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STATISTICS

The science of making decisions under uncertainty using mathematical models from probability theory.

1.  Statistical Analysis Paradigm (Box, Tukey)
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Preliminary Data (Exploration Data Analysis)
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Models
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Experiment
                                                     (Confirmatory Analysis)
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Model Fit


Goodness-of-fit           not satisfactory


Assessment


                    Satisfactory


Make an Inference


Make a Decision

Objectives

Review Statistical Model Formulation for fMRI  Data Analysis

Review Statistical Methods for Model Fitting and Data Analysis

Outline

1. What makes up an fMRI signal?

2. Statistical Model Formulation

3. Maximum Likelihood Estimation

4. Data Analysis

5. Conclusions
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Figure 1: a) This panel shows a slice taken from a combined visual and motor fMRI experiment. The subject was presented with a full-field flickering checkerboard, in a 12.8-s OFF, 12.8-s ON pattern, repeated 8 times. The slice shown was chosen to transect both the visual and motor cortices, and was imaged once every 800ms for the duration of the experiment. Three regions of interest have been selected, corresponding to the motor cortex 1), the visual cortex 2), and the white matter 3). Figures b) – d) illustrate the raw timeseries taken from each of these regions, along with timing diagrams of the input stimulus.

Question:  Is there significant activation in the visual and motor cortices during combined motor and visual tasks? Is the level of activation greater in the visual area than in the motor area?


2.  What Makes Up An fMRI Signal

Hemodynamic Response/MR  Physics

i)  stimulus paradigm


a)  event-related


b)  block

    ii)  blood flow

   iii)  blood volume

   iv)  hemoglobin and deoxy hemoglobin content

Noise

  Stochastic

     i)  physiologic

    ii)  scanner noise

  Systematic

     i)  motion artifact

    ii)  drift

   iii)  [distortion]

   iv)  [registration]

v) [susceptibility]

3.  Statistical Model

A fMRI Bold Signal (Neurovascular Coupling)

In a small time interval 
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 we have on a given pixel
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Assume that there is linear coupling of the stimulus to 
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where 
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Figure 2: Examples of the gamma function when calculated with some different choices of (.

Now, the response to the blood volume is
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where 
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The responses most likely have a delay D. Multiplying Eq. 5 by Eq. 6 and collecting terms, we obtain
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Physiologically 
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Figure 3 Sequence of steps followed when estimating a model for an fMRI experiment. We take advantage of the input function (top) and the physiology of the bold response (second down), to formulate a likely response for the brain (third and fourth panels). This is shown for the simplest case of convolution with one basis function.

Figure 4 Same sequence of steps as for Figure 3 except the input function is now event related rather than blocked-periodic. Furthermore the time intervals between consecutive responses is random.
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Figure 5 Illustration of BOLD signal model for a block-paradigm stimulus. The contribution of flow (fa), volume (fb), and interaction (fc) terms combine to form an overall signal.

B.  fMRI noise model (stochastic)

Physiologic low frequency noise and scanner noise is generally modeled as
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Figure 6 Illustration of two major noise classes encountered in fMRI. The left hand column summarizes the associated spectra.

C.  Drift Term

Slow drifts of the static magnetic field and residual motion not accounted for by prior motion correction.



drift = 
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D.  Complete Model is          


fMRI signal = drift + hemodynamic response + noise
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Or we have
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where 
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Alternative fMRI Signal Model

Harmonic Regression Model
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In matrix notation becomes
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We can define the activation as 
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The joint probability of the signal plus noise model is the n-dimensional Gaussian density
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where 
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Our objective is to estimate the parameters. This problem is complicated, we therefore study it as a set of simpler problems. Taking the log of both sides we obtain
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which is the log likelihood. The likelihood is the probability density of 
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 viewed now as a function of the parameters.

4. Maximum Likelihood Estimation for the fMRI Signal + Noise Model 

Case I.  
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. In this case the data are assumed to be independent identically distributed with common error 
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Case II.  
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 is known. The data are assumed to be correlated. The maximum likelihood estimates are the generalized least squares estimates (Homework, Problem 4).

Case III.  
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 are unknown. We must do full maximum likelihood estimation. (Homework, Problem 5 illustrates with a simple example how the model parameters can be estimated simultaneously using cyclic descent).

Let 
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Now suppose 
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 is close to the maximum likelihood estimate then by Taylor series expansion we get
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At the maximum likelihood estimate 
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 so we can write the following Newton’s algorithm, by rearranging the Taylor series expansion
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 is the maximum likelihood estimate. By the invariance principle for maximum likelihood estimates we have
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and hence an estimate of the Fisher information for 
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which is called the observed Fisher information.

Remarks

1. Starting values are important.

2. Computing 
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3. We can use alternatives to Newton’s method.

i) Fisher scoring algorithm.

ii) Cyclic descent (Homework Problem 5).

4. Once we have the maximum likelihood estimates computing confidence intervals is straightforward, because of our factoids.

5. Examples of Data Analyses

5.0 Model Selection Techniques: (Akaike’s Information Criterion) 

In model fitting analyses (most apparent with least squares) increasing the number of model parameters to equal the number of data points leads to a perfect model fit. Various criteria to measure the parasimony of statistical models have been proposed. Intuitively, the least squares or log likelihood function is penalized for each increase in the number of parameters in order to measure the trade-off between improving goodness of fit and increasing the number of parameters. The  criterion we use to measure this trade-off is 

Akaike’s Information Criterion (AIC) (Box, Jenkins and Reinsel, 1994). It is defined as


P is the number of the parameters in the model parameters and the remaining expression on the rhs is the log likelihood function. AIC can be used to compare different models as we illustrate below. The smaller the AIC the more parsimonious the model.

5.1 Harmonic Regression Hemodynamic Response Model
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Figure 7 This figure shows the effect of fitting a simple harmonic model to the time series in the presence of an assumed white noise. The top panel exhibits the reconstruction of the model from the estimated regression parameters, the middle panel indicates the extent to which a linear drift was present in the data. The bottom panel merges these two effects into one graph. Note the Akaike Information criterion (AIC) for this method was 1.66e+03, c.f. Figure 9.
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Figure 8 Raw activation map of the Visual experiment when analyzed using the harmonic regression method. Some strong activation is seen in the visual cortex (bottom center), however there is a large amount of background noise in the overall estimate.

5.2. Simple Convolution  Plus Correlated Noise Model
We assume only a flow component in our model and that there is no volume or interaction between the flow and volume components of our model. We also assume that the scanner noise is zero, so that we have just the AR(1) noise model. 
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Figure 9 This figure illustrates the effect of each component in the convolution model within the context of regression. The top panel shows the reconstructed model alone, superimposed on the observation. The subsequent figure shows the linear trend estimated in the method, while the next reconstructs the estimated AR(1) process only. Finally the bottom panel shows the reconstruction when all the regression parameters have been taken into consideration. For this pixel, the AIC was calculated to be 1.53e03 to facilitate a simple comparison with the harmonic regression, which for this pixel was larger, hence inferior.
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Figure 10 Raw activation map of the visual paradigm using the simple convolution model and assuming AR(1) noise in the regression.
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Figure 11 Difference between AIC map of the convolution model and the harmonic model, respectively. This map indicates the convolution model has the smaller AIC of the two methods.
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Figure 12 Activation maps for the convolution model at the upper (left), and lower (right) extremities of the fisher information confidence limits. The central map lies in the middle of this bound and has been normalised, in this instance, by the variance of (.
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