
MR Image Encoding        L. Wald MGH-NMR Center

MR Image Encoding

Introduction

Much of the success and flexibility of MRI is derived by its peculiar methodology; a set
of techniques which has proved to be very flexible and informative for probing the properties of
complex materials (such as the brain). MR imaging is fundamentally different from other types
of imaging.  Conventionally, when physicists refer to “imaging” they refer to a scattering
experiment. Since our eyes “see” a rock by forming a 2 dimensional array of light intensity
amplitudes being scattered off the rock, the instrumentational equivalent of this has come to be
synonymous with imaging. In the canonical scattering experiment, “rays” are aimed at an object
and then detected as they either scatter off of the object or penetrate through it.  The rays can be
deflected, lose or gain energy, deflect and then interfere with one another or even be converted
from one type of ray to another.  The “rays” in question are usually electromagnetic radiation
(radio waves, microwaves infra red light, visible light, ultraviolet light, x-rays, or gamma rays)
but can, of course, be almost anything including sound waves, water waves, or matter waves
(particles).  The particles used could be electrons (as in electron microscopy), or any of the
zillions of other subatomic particles, or clumps of particles such as nuclei, atoms, molecules, or
pieces of dirt.

A fundamental limitation of scattering experiments is that the resolution of the image
cannot exceed the wavelength of the wave (electromagnetic or matter wave) used to probe the
object.  This is fundamentally derived from the uncertainty principle but has long been
understood in classical optics.  Physicists are fond of making such general statements, but,
while true for scattering experiments, this imaging “law” does not hold for MRI.  In MR, we use
radio waves with a wavelength of several meters to image at a sub-millimeter resolution.  Thus
we exceed this “fundamental” imaging law by several orders of magnitude.  How?  The short
answer is that we don’t determine the distribution of the body’s protons by bouncing stuff off of
them; we determine it by asking them to report to us where they are. We query the body’s spins
using a burst of radio waves (the excitation RF), and they report back some milliseconds later
with a faint radio signal of their own.  They declare their location and other even more valuable
information encoded in the frequency and phase of the burst of RF energy they emit in response
(the MR signal or echo).

MR Image Encoding

Review of the basic NMR experiment The previous lectures reviewed the basic equations
of motions of the proton spin placed in a static, uniform magnetic field.  The state of a given
spin is either parallel or antiparallel to the static field.  Since the parallel state is slightly
energetically more favorable, a slim majority are found in this state.  When the vector sum of all
of the spins is considered, there is almost a complete cancellation between the aligned and anti-
aligned spins; the net magnetization consists of the only the slight excess aligned with the
magnetic field.  Since the other spins always have a canceling partner, we do not detect them
and only the small (~0.01%) excess aligned magnetization, Mo, will be considered. Although
quantum mechanics tells us that a measurement of the energy of a single spin system will result
in only 2 answers (the energy of the aligned or anti-aligned state.)  We know that the spin’s
wavefunction can exist in a time dependent superposition state of these two energy eigen states.
The spin’s state can also have a projection along the x or y axis.  The ensemble average of these
superposition states approximates the classical gyroscopic precession equation described when
a suitably large group of non-interacting spins is considered.

Encoding basics
The information about how this magnetization is distributed in the body is derived by

the frequency and phase of its precession during the detection phase of the experiment.  After
excitation, the detected MR signal processes with a frequency given by:
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 ω = γ B(t,x,y,z). where γ = 2π (42.577 MHz/Tesla) for protons (1.1)

Here B(t,x,y,z) is the total value of the magnetic field at location (x,y,z) at time t.   The
phase picked up in time τ after its initial excitation is given by:

( ) = (t)dt
0

∫ = B(t,x ,y ,z)dt
0

∫ (1.2)

If B is uniform through the sample, then   
r 
B (x,y,z) = Bo ˆ z  and no interesting spatial

information is learned from observing the frequency or phase of the spins precession.  Since we
can experimentally control B(x,y,z), we can introduce a spatial dependence to phase and
frequency by making B vary across the object.  The easiest way to do this is to apply a gradient
to the static magnetic field.

