
Surface-Based Coordinate System

• Inter-subject alignment of cortical folding patterns

• Establish a 2-D coordinate system on cortical surface
- Every point in cortex should have a (unique) coordinate
- Every coordinate should refer to a point in cortex

• Improve alignment of functional areas



Surface-Based Coordinate Systems:
what ‘space’ to use?

• Flat maps (Van Essen and Drury).
+ simple computationally
- cuts in coordinate system
- nonconvex

2. Ellipsoids (Sereno, et al).
+ closed surface (no cuts)
+ minimal distortion in mapping from cortex
- difficult space to work in computationally.

3. Spheres (Fischl, et al; Thompson and Toga)
+ closed surface (no cuts)
+ tractable computationally
- a bit more distortion required in mapping.
     (but less than cross-subject variability)



Surface-Based Coordinate Systems

• Manually define corresponding points across subjects,
 force them to align, and interpolate every where else
 (Van Essen and Drury, Thompson and Toga). 

Two Different Approaches

• Automatically align entire folding pattern across
subjects (Fischl, Sereno, Tootell and Dale).



A Surface-Based Coordinate System



Spherical Transformation:
Equations

Jd:  Metric Distortion (macroscopic distances)

JT:  Topology preservation (oriented area)

Energy Functional: Jd+λTJT



Transformed Surface

Inflated Surface

Maximally Isometric Spherical Mapping



Spherical Morphing: Equations

Jc:   Correlation error (aligns folding patterns)

Jd:   Metric distortion (constrains allowable shape differences)

Energy Functional: Jc+λdJd+λTJT

How does one pick value of d?

JT:   Topology term (forces mapping to be invertible)



Spherical Morphing: Equations
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Average (Target)

Individual Subject

Inter-Subject Morphing



Surface-Based Averaging

Average surface created from 30 subjects



Applications

• Increased statistical power for inter-subject averaging

• Automatic functional/anatomical labeling

• Statistical analysis of morphometric properties
– aging

– neurodegenerative diseases

– longitudinal studies of structural changes

– hemispheric asymmetry

• Inter-subject averaging of morphometric properties
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Talairach Average Spherical Average

Inter-Subject Averaging of
Activations
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Cortical Parcellation: Manual vs. Automated 

(1)                           

Automatic ParcellationManual Parcellation

Thanks to Christophe Destrieux for this slide.
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Statistical Map of Cortical Thinning:
Aging

Thanks to Drs. Randy Buckner and David Salat for supplying this slide.

p < 10-6



Cortical Thickness AD vs. Controls

Thanks to Drs. Anders Dale, Randy Buckner and David Salat for supplying this slide.



Cortical Thinning with Aging and AD

Data Courtesy of Randy Buckner, WUSTLThanks to Anders Dale for this slide.



Multi-Modality Integration

How to infer the distribution of currents in the brain that
gave rise to a measured electromagnetic field (EEG or
MEG)?

Problem: measuring hundreds of variables and trying to
solve for potentially millions – ill-posed (need constraints).

One solution (Dale and Sereno, 1993) – assume majority
of signal comes from pyramidal neurons in cortex. If one
has a cortical model, then position and orientation of
sources is known and the problem becomes linear.



Multi-Modality Integration

Thanks to Drs. Anders Dale and Arthur Liu for supplying the next 3 slides



Activation to Word Reading
Anatomically Constrained MEG (aMEG)



Sequence of Activation to Word Repetition:
Anatomically and fMRI (fMEG) Constrained MEG

Thanks to Drs. Anders Dale, Eric Halgren and Arthur Liu for supplying this slide



Talk Outline

• The Spatial Structure of Retinotopic Cortex.

• Cortical Analysis.

• Subcortical Analysis.



Talk Outline

• The Spatial Structure of Retinotopic Cortex.

• Cortical Analysis.

• Subcortical Analysis.



Whole-Brain Segmentation

Goal: Segment T1-weighted MRI into anatomically and
semantically meaningful structures (e.g. caudate,
putamen, etc…).

Requirements:

• Insensitive to pathology.
• Insensitive to varying pulse sequences.

Prerequisite: registration with anatomically meaningful
space (e.g. Talairach)



Why Segmentation is Hard!
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Some Definitions Revisited

p(I|C) is called the likelihood of the image given the
classification. Since p(I|C) is frequently assumed to be
Gaussian in form, the log of the likelihood is commonly used.

The classification C that maximizes p(C|I) is called the
maximum a posteriori (MAP) estimate of C.

The classification C that maximizes p(I|C) is called the
maximum likelihood estimate (MLE) of C.

How can we compute the MAP estimate of C?



Bayes Rule

What is the most likely classification C of an image I, given
some prior information we have about what kinds of
classifications are allowable (p(C)) and a model for how an
image is formed? That is, what is the C that maximizes
p(C|I) (I.e. what is the MAP estimate)?
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Segmentation Results: CMA 
Labeling



Tissue Segmentation

Given a transform L into an atlas space, C can be
estimated using a Maximum a Posteriori (MAP)
approach: what is the most likely tissue classification C
given the observed image I , the transformation L, and
prior information  about C?
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Tissue Segmentation
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The probability distribution of each voxel is modeled
as an independent nonstationary Gaussian (because it
is a function of r):

Forward Model of Image Formation:



Segmentation: Independent
Spatial Priors
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If the probability distribution of the labels is assumed
to be spatially independent, the probability of a
segmentation C can be expressed as:

               # of times class C(r) occurred at location r

                       # of times any class occurred at r
p(C(r)| r)=



Segmentation Results: 
Independent Spatial Priors



Gibbs Priors: Motivation 

What is the probability that cortical gray
matter occurs inferior to hippocampus?



Markov Random Fields

Modeling the segmentation as a Markov Random Field
(MRF) means:
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Modeling the segmentation as an MRF means we can

express the prior probabilities using a Gibbs distribution

(don’t worry too much about this)



Segmentation: Gibbs Priors

Problem: the segmentation is fractured because no
spatial smoothness constraints are encoded in model.

Solution: incorporate prior probability of one tissue
class being the neighbor of another into model:
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Segmentation: Gibbs Priors

p(C(ri)|C(r), I, r,ri) encodes the probability that tissue class
C(ri) occurs at spatial location ri when tissue class C(r)
occurred at r. The segmentation is thus modeled as an
anisotropic nonstationary Markov Random Field (MRF).

C(r)

C(r1)
C(r2)

C(r3)

C(r4)

C(r6)

C(r5)



Segmentation: Gibbs Priors

Final Segmentation

Preliminary Segmentation



Segmentation with
Gibbs Priors: Fly Through



Segmentation Comparision:
Automated vs. Manual

Automatic Manual



Manual (red) vs Automated (blue)
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Results: Ventricular Volume
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Data courtesy of Dr. Marilyn Albert



Results: Temporal Horn of Ven.
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Results: Hippocampal Volume
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Results: Amygdala Volume
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AD vs. Normal: Statistical Map*

POSTERIOR MID ANTERIOR

p<10-4

25 controls vs 17 probable AD

Data courtesy of Dr. Marilyn Albert



Pulse sequence
independence

Forward model of image formation (solution of
SPGR/FLASH Bloch equations):
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Varying acquisition parameters (TR, TE, ) allows the
maximum likelihood estimation of intrinsic tissue

parameters.



FLASH data

α=30ο
 (T1-weighted)

SuperiorInferior

α=5ο
 (PD-weighted)



Tissue Parameter Mapping

Proton Density T1



Tissue Parameter Mapping




