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A Hypothetical Hypothesis Test

Consider a hypothesis test for which you obtain the
t-statistic

T = 4.62,

with 50 degrees of freedom. The corresponding p-value is

1 − Pr(−4.62 ≤ T50 ≤ 4.62) = 0.000027.

Is this necessarily cause for celebration?
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The Rest of the Story . . .

The t-statistic on the previous slide was obtained by
choosing the maximum of 64 × 64 × 16 = 65, 536 random
draws from the null distribution of the test statistic (i.e.,
the T50 distribution).

So one might typically expect to see a t-statistic this large
or larger in a typical fMRI volume, even if what you’re
imaging is a bottle of water.

We need to adjust p-values for the number of tests
performed, a process which statisticians call adjusting for
multiple comparisons.

– p. 5

An Illustrative Example (Model)

In order to illustrate many of the basic ideas, it is sufficient
to consider an example of confidence intervals (or
hypothesis tests) on just two parameters.

Consider the simple linear regression model

yi = δ + β(xi − x̄) + ei,

where xi = 0, 10, 20, . . . , 100, δ = 0, β = 1, and the
ei ∼ N (0, 102).

(Aside: Note that the vectors [1, 1, . . . , 1]T and
[x1 − x̄, x2 − x̄, . . . , xn − x̄]T are orthogonal.)
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Illustrative Example (Hypothesis)

We are interested in testing, at the α = 0.05 level, the null
hypothesis

H0 : δ = 0 and β = 1,

against the alternative

H1 : δ 6= 0 or β 6= 1,

A joint 95% confidence region for (δ, β) would provide a
critical region for this test.

– p. 7

Confidence Region
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Comments

The box formed by the two individual confidence intervals
is considerably smaller than the actual bivariate
confidence region.

Each confidence interval for a parameter has confidence
level 0.95, so the region formed by the intersection of
these intervals has confidence 0.952 = 0.9025 < 0.95.
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Comments (Cont’d)

Over repeated future data, the probability that either
parameter falls in it’s interval is 1 − α∗ = 0.95. Since the
model has been set up so the the estimates (δ̂, β̂) are
independent, the actual probability of rejecting H0 for the
pair of confidence intervals

α = Pr(|T1| ≥ t1 or |T2| ≥ t2) =

1 − (1 − α∗)
2 = 1 − (1 − 0.05)2 = 0.0975.

– p. 10

Comments (Cont’d)

Working backwards, if we choose α∗ to be

α∗ = 1 −
√

1 − α ≈ α/2,

then we will achieve our goal of an overall significance
level of α.

This is approach achieves exactly the desired
significance if the test statistics are independent, but is
conservative if the test statistics are dependent.
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Bonferroni Intervals with 95% Confidence Ellipse
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Bonferroni Correction

The Setup: We have k independent test statistics
T1, . . . , Tk, corresponding to parameters β1, . . . , βk,
respectively.

For each test statistic, we reject the null hypothesis
Hi : βi = 0 when |Ti| ≥ ti, for constants t1, . . . , tk.

We would like to calculate the probability of rejecting the
null hypothesis

H0 : β1 = β2 = . . . = βk = 0

against the alternative that H0 is not true.

– p. 13

Bonferroni Correction (Cont’d)

This probability of rejecting H0 is

α = P0(|T1| ≥ t1 or |T2| ≥ t2 or . . . |Tk| ≥ tk)

= 1 −
k

∏

i=1

Pr(|Ti| ≥ ti) = 1 − (1 − α∗)
k.

Hence, we choose

α∗ = 1 − (1 − α)(1/k) ≈ 1 − (1 − α/k) = α/k.

– p. 14

Example Revisited: Alternative Parameterization

Next we see what happens in our simple linear regression
example if we don’t subtract of the mean of the xs:

yi = δ̃ + βxi + ei,

where xi = 0, 10, 20, . . . , 100, δ = 0, β = 1, and the
ei ∼ N (0, 102). To relate this to the previous
parameterization, note that

δ̃ = δ − x̄.

(Aside: Note that the vectors [1, 1, . . . , 1]T and
[x1, x2, . . . , xn]T not orthogonal! Consequently, the t-tests
for δ̃ and β will not be independent.)