Field gradients
A linear gradient is the simplest form of variation of the static field; it is a linear increase

in the static z field as a function of position.  Since the static field is produced by current
running through a large coil of wire (the magnet) and the gradient field is added to the uniform
field by injecting current into an additional winding, we can easily switch between a uniform
magnetic field and the gradient field. When an “x gradient” is applied the field as a function of
position is:

  
r 
B (x, y,z) = B0

ˆ z + Gx xˆ z       where Gx is defined as:    Gx   = ∂Bz/∂x (1.3)

Fig. 1.1

Uniform static field          +          gradient field =          total field

Then ω(x,y,z) = γ Bo + γ Gx x

Since the constant γBo part is uninteresting for image encoding, we often just consider the frequency
offset from the reference frequency at the center of the magnet (isocenter):

∆ω =  γ Gx x (1.4)

The applied gradient strength and is commonly measured in Gauss/cm (CGS units) or milliTesla/m
(MKS units); 1G/cm = 10mT/m.  State of the art body gradient coils can produce gradient strengths of
40mT/m.  Thus, when such a gradient is on in a 1.5T magnet, the total field at x = +10cm is 1.504T, only
a small perturbation to the main static field.

The magnetic field gradient can be generalized to a vector: G = (∂Bz/∂x, ∂Bz/∂y, ∂Bz/∂z )(1.5)

Therefore, in general the frequency and phase of the detected MR signal is:

  ∆ =
r 

G (t) ⋅
r 
r (1.6)

  
∆ ( ) = ∆ (t)dt

0

∫ =
r 
G (t) ⋅

r 
r dt

0

∫   (1.7)
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Here we have considered the important case where the gradient might be changing with time
and have therefore written G(t).  Typically we think of the frequency as being determined by
whatever B field and thus gradient is present at that the time of the measurement. Of course, it
takes multiple samples of the signal to calculate a frequency, so the gradient could be varying
during the time of the frequency measurement. But, the simplest and most common MR
imaging strategies do not very the applied gradient during the measurement period.  In
contrast, the phase shift is the result of a time evolution of the signal during the entire time
period between the excitation of the magnetization and the time of the measurement.  Even the
simplest MRI methods have considerable alteration of the gradients during this period, so we
explicitly include the time dependence of the applied gradient in the equation for phase.

Slice selective excitation of a single plane through the body

     In order to take 2 dimensional images which “cut” through the body, it is useful to excite
only a 2D plane of spins.  Then the signal arises only from this slice. The image is formed by
encoding the two in-plane directions.  The slice selection process is achieved by applying the RF
pulse to tip the spins at the same time as a gradient.  To excite a slice of spins in the xy plane, a
gradient Gz in the z direction is used.

Fig. 1.2

As before the resonance frequency of the spins during the z gradient is:

ω(z) = γ Bo + γ Gz z

Note that at z=0 (isocenter) the frequency ω = γ Bo = ωo  If the frequency of the excitation RF
pulse is ω = ωo + ω’, then the z location of the excited spins (and thus the slice plane) will be:

z =  ω’/ γGz

If the excitation pulse contains a range of frequencies ∆ω, then the slice will be centered at the
above z position but also excite spins included in the slab z ± Gz ∆z/2, where ∆z = ∆ω/γGz .
Recall from the time-bandwidth theorem of the FT that it is impossible to form a pulse of finite
time duration that does not include a range of frequencies.

The exact nature of the range of frequencies incorporated in the RF pulse is important
for determining the shape of the slice profile. We control the frequencies present in the RF pulse
by intelligently choosing the shape of the RF pulse envelope (its amplitude as a function of
time).  Since a clean “square” slice profile is desired, we seek a time shape with a square
frequency spectrum.   Recall:

Fig. 1.3
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Thus a sinc function with lots of side lobes provides a well defined slice profile.  The amplitude

is chosen so that the desired flip angle is achieved:  =    B1(t) dt
0

∞

∫
Fig. 1.4

     

RF excitation pulse (sinc envelope)

Physical picture of what a gradient pulse does to the spins

      Since the frequency of the spins procession in the presence of a gradient field is a linear function of
frequency and thus a linear function of position, its easy to imaging that we can learn where a given
group of spins is located (in one direction at least) by measuring their frequency.  All we need to do is
deconstruct the time domain NMR signal (in the presence of a gradient field) into a histogram of the
frequencies present in the signal (the spectrum).  We do this by taking the Fourier transform of the
observed signal.  For obvious reasons, this method is called frequency encoding.  The particular use of
a gradient during acquisition of the signal is called the “readout gradient” and the direction of the
gradient (and thus the encoded direction) is called the “readout direction”.  A diagram of the
experiment might look like:

Fig. 1.5

      Similar information is contained in the phase of the signal.  The phase of the MR signal from a voxel
full of spins depends on their position and the entire history of the gradients applied from excitation
(definition of zero phase) to measurement.  Although less intuitively obvious how to utilize the phase
information, several important aspects of MR image encoding are best understood by examining
spatial pattern in phase after application of a gradient.  Consider the what happens after a y gradient

