrelated random variables with common variance 2σ  and mean

0 ,

2( ' )E e Ae σ=
!! !

trace ( )A
!

.

Proof:  We consider first

( ) { }2
ˆ' ' ' '

ˆ
( )

E Y Y X Y
E

n p

β
σ

−
=

−
! ! ! !! (1.17)

Substituting for ˆ 'β
!

 gives

( ) { }1
2

' ' ( ' )
ˆ

( )

E Y Y Y X X X XY
E

n p
σ

−−
=

−
! ! ! ! ! ! ! ! (1.18)

If we now substitute for 'Y
!

 and Y
!

, (1.18) becomes

{ }
2

1

ˆ(

( ' ' ')( ) ( ' ' ') ( ' ) (
0

E

E X X X X X X X X

n p

σ

β ε β ε β ε β ε−+ + − + +
=

−
! ! ! ! ! ! ! !! ! !! ! ! !

(1.19)

Expanding (1.19), taking expectations and simplifying yields

{ }1
2

' ' ( ' ) '
( )

( )

E I X X X X
E

n p

ε ε ε ε
σ

−−
=

−
"! ! ! !! ! ! ! (1.20)
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In equation (1.20) we have the expectation of two quadratic forms.  Applying the first of two
results stated initially, we get

{ }2 2 1
2

( ) ( ( ' ) ')
ˆ( )

( )

 trace trace I X X X X
E

n p

σ σ
σ

−−
=

−
! ! ! ! ! (1.21)

Since I
!

 is an nxn  identity matrix its trace is n .  Applying the second of the two results, we
stated, we find that

trace 1( ( ' ) ')X X X X− =
! ! ! !

 trace 1( ' ( ' ) )X X X X −

! ! ! !
. (1.22)

Because ( ' )X X
! !

 and 1( ' )X X −
! !

 are pxp , trace 1( ' ( ' ) )X X X X p− =
! ! ! !

.
Substituting back into (1.21) gives

2 2
2 2ˆ( )

n p
E

n p

σ σσ σ−= =
−

(1.23)

Having found the least squares estimates for our linear regression model and derived their
statistical properties, we now would like to demonstrate an important optimality property
associated with our estimate β̂

!
. Specifically, we want to show that β̂

!
 is the best linear unbiased

estimate of β
!

. That is, in the class of linear unbiased estimates of ˆ,β β
! !

 has the smallest

variance-covariance matrix. This well-known property of the least squares estimates is known as
the Gauss-Markov Proposition. It is stated and proved below as Proposition 1.5.

Proposition 1.5  In the class of linear unbiased estimates of β
!

, the least squares estimate β̂
!

 has

the smallest variance.

Proof:  Consider an alternative linear estimate of β
!

, and call it *β
!

, where

* AYβ =
! !!

Let 1( )A XX X C−= +
! ! ! ! !

. We now want to determine C
!

 such that *β
!

is unbiased with the smallest

variances of all linear estimates. Therefore, we consider

1( ) ( ) ( ' ) ( ' ) '

'

E AE Y X X X X CXC

CXC

β β

β

−∗ = = +

= −

! ! ! ! ! ! !! !! !

!! !!

(1.24)
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In order for *β
!

 to be unbiased we require that 0.CX =
!!

 Now we want to find the variance of *β
!

{ }( *) ( * )( * ')Var Eβ β β β β= − −
! ! ! ! !

(1.25)

Substituting for *β
!

 in (1.25) gives

{ } ( ){ }11( ) ( ' ) ( ) ' 'Var E X X X C X X X X C Xβ β ε β β ε β−−     ∗ = + + − + + −    ! ! ! ! ! ! ! !! ! ! !! ! ! ! !
(1.26)

Expanding terms, taking expectations and simplifying yields

1 1 2 1( ) ( ' ) ' ( ') ( ' ) ' ' ( ' ) 'Var X X X E X X X C C X X CCβ εε εε σ− − − ∗ = + = + ! ! ! ! ! ! ! !! ! ! ! ! ! ! !!
(1.27)

We now notice that

( *) ( ) 0Var Varβ β− ≥
! !