– p. 15

Alternative Parametrization (Cont’d)

We are interested in testing the null hypothesis

H0 : δ̃ = −x̄ and β = 1,

against the alternative

H1 : δ̃ 6= −x̄ or β 6= 1,

at the 0.05 significance level.

A joint 95% confidence region for (δ̃, β) would provide a
critical region for this test.
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Confidence Region for a Dependent Example, With Bonferroni Intervals
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Bonferroni and Activation Clusters

In addition to requiring that p values be below a threshold,
one can impose as an additional requirement that there
be a minimum number of voxels clustered at any “active”
location.

There are obviously many ways to pair critical p-values
with minimum cluster sizes.

There is a stand-alone C program, AlphaSim that can
determine cluster significance levels by simulation.

AlphaSim is part of the AFNI distribution (Bob Cox, NIH,
afni.nimh.nih.gov)

– p. 18

Example AlphaSim Command Line

A typical run of AlphaSim:

AlphaSim -nx 46 -ny 55 -nz 46 \

-dx 4.0 -dy 4.0 -dz 4.0 \

-sigma 0.65 \

-rmm 6.93 \

-pthr 0.05 -iter 10000

– p. 19

AlphaSim Command Line (Cont’d)

-nx -ny -nz: Dimension of brain in voxels

-dx -dy -dz: Voxel size in mm.

-sigma: SD of Gaussian smoothing kernel

-rmn: Two active voxels ≤ rmn mm apart are considered
to be in the same cluster.

-pthr: Threshold p-value

-iter: Number of simulations.

(See AlphaSim documentation for other options.)
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Example AlphaSim Output

Data set dimensions:

nx = 46 ny = 55 nz = 46 (voxels)

dx = 4.00 dy = 4.00 dz = 4.00 (mm)

Gaussian filter widths:

sigmax = 0.65 FWHMx = 1.53

sigmay = 0.65 FWHMy = 1.53

sigmaz = 0.65 FWHMz = 1.53

Cluster connection radius: rmm = 6.93

Threshold probability: pthr = 5.000000e-02

Number of Monte Carlo iterations = 10000

– p. 21

Example AlphaSim Output (Cont’d)

Cl Size Frequency Max Freq Alpha

1 15616950 0 1.000000

2 5123184 0 1.000000

3 2397672 0 1.000000

4 1320445 0 1.000000

38 228 210 0.113100

39 190 175 0.092100

40 140 134 0.074600

41 114 108 0.061200

42 91 87 0.050400

43 60 57 0.041700
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Interpretation of AlphaSim Results

Maximum active clusters of 42 or more below threshold
p = 0.05 occur about 5% of the time under the null
hypothesis of no activation.

Note the following:

For a higher p-value threshold, the minimum
significant cluster size will be larger.

This approach accounts for spatial correlation induced
by smoothing, but not for and spatial correlation
present in the unsmoothed data.

– p. 23

Summary: Bonferroni

For an overall test at the α significance level, select
individual voxels among N total as active if p ≤ α/N .

Not a bad approximation if voxels are nearly independent.

Can be very conservative if there is considerable spatial
correlation among voxels.

Using both a p-value threshold and a minimum cluster
size via AlphaSim is one way to partially overcome this
conservatism.
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Gaussian Random Field

A Gaussian random field is a stationary Gaussian
stochastic process, usually in 2 or 3 dimensions.

The one-dimensional case of GRF is Brownian motion
(formally, a Weiner process).

Unsmoothed BOLD activation is not well approximated as
a GRF, so spatial smoothing is generally done if one is to
use GRF theory.

Smoothing is averaging, and averages of (almost)
arbitrary random variables are approximately Gaussian.
This is the essence of the Central Limit Theorem.

– p. 25

Euler Characteristic

If one thresholds a continuous GRF, the the Euler
Characteristic is

EC = (# Blobs) − (# Holes),

if the threshold is sufficiently high, then this will
essentially become the (# Blobs).

If the threshold is higher still, then the EC will likely be
zero or 1.

If we threshold high enough, then we might be able to
assume, at an appropriate significance level, that all blobs
are due to activation.

– p. 26

Expected EC

By definition,

E(EC ) =
∑

k

k Pr(EC = k)

For high thresholds, the probability of more than one blob
under H0 is negligible, and we have

E(EC ) ≈ Pr(EC = 1)

For large u, E(EC ) will approximate

E(EC ) ≈ Pr(max
i
Ti > u).

