

Lawrence L. Wald, Ph.D.

MGH-NMR Center

Wald@nmr.mgh.harvard.edu

Wald

Addition of paramagnetic compound to blood makes signal go down

NMR and Activation

Summary:

Wald

Flow ↑	increases signal on "T1-weighted" scans
DeoxyHb ↓	increases signal on "T2/T2*-weighted" scans
Blood Vol. ↑	Decreases signal on contrast agent CBV scans.

Brain vessel facts

resting state	60% venous oxygen saturation.
	80% sat. in capillaries
	100% sat. in arteries.

activated state (with 70% increase in flow and 20% increase in CMRO2) 72% venous oxygen saturation 86% sat. in caps. 100% sat. in arteries

MGH-NMR Center

What does the water see?Freely diffusing water is the source of image
signalIn 50ms, water diffuses 25um on average
thus moves ~4x diameter of capillary...Water diffuses readily in and out of red blood
cells.
(spends about 5ms in a red blood cell)

In the 50ms timescale of fMRI, only 5% of H20 leaves the cap. bed.

MGH-NMR Center

Wald

Wald

Two water spaces: Extravascular (tissue) and Intravascular (blood)

Water does not exchange between these pools (in <0.1s)

The blood component has 2 sub spaces (capillaries and venules) with different vessel size and oxygenation levels.

Water diffuses freely in the extravascular space.

Wald

There is 20x more water in the extravascular space.

T2 changes in the blood

Dynamic dephasing from diffusion in vicinity of the magnetic field of the RBC.

Easier to talk about dephasing rate: R2 = 1/T2

Empirical and Monte Carlo simulations:

$$R_{2} = \frac{1}{T_{2}} = \frac{1}{T_{2o}} + aB_{o}^{2} [Hematocrit](1 - O_{2}Sat)^{2}$$

Blood becomes darker on SE at high field...

Wald

<section-header><text><text>

Effects of going to higher B_o

Blood T2s become short enough that activation makes the blood go from really dark to very dark.

Velocity spoiling that would eliminate 2/3 of the BOLD effect at 1.5Tonly eliminates half at 3T and has no effect at 9.4T.

>> BOLD signal becomes more extravascular at high field.

MGH-NMR Center

How does BOLD relate to electrophysiology

Anaesthetized monkeys

BOLD response near electrode tip correlated with LFP measurements

Logothetis et al. Nature 412 p 150, 2001

MGH-NMR Center

Wald

Wald

SNR proportional to Voxel Size

Thinner slice, higher in-plane resolution – Decreases raw SNR

? Functional Activation CNR

Wald

Slice Thickness and fMRI, Less is sometimes more

Thicker Slices \rightarrow SNR \uparrow , but:

Wald

"Partial Voluming" Actual activation levels may drop

"Susceptibility Artifact" may lower actual SNR