(1.28)

The equality in (1.28) holds if and only if we choose ' 0CC =
! !

.  This implies that the elements of

C
!

must all be zero. We have demonstrated that the least squares estimate of β
!

, β̂
!

 has the

smallest variance-covariance matrix among the class of all linear unbiased estimates. We note
however that β̂

!
 is not the only estimate in this class with the smallest variance. Moreover, it is

possible to construct biased linear estimates or unbiased nonlinear estimates whose variance is
smaller than β̂

!
. By making similar arguments for Ŷ

!
 and ε̂

!
, we can also prove that they being

linear functions of β̂
!

, they are the b.l.u.e. of Y
!

 and ε
!

, respectively.

We now illustrate one final mathematical property of our least squares estimates, which is
helpful for understanding the theory behind this method of estimation.

Proposition 1.6 ˆˆ '( ) 0Yε =
!!

To prove this Proposition, we need the same result for the matrix 1( ' )X X X X−

! ! ! !
 that we stated in

the proof of Proposition 1.3 for the matrix 1( ' ) 'I X X X X−− !
! ! ! !

. That is 1( ' ) 'X X X X−

! ! ! !
 is also

symmetric and idempotent.

Proof:  Again let 1( ' ) 'X X X X H− =
! ! ! ! !

and recall from (1.14) that ˆ ( )I H Yε = −
! ! !!

.  Hence,

( ) ( ) ( )ˆˆ ' ' ' 'Y I H Y HY Y I H HYε = − = −  ! ! ! ! ! ! ! ! ! ! !!
(1.29)
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since Ŷ HY=
! ! !

. But both I H−
! !

 and H are symmetric and idempotent, so that

ˆ '( ) '( ) 0Y Y H H Yε = − =
! ! ! ! !!

(1.30)

What this result says is that the vector of estimated errors is orthogonal to the vector of predicted
values of the dependent variable. In other words, regression decomposes Y

!
 into two orthogonal

components Ŷ
!

 and ε̂
!

. The predicted values of Y
!

, Ŷ
!

, is the orthogonal projection of Y
!

 on to the
subspace determined by X

!
.  We illustrate this geometrically in Figure A.1 for the case when n=3

and p=2. We return to this geometric interpretation of regression in this next section, where we
discuss the F-test.

I. The F-Test
Our primary method for testing hypotheses about our regression models is the F-test.  In this
section, we outline its derivation and give its geometric interpretation.

Let’s write β
!

as

1

2

β
β

β
 

=  
  
!

!
!

     where 1β
!

 is a k l×  column vector (2.1)

2β
!

 is a ( )p k l− ×  column vector

If we wish to test the hypothesis that 1 0β =
!!

 we can do so by using the following steps to

construct the F-test.
1) Compute the Regression Sum of Squares (SSR0) under 0H  that 1 0β =

!!
.

2) Subtract (SSR0) from the Regression Sum of Squares (SSRA) obtained under the
      alternative hypothesis AH  1 0β ≠

!
.

3)  Divide this difference by k , the number of parameters in 1β
!

.

4)  Divide this new statistic by the Mean-Squared Error under HA(MSEA).

If the normality assumptions regarding ε stated in Section I hold, under H0 the ratio

( )0 /A

A

SSR SSR k

MSE

−
(2.2)

has an F-distribution with k and n-p degrees of freedom.  We reject H0 at the α  level of
significance if our observed F-statistic exceeds the ( )1 α−  quantile of the F-distribution with k, n-
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p degrees of freedom.  Although we do not prove here that this statistic has an F-distribution, we
show geometrically why this ratio is reasonable for the test of this hypothesis.

For the geometric argument, we again consider the case where 3 2n p= = , shown in Figure A.2.
Here the null hypothesis is that the coefficient of 1X is zero, and therefore 1K = .