– p. 27

Expected EC (Cont’d)

E(EC ) ≈ Pr(max
i
Ti > u).

Either

Attempt to approximate this expectation for a choice of
u (adjusted p-value), or

Select u so that E(EC ) equals, say, 0.05 (adjusted
hypothesis test).
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Corrected p-Values via E(EC )

We can obtain p-values by using

Pr(max
i
Ti > u) ≈ E(EC u)

=
R(u2 − 1)e−u2/2

4π2(2 log(2))3/2

Where R is the number of Resolution Elements, defined
to be a unit search volume, in terms of the full width at
half maximum (FWHM) of the kernel used for spatial
smoothing.

(So now you know why SPM requires that you do spatial
smoothing!)

– p. 29

Resolution Elements

R =
S

fxfyfz

,

where

S is the search volume, in mm3,

and fx, fy, fz are the FWHMs of the Gaussian spatial
kernel in each coordinate direction, in mm.

– p. 30

Summary: Gaussian Random Fields

GRF theory requires that we know the spatial correlation,
at least approximately.

In order to meet this requirement, we must do fairly hefty
spatial smoothing (i.e., precoloring).

This has the obvious disadvantage of blurring together
brain structures with different functions, particularly if the
smoothing is not done on the cortical surface.

Compare with AlphaSim, another way for accounting for
spatial correlation due to smoothing.

– p. 31

False Discovery Rate

The Bonferroni and GRF approaches ensure that the
probability of incorrectly declaring any voxel active is
small. If any voxels “survive,” one can reasonably expect
that each one is truly active.

An alternative approach is to keep the proportion of
voxels incorrectly declared active small. Among those
voxels declared active, a predetermined proportion (e.g.,
0.05), on average, will be declared active in error (“false
discoveries”).

– p. 32



Implementing FDR

Order the N p-values from smallest to largest:

p(1) ≤ p(2) ≤ · · · ≤ p(N).

Declare as active voxels corresponding to ordered
p-values for which

p(i) ≤ qci/N,

where q is the selected FDR.

The choice of c depends on the assumed correlation
structure for the test statistics.

– p. 33

Values for c

Two choices for c have been suggested in the literature

For independent tests, or tests based on data for which
the noise is Gaussian with non-negative correlation
across voxels, use c = 1.

For arbitrary correlation structure in the noise, use
c = 1/(log(N) + γ), where γ .

= 0.577 is Euler’s constant.

– p. 34

A Simulated Example

Number of Voxels:

N = 64 × 64 × 16 = 65, 536

Number of Active Voxels:

N1 = 0.02N = 1, 335

“Inactive” statistics independently distributed t50.

“Active” statistics independently distributed noncentral-t,
t50(δ), where δ = 3.5.

– p. 35

Densities for Active and Inactive Voxel Statistics
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Histogram of the Voxel Statistics

Histogram of 64x64x16 =65536 Statistics
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Graphical Illustration of Results
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Simulation Results

FDR = 35/549
.
= 0.064, c = 1:

(Solid line in preceeding figure)

Discovered

Yes No

Correct 514 64,166

Error 35 821

Total 549 64,987

– p. 39

Simulation Results

FDR = 1/123
.
= 0.008, c = 1/(log(N) + γ):

(Broken line in preceeding figure)

Discovered

Yes No

Correct 122 64,200

Error 1 1213

Total 123 65,413

– p. 40



Simulation Results

Bonferroni (FDR = 0), p = .05/N = 7.6 × 10−7

(Not shown in preceeding figure)

Discovered

Yes No

Correct 44 64,201

Error 0 1291

Total 44 65,492

– p. 41

Summary: False Discovery Rate

Can be more sensitive at detecting true activation than
Bonferroni without requiring the heavy spatial smoothing
of GRF theory.

But a change in philosophy is required: instead of making
the likelihood of any voxel being falsely declared active
small, one is willing to accept that a small proportion of
voxels will likely be false discoveries, and instead attempt
to control the size of this proportion.

– p. 42

II. Analyses for Groups of Subjects

IIa. Fixed Effects

Analysis on average maps.

IIb. Random Effects

Usual two-stage approach

Worsley et al. (NeuroImage, 2002)

A Bayesian approach

IIc. Examples of Bayesian Two-Stage Random Effects
Modelling

Spatial visual cueing

Passive viewing of angry faces

IId. Conjunction Analysis
– p. 43

Group Analyses

We next consider approaches to data analyses which
involve more than one subject.