In general the analysis of the pulse shape using
the Fourier transform is only a good
approximation for small flip angles.  Thus, a more
complicated analysis is needed for larger flip
angles, especially slice selective inversion pulses
(180o) (see Pauly et al.).
       An additional complication is that during
excitation in the presence of a gradient, the spins
are processing with a frequency which depends
on their location in the slice profile.  Since the
excitation process takes a non-zero amount of
time (usually between 1 and 5ms), the spins will
end up with a phase shift which is a function of
position in the slice direction.  If this phase is
allowed to remain, the experiment will start of
with the signal partially dephased.  The loss due
to the partial cancellation can be recovered by
simply reversing the sign of the gradient after the
excitation pulse for just the right amount of time
to undo the dephasing of the excitation gradient.
In practice the rephase lobe is ~50% of the time-
area of the slice selection lobe.
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(Gy) is turned on for a brief period τ prior to sampling the MR signal.  The MR signal is sampled after
the gradient is turned off, so during the sampling there is no spread of frequencies due to the gradient;
all the spins in the head are precessing at ωo = γB o.  During the gradient pulse itself, spins at different y
locations precess at different frequencies and over the time period τ a spin at location y will gain a
phase shift of  ∆ϕ = τ ∆ω(y) = (γ τ _ ___) compared to the reference spins at y=0.  The relative phase shift
is linear with y.  If you represent the magnetization vectors in space they will form a helix along the y
axis.  The larger the gradient Gy or the longer it is left on (τ), the tighter the helix of magnetization will
be wound. After the gradient is turned off, the helix remains since the spins return to an identical
precession frequency.

Fig. 1.6

       Small τ         larger τ        large τ

     Consider the effect of winding a helix of magnetization by briefly turning on a gradient
pulse.  At first glance it appears that if the object (a bottle of water for example) extends over
more than one cycle of the helix, then there would be complete cancellation of the
magnetization vectors and no observed signal. For every voxel in a position such that the
magnetization had a phase of φ, one can find a voxel at a different location with a phase of –φ.
This is in fact the case for a uniform sample.  It becomes more interesting if the sample has some
well-defined spatial periodicity.  If the gradient strength and timing are chosen so that the helix
has the same periodicity as the sample (1cm is the example below), then there is no cancellation
of the magnetization vectors and the MR signal is as large as it would be if no gradient pulse
were applied.

Fig. 1.7

Uniform sample produces nosignal     Periodic sample produces full signal

Another way of looking at it is that applying a gradient pulse before measurement provides a
measurement of a single spatial frequency component.  In the case above, the gradient
amplitude and duration are set to select the signal from anatomy with a 1cm periodicity.  With a
single time-point measurement, we have determined the amplitude and phase which the 1cm-1
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resolution, then you must acquire spatial frequencies up to 1mm-1.   Clearly with enough
measurements of different spatial frequency components in the 2 orthogonal directions, we
could reconstruct the object with a Fourier transform from spatial frequency space to object
space.   Blipping on  a gradient to wind a helix and then sample the MR signal for a measure of
a spatial frequency component is referred to as phase encoding.

Spin warp imaging (the bread and butter MR encoding method)
        Reconsidering frequency encoding it is clear that a similar helix is wound, the only
difference is that you continuously sample the spatial frequencies as the helix gets tighter and
tighter.  There is no real need to turn the gradient off; its more efficient if you leave it on.  Thus
in one readout period we typically sample 256 points all with different helicities and thus 256
spatial frequency components of the object in the readout direction. In conventional MR
imaging, one readout measurement (of 256 or 512 kspace samples) is taken per excitation.  Thus
in a single excitation, the spatial frequencies of the readout direction are fully sampled. Again, if
you want an image with 1mm spatial resolution, you must make sure Gx t, is large enough so
that the maximum spatial frequency sampled is at least 1mm-1.  Of course there are two ways to
achieve this, Gx can be big or the sampling t can extend for a long time. As we will discuss, there
are reasons not to sample too long.