From Figure A.2 we see that

2 2

2 2
0

2

A

A

SSR OA nY

SSR OB nY

MSE AC

= −

= −

=

####$

#####$

#####$

(2.3)

To test the hypothesis that 1 0β = , we find that the appropriate F statistic is

2 2
1,1F AB AC=
#####$ #####$

(2.4)

We notice that AB
###$

 is the difference between the projections of Y  under AH  and Y  under 0H .
This geometric description of the F-test shows that 0H  is rejected if Y  is significantly closer to
the subspace spanned by 1X  and 2X than the one spanned by 2X alone.

G. Generalized Linear Model (GLM)
Linear Model

2(0, )Y X N Iβ ε ε σ= + ∼

              y µ ε= +   where µ  is the mean of

                  1 1y n X n p pβ× × ×
Components of the Generalized Linear Model
1.  Random Component for y  is chosen from the exponential family
2.  Systematic Component are covariates 1 2, , , px x x…  produce a linear predictor η  given by

1

p

j j
j

xη β
=

= ∑ .

3.  The link between the random and systematic components ( )gη µ=  where g  is monotonic
differentiable function.
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Revisit the Exponential Family of Distribution
Given y  a data vector from a probability distribution belonging to the exponential family. We
may express the probability density or mass function of y as

{ }( , , ) exp ( )) / ( ) ( , )yf y y b a c yθ φ θ θ φ φ= − + .

( ), ( )a b  and ( )c  functions to be specified if φ  is known then we have an exponential family
model with a canonical parameter.

Example 2:  Gaussian Model

{ }
1
2

2 2
2

2 2 2 2 2

1
( , , ) exp ( ) / 2

2

1
exp ( / 2) / 2 ( / log(2 )) ,

2

yf y y

y y

θ φ µ σ
πσ

µ µ σ σ πσ

 = − −  

 = − − + 
 

where { }2 2 2 2 21
, , ( ) / 2, ( , ) / log(2

2
b c y yθ µ φ σ θ θ φ σ πσ= = = = − + .

Example 3: Binomial Model
!

Pr( ) (1 )
( )! !

!
exp log log(1 ) log

1 ( )! !

y n yn
Y y p p

n y y

p n
y n p

p n y y

−= = −
−

    
= + − +    − −    

where !
log( /(1 )), 1, ( ) log(1 ), ( , ) log

( )! !

n
p p b n p c y

n y y
θ φ θ φ  

= − = = − =  − 

Example 4: Poisson Model

( )
Pr( ) exp( ) / !

exp log log !

yY y y

y y

λ λ
λ λ

= = −
= − −

where log , 1, ( ) , ( , ) log !b c y yθ λ φ θ λ φ= = = − =

Mean and Variance of y  (We will skip this stuff in the lecture; we can revisit it in a
tutorial).
Let ( , , ) log ( , , )yy f yθ φ θ φ=' . Two standard properties of likelihood functions
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0E
θ

∂  = ∂ 
' . (1)

The expected value of the score function is zero

22

2
0E E

θθ
 ∂ ∂ + =     ∂∂   

' ' . (2)

The expected Fisher Information is the negative of the variance of the score function

{ }( , ) ( ) ( ) / ( ) ( , )y y b a c yθ θ θ φ φ= − +' , (3)

whence

{ }( ) / ( )
2

y b aθ φ
θ

∂ ′= −' (4)

2

2
( ) / ( )b aθ φ

θ
∂ ′′= −
∂
' . (5)

Eqs. (1) and (4) imply

{ }0 ( ) / ( )E b aµ θ φ
θ

∂  ′= = − ∂ 
'

or

[ ] ( )E y bµ θ′= = .

Using Eqs. 4 and 5 in Eq. 2, we obtain

2

( ) ( )
0

( ) ( )

b Var y

a a

θ
φ φ

′′
= − + ,

Hence

( ) ( ) ( )Var y b aθ φ′′= .

