FMRI Experimental Design

Lila Davachi
Department of Brain \& Cognitive Sciences, M.I.T.

Because fMRI BOLD data is not an absolute measure of neuronal activity, all study designs must provide the opportunity to statistically contrast the neuronal activity of interest with a suitable rest or background condition.

> Thus, study design is of paramount importance.

43 * 7 = ?

-

Key Points

- What can fMRI tell you?
- Always comparing across conditions
- Characteristics of the hemodynamic response (HRF) and how this affected the sequential development of fMRI paradigms and influences study design
- Sense of important design issues

What (good) is fMRI?

What it can tell you:

- Relative local "neural" activity (LFP's ?)
- NOT absolute neural activity
- NOT excitation vs inhibition
- NOT about necessity of a given region for a task
- NOT fine-grained temporal information

Key Points

- What can fMRI tell you?
- Always comparing across conditions
- Characteristics of the hemodynamic response (HRF) and how this affected the sequential development of fMRI paradigms and influences study design
- Sense of important design issues

Subtraction Paradigm

Donder's method:
Ex: How to measure time of a mental transformation?
A random series of A's and B's presented and the subject must:

1. Respond whenever an event occurs (RTi)
2. Respond only to A not to B (RTii)
3. Respond X to A and Y to B (RTiii)

RTi = RT(detect) + RT(response)
RTii $=$ RT(detect) + RT(discrimination) + RT(response)
RTiii $=$ RT(detect) + RT(discrimination) + RT(choice) + RT(response)
THUS, RT(discrimination) = RTii - RTi
RT (choice) = RTifi - RTii

Criticisms of Subtraction Paradigm

1. That we already know what 'counts' as a single mental process (i.e. choice is a single mental process?)
2. Assume that adding components does not affect other processes (i.e. assumption of pure insertion)

THUS, one should pick tasks that differ along ONE dimension (either change the task OR the stimuli but not BOTH!)

And a resting baseline is good to include, however, the interpretation should be taken lightly...(more later)

The loose task comparison

Does not hold all variables constant BUT:

(1) Uses a low level reference task
(2) Allows the data to be examined for predictable stimulus or response driven activations
(3) Allows the more extensive activation pattern to be observed

The "loose" Task Comparison

The tight task comparison

Try to hold all variables constant including:

- Stimulus display (nominally or statistically)
- Response and response selection characteristics
- Performance level- especially if comparing cohorts
- Eye movements
- Emotional state (minimize anxiety and boredom)

The "tight" Task Comparison

BRAIN AREAS THAT DIFFER

2 minus 1

Example...

Interested in semantic processing and how it affects memory...

Parameters to specify in any experiment

1. Subjects: normal vs special populations
2. What part of brain look at? How many slices can you have for your TR?
3. Choosing your TR: How often can you take a full set of pictures
4. What coil will you use?
surface coils: higher SNR, only partial coverage head coils: lower SNR, complete coverage
5. Toggle many times between conditions within a scan
6. Run as many scans as possible within a subject

Key Points

- What can fMRI tell you?
- Always comparing across conditions
- Characteristics of the hemodynamic response (HRF) and how this affected the sequential development of fMRI paradigms and influences study design
- Sense of important design issues

Visual Stimulation - 2 sec Flashes

[Blamire, Ogawa et al., PNAS, 1992]

Visual Cortex During Brief Visual Stimulation

Blocked design fMRI

BLOCKED:

(abstract or concrete?) (upper or lowercase?)

"Blocked" fMRI: Memory Paradigm

Typical Blocked-Design Response

Thanks to Robert Savoy

Thanks to Robert Savoy

For purposes of illustration.......

Thanks to Robert Savoy

Thanks to Robert Savoy

Thanks to Robert Savoy

Typical Blocked-Design Response

Event-Related fMRI

BLOCKED:

SPACED EVENT-RELATED:

"Spaced Event-Related" fMRI: Language Paradigm

"Single-Trial" Response Across a Run

"Event-Related" Selectively Averaged Response

Broca's Area During Language Paradigm

Thanks to Randy Buckner

"Rapid Event-Related" fMRI

BLOCKED:

SPACED EVENT-RELATED:

RAPID EVENT-RELATED:
2 sec

Assessing the Linearity Hypothesis

[Dale and Buckner, Hum. Brain Map., 1997]