Gradient echo     In practice frequency encoding is sufficiently efficient that it is useful to
acquire some redundant information in by sampling both a negatively wound helix and a
positively wound helix.  The negative sense is obtained by simply applying a negative gradient
for some period of time prior to sampling.  So a large negative gradient winds a helix of the
negative sense, then reverse the direction of the gradient and start sampling the signal.  The
initial samples still have the large negatively wound helix which the positive gradient unwinds
over time.  When the helix is completely unwound you are sampling the zero spatial frequency
component of the sample. For a large, uniform phantom, this is the only point in kspace which
has significant signal.  Since MR physicists spend so much time imaging bottles of water (and
since the head is to first approximation like a bottle of water), the time when the kx = 0 point is
sampled is given the special name of the “TE” (time to echo) of the acquisition. In most objects
the signal is quite small when sampling the high spatial frequencies, builds up to a maximum at
t = TE, and then gets smaller again for the opposite signed high spatial frequencies.  Thus this
basic experiment is referred to as a “gradient echo”.  Note that the gradient echo occurs when
the area (Gx t) of the positive lobe equals the area of the negative “prewind” lobe. The
experiment (pulse sequence) for frequency encoding can thus be diagramed as follows:

Fig. 1.8

All that is left to do is add in encoding for the y direction.  To reconstruct an image we need to
sample all combinations of the objects x and y spatial frequencies.  The simplest (and
commonest) way to do this is simply repeat the above frequency encoding experiment once for
every offset in ky.  This means winding a helix in the y direction and then performing the
readout procedure of winding and unwinding the x helix. The y helix can be quickly wound
and then left in place for the duration of the readout procedure by turning on a brief Gy gradient
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after excitation but before initiating the readout. Thus we use a different phase encode gradient
before each readout experiment. If we desire a 128 x 256 image matrix, we would typically
perform 128 excitations each with a different area of the phase encode blip gradient of area Gy τ.
Since it is inconvenient to change the timing from excitation to excitation and only the area of
the blip matters, typically the amplitude of the phase encode gradient is stepped from negative
to positive values.  Thus the diagram for one excitation looks like:

Fig. 1.9

The NMR Imaging Equation (mathematical picture of what happens to the spins).
The goal of the 2D MR imaging experiment is to determine the distribution of the proton

spins in the plane of the excited slice.  The desired spin density function which we hope to
display as a grayscale image is defined to be ρ(x,y).  Following excitation, the magnetization is
processing at its characteristic frequency ωo = γBo.  We then proceed to encode the x and y
directions as in Figure 1.9 above.

Frequency + phase encoding To encode the x direction we will use frequency encoding, we
apply an x gradient and then record the signal as a function of time, S(t) while the gradient is
on. Thus we are recording the frequency and phase evolutions that occur as a function of x
during the presence of a constant “readout” gradient field.   The phase encode gradient consists
of a y gradient turned on for a brief period of time τ.
         The MR signal comes from the RF detector which surrounds the entire head. Thus the
detected signal is just the summation of the signals from all the spins within the head.  Thanks
to the gradients of Fig. 1.9, the phase of the signal of a given spin depends, on its location.  If the
signal is sampled at time t after turning the x gradient on, the phase induced on the spins at
location x by the readout gradient alone will be ϕ(t) = ωot + γGx x t.  The phase induced on spins
at location y by the phase encode blip alone will be  ϕ(t) = ωot + γGy y τ. Thus the total phase
shift for a voxel at location (x,y) is:

∆ (t) = 0t + Gx xt+ Gyy

Since the signal emitted by a small voxel at location x,y is proportional to the number of spins at
that location, and it will have the phase given above, the signal S(x,y,t) from a voxel at (x,y) is
propotional to ρ(x,y) exp(iωot + iγGx x t).  The RF coil equally sums contributions from all
locations, so the signal detected by the coil is the sum of this over the head:

S(t) = (x, y)e
i ot + i Gxxt + i Gyy

object

∫∫ dxdy

The phase factor exp(iωot) is a simple modulation factor representing the Larmor precession of
the spins.  This carrier frequency can be moved outside the integral and is, in fact, simply
thrown away in the detection hardware and we are left with:
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S(t) = (x, y)e
i Gxxt + i G yy

object

∫∫ dxdy

Since the integral is over only the spatial dimensions, it is useful to define kx = (-γGx t)  and ky =
(-γGy τ) so that:

S(t) = (x, y)e
− ikxx− iky y

object

∫∫ dxdy

If you consider x and kx as the Fourier conjugate variables (instead of ω and t as before) this of
course looks a lot like a 2D Fourier integral. Therefore, to solve for ρ(x) all we need to do is take
an inverse FT of the detected signal.