The variance depends on the mean and a function, which depends on the dispersion parameter;
( )b θ′′  is the variance function.
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Model Summary Table
Gaussian Poisson Binomial Gamma Inverse

Gaussian
Canonical
link: ( )g µ

µ log λ
log

1

p

p

 
 − 

1

λ 2

1

λ

MAIN POINT. WE MAY WRITE EXPLICITLY THE LINK OF THE SYSTEMATIC AND RANDOM

STRUCTURE  AS ( )g Xµ β= . IN THIS WAY, WE EXTEND THE SIMPLE REGRESSION MODEL WITH

GAUSSIAN ERRORS TO REGRESSION MODELS FOR THE ENTIRE EXPONENTIAL FAMILY OF

PROBABILITY DISTRIBUTIONS.

Deviance (Goodness of Fit Criterion)

Let 
1

( ; ) log ( ; )
N

i i
i

y f yµ θ
=

= ∑' and define the deviance as

*( ; ) 2 ( ; ) 2 ( ; )D y y y yµ µ= −' '

Note that the second expression is the –2log likelihood of the data. Hence minimizing *( ; )D y µ is
equivalent to maximizing the log likelihood. Notice that in the Gaussian case, the deviance is

2 2

1

ˆ ˆ*( ; ) ( ) /
N

i i
i

D y yµ µ σ
=

= −∑

which is just the residual sum of squares (RSS).

Analysis of Deviance. Instead of analysis of variance we use analysis of deviance, which is
additive for nested sets of models fit by maximum likelihood. *( ; )D y µ is analyzed as an
approximately chi-squared quantity.

Deviance Residuals. The deviance residuals are defined as 
1

ˆ*( ; )
N

i
i

D y dµ
=

= ∑ where we

define
1
2

, ( )d i i ir sign d d= . Plots of these quantities can be analyzed in the same way the regression

residuals are analyzed.

For generalized linear models in which there is a natural time dependence in the observations we
will show that a global measure of model goodness of fit may be constructed using the time-
rescaling Proposition (Berman, 1983; Ogata, 1988; Brown et al., 2001).
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Remarks
1.  GLM allows generalization (extension) of linear models to non-Gaussian setting.
2.  A unified computational approach.
3.  Can use non-canonical link and variance functions.
4.  Widely distribution Splus and non Matlab.
5.  Now there’s Bayesian GLM.
6.  Assess goodness-of-fit with an analysis of deviance.

Neuroscience Data Analysis Examples Using GLM
1.  Random Threshold Model (Brillinger (1988, 1992))

Simplified version

1 1

log
1

1  

0

1    

.

0

spike from neuron

otherwise                    

spike from neuron at

otherwise                     

J k
x

j t j k t k
x j k

t

t

p t
x y

p t

x at t

x

y t

y

µ α β− −
= =

 
= + + − 


= 




= 



∑ ∑

xp t  probability of a spike at t  from neuron x .

2.  Prospective and Retrospective Encoding by Hippocampal Place Cells (Frank, Brown
and Wilson, 2000)
A rat running on a W-maze, multiple single unit activity is recorded from CA1 region of the
hippocampus and  the entorhinal  cortex.
t           indexes trial

tP          probability of going right on an outbound journey from the center arm of the W-maze.

1

log ( )
1

J
t

j j
t j

p
t

p
µ α λ

=

 
= + − 

∑ ,

where ( )j tλ  is the firing rate of the neuron at location j  prior to the choice point on pass .t

3.  Cockroach Cercal System Response to Wind Stimuli (Davidowitz and Rimberg, 2000).

tn =      number of spikes at time t  (discrete time bins of 10msec)
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( )xv t       x − direction wind velocity
( )yv t       y − direction wind velocity

( )xa t       x − direction wind acceleration
( )ya t       y − direction wind acceleration

Poisson link function

1 2 1 2log ( ) ( ) ( ) ( ) ( )x y x yt v t v t a t a tλ µ α α β β= + + + + ,

( )tλ  spike rate at time t .
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