Response to Averaged Single Trials

Assessing the Linearity Hypothesis: 5 Second ITI

Thanks to Randy Buckner

Response to Averaged Double Trials

Thanks to Randy Buckner

Assessing the Linearity Hypothesis: Separation of Responses

Assessing the Linearity Hypothesis: Separation of Responses

Thanks to Randy Buckner

Assessing the Linearity Hypothesis: 2 Second ITI

Thanks to Randy Buckner

Responses to Multiple Rapidly Intermixed Trials

Structuring Event-Related Trial Presentations

Variance Associated with Fixed Interval Designs

$\mathrm{O}=\mathrm{TR}$

Seven unknowns, BUT
only three independent equations

Variance Associated with Jittered Designs

Seven unknowns, AND more than seven independent equations

Sorting Based on Experimenter Determined Conditions

Does the neural correlate of priming vary with the lag between the first and second episode within a semantic task?

Shorter Lags Yield Greater Neural Priming

Sorting Based on Subject Behavior: Subsequent Memory Performance

Neural Regions Predicting Subsequent Memory

Inferior Prefrontal Gyrus

Left Posterior Parahippocampus

__ Remembered
——Forgotten
Thanks to Anthony Wagner

Key Points

- What can fMRI tell you?
- Always comparing across conditions
- Characteristics of the hemodynamic response (HRF) and how this affected the sequential development of fMRI paradigms and influences study design
- Sense of important design issues

Critical issues in paradigm design

- Poorly defined neuroanatomical hypothesis
- Poorly controlled baseline
- Attentional effects
- Learning effects
- Stimulus habituation or sensitization
- System and physiological drift

Baseline, what is it?

Ex: if want to say something about verb generation and compare it only to reading aloud..

BUT, still do not know if these regions are involved in reading only (thus can include a low level reading condition..)

No inherent "0" baseline for cognition,
i.e. what are subjects doing when asked to do nothing?

- Ans: they are doing a lot
- how interpret deactivations?

Issues: Generality vs Specificity

Hypothesis: Region X is involved in process Y.
Evidence: Region X is activated when subjects do an instance of process Y

Problem: Without running several further conditions, we can't tell whether region X might instead be involved in something either more SPECIFIC or more GENERAL than Y.

Example:

Issues: Attentional Confounds

A given region might respond more strongly in condition A than condition B simply because A is more interesting/attentioncapturing than B .

Solutions:

1. Double Dissociations, i.e. faces versus objects?
2. Test conditions with opposite attentional predictions
i.e. passive viewing vs 1-back task

Issues: Statistical Significance vs. Theoretical Significance

P levels alone are not sufficient
For example, the FFA may respond significantly more to pineapples than watermelons, but the response to pineapples might nonetheless be much lower than the response to faces.

Solutions:
Quantity effect size, e.g. with percent signal change
Provide "benchmark" conditions within the same scan to give these magnitudes meaning

Objects	Watermelon	Pineapple	Faces
0.6	0.7	0.9	2.0
0.6	0.7	1.8	2.0

Acknowledgements

Anthony Wagner
Nancy Kanwisher
Randy Buckner
Robert Savoy
Randy Gollub
Chantal Stern

Data Analysis

A. General Issues

- Individual vs Group Analyses: brains are very different BUT want

To make a general claim ANS: do both if can

- Multiple Comparisons....if doing 20,000 T-tests, better not accept p<. 05
B. Methods
- Simple comparisons, is X > Y ?, look in each voxel..
- Conjunction Analyses, are any voxels significant for both $X>Y$ and $A>B$?
- Regression Analyses, obtaining weights for different regressors
- ROI-based Analyses

Hemodynamic Response Summation: Linear Systems Approach

The fMRI response to a stimulus lasting a duration of NT is roughly a linear summation of N temporally shifted responses to a stimulus lasting a duration of T
[Boyton et al., J. Neuroscience 1996]

"Mixed" fMRI

BLOCKED:

RAPID EVENT-RELATED:

MIXED:

[Chawla et al., Nat. Neuroscience 1999; Donaldson et al., Neurolmage, 2001]

Mixed Blocked/Event-related Design

"Mixed" fMRI:
 Trial Separation with Task Blocking

Analysis Strategies:

- Event-related analyses
- Task 1 trials (\|) vs. Task 2 trials (${ }_{\text {(}}^{\text {(}}$) \longrightarrow

- Trial type A (${ }^{\text {) }}$) vs. Trial type B (I\|)

"Mixed" fMRI:
 Trial Separation with Task Blocking

Analysis Strategies:

- Event and State effects
- Same event contrasts

- Also model NULL components within blocks to explore "state" effects

Task 1 vs. Task 2 Nulls

CAVEAT: correlation between event and state regressors