(x ,y) = FT −1 S(kx,k y)[ ] = S(kx ,k y)e
ikx x + iky y

kspace

∫∫ dkxdky

The innocuous change of variables to k is so useful that we have already worked out an
entire physical intuition about “k”.  The value of kxy directly determines the tightness of the
helix of magnetization wound and thus to the spatial periodicity of the sample that contributes
to that time-point of the signal. This is consistent with the standard interpretation of the FT
where k refers to a spatial frequency.  Similar to referring to the time signal as “time domain”
and the FT of the time signal as “frequency domain” (or spectrum), we will refer to the normal
spatial dimensions spanned by (x,y) as “real space” (or image space) and the FT conjugate space
spanned by (kx, ky)as “k-space” or “spatial frequency space”. The units of k are cm-1. Note also
that while we are sampling the signal at different time-points (during the readout gradient) the
change of variables (k = γG t) forces us to think of each sample as being a sample at a different k
point in kspace; exactly the same conclusion that our intuitive picture with the helix lead us to.
So from now on we will think of sampling the signal not as a function of time, but as a function
of k (the only difference between k and t is the scale factor γG). In MRI we measure the
applitude and phases of the points in the kspace matrix and then calculate the image with the
FT.

 In the phase encode direction where ky = γGy τ, the pulse sequence of Figure 1.9 shows
that we only get one measurement of the signal at a given y spatial frequency per excitation.
Therefore, in conventional imaging we must fill in the kspace matrix S(kx, ky) one row at a time.
A typical image matrix is 128 points in the phase encode direction by 256 in the readout
direction.  In the timing diagram of Fig. XX, the readout length is typically ~5ms long.  For some
types of image contrast we can repeat the excitation as fast as every 10ms.  In this case the a
single image is encoded in 1.28 seconds.  For many applications it  is desirable to wait ~1 s
between excitations.  In this case the image takes 128 seconds to encode.

Some kspace facts.
Each point in kspace that we sample is represented by a complex number (magnitude

and phase of the signal for that sample point.)  If we want a 256x256 matrix image with 1mm
spatial resolution we typically sample a 256x256 kspace matrix of k values from kmin = -1/1mm
to kmax = 1/1mm.  Thus the resolution sets the maximum k value to be sampled.  As property of
the FT is that if the object is real (good assumption!) then half the information in the kspace
matrix is redundant; it is related by the complex conjugate: S(k) = S(-k)*.  So, if we desire we can
only sample half of the full kspace matrix.

The resolution of the image is the single most important image parameter since that tells
us the maximum value of k that must be sampled. Since k = γ G t, the resolution determines the
maximum gradient that must be used and the maximum amount of time that it must be left on.
These are two very important practical considerations.  The image matrix is also important since
it tells us the number of samples we must take.  The image Field of View (FOV) is trivially
related to the two: FOV = resolution x matrix.  In kspace, the ∆k between the samples is 1/FOV.
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Echoplanar Imaging

In the conventional spin warp imaging sequence of Fig. 1.9 above, a single line of points
in kspace is collected with each excitation.  This has the advantage that the phase of the signal is
reset prior to collecting each line of kspace by the excitation process (which always starts with
the equilibrium magnetization pointing along the z axis).  This is of enormous benefit since
there are several practical problems which cause us to lose control over the phase of the signal.
Of course, phase errors tend to build up over time so periodically “resetting” the phase can be a
big help.  The principle drawback of conventional imaging is one of speed.  Even if the
excitations are placed very close together (say 100ms) the total time to encode 64 lines of kspace
is over half a second. At this rate, virtually nothing has a chance to return to equilibrium. And,
while this sounds pretty fast, it would take us almost 20 seconds to cover the head with 30
slices.  This is longer than the hemodynamic changes accompanying neuronal activation.  Even
worse, any motion that occurs during the ~1s it takes to encode an individual images will cause
artifacts that are bigger than the activation related changes we are seeking.

By simply repeating the gradient echo part of the conventional spin warp sequence, and
thus not waiting for the next excitation we can considerably speed things up.  The result is the
technique named “echoplanar imaging “ (EPI) diagramed in Fig. 1.10.   EPI requires state of the
art imaging hardware since the sequence requires the sign of the readout gradient to be quickly
changed.  The EPI sequence can be played out in 40ms.  Thus we can get a full 64x64 image of
the head (with 3mm resolution) in well under a tenth of a second.  Imaging the entire head
(with 30 slices) then takes less than 3 seconds, just less than the hemodynamic response time.
Finally, it is truly a “snapshot” image since no motion occurs during the 40ms of encoding.

Fig. 1.10
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