The first difficulty that one has to address in these
situations is warping each subjects data onto a common
template, such as Talaraich coordinates.

This process can easily introduce and difficulties and
distortions of its own, but these are beyond the scope of
the present discussion.
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Fixed Effects Analyses

It is conceivable that one might want to make inference
for only the subjects at hand, without any desire to
extrapolate to a larger population.

This might be the case for clinical applications of fMRI, for
example, where the objective is to understand the
subjects – patients – who are being studied or treated.

Fixed effects models should be used in such cases.

But since fMRI is presently a research tool, fixed effects
analyses are usually less appropriate than random effects
analyses, in which one is concerned with inferences valid
for a population, or equivalently, for the “next” subject
which one might obtain.

– p. 45

Fixed vs. Random Effects

Assume that several machines are used in a production
environment. To fix ideas, let’s say these machines are
for DNA sequencing.

If I have several of these machines in my lab, I would
presumably be interested in quantifying the relative
performance of each of them. Fixed effects models would
be appropriate.

On the other hand, if I owned the company that makes
the machines, then I’d want to characterize the
performance of any one of the machines, conceptually
drawn at random. The machines would then constitute a
population, and I’d use random effects analyses.

– p. 46

The Random-Effects Idea

A contrast at any given voxel is regarded as a sum of
three components:

1. The true (but unknown) contrast

2. A random shift from the truth which depends only on
the subject.

3. A second random shift from the truth due to
measurement uncertainty within a subject.

In the limit of many subjects, (2) can be made arbitrarily
small; in the limit of long scans, (3) can be made
arbitrarily small (except perhaps for a measurement bias).

– p. 47

The Random-Effects Idea: Schematic

•

Measurement

•

True Contrast
Between-Subjects
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Estimated Contrast

Population of
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Within-Subj.
Population
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Schematic of Components of Observed Activation

An observed signal at a voxel, in principle, can be
constructed as follows:

Start with experimental paradigm

Convolve with hemodynamic response

Add nuisance trend (different for each subject)

Add within-subject noise, probably with some temporal
correlation

Add random subject effect
Same for each voxel
Different for each subject
Averaging to zero over many subjects

– p. 49

An Example Design WithTwo Stimulus Types
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HDR Used by Worsley et al. (2002) and SPM99
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Adding Polynomial Trend andAR(2) Noise
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Simulated Voxel Timecourses: 10 Subjects
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Two Approaches to Data Analysis

Fixed-Effects Analysis: Average data over subjects, look
at p-values for contrast on average map. (Degrees of
freedom ≈ number of time points in scan.)

Random-Effects Analysis: Estimate contrast map for each
subject. Use these maps as “data” for a second-level
analysis. (Degrees of freedom ≈ number of subjects.)

– p. 54

Fixed Effects Approach

Stack together all the activation data from all the subjects
(conceptually, at least) into one vector Y .

Build a design matrix for all the data, with additional
coefficients for the group effect. If the data are
subject-separable, then the big X matrix will be block
diagonal for within subject factors.

Schematically (for two subjects):





Y1

Y2



 =





X1 0 0

0 X2 1













β1

β2

δ









+ e
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Fixed Effects Approach (Cont’d)

The coefficient δ models the shift in mean activation. of
subject 2 with respect to subject 1. (Why only one δ,
though we have 2 subjects?)

If β1 6= β2, then we have an interaction between effect and
subject. Hence, one hypothesis to test is

H0 : β1 = β2

If δ = 0 then we don’t have a significant subject effect; so
another useful test is

H0 : δ = 0

– p. 56



Random Effects: Two-Stage Analyses

The simple (and most common) way to do a
random-effects group analysis is by a two-stage method.
This requires the following assumptions:

Balance: The design matrix is the same for each
subject.

Equal Variance: The error variances are the same for
each subject.

Separability: The GLM model used must be
subject-separable; i.e., the combined design matrix for
all subjects is block diagonal, with one block for each
subject.

– p. 57

Two-Stage Analyses: Assumptions

The subject separability assumption is probably essential.

We will see later that the balance and equal variance

assumptions can be relaxed if one is willing to employ
standard error maps, in addition to contrast maps, for each
subject.

– p. 58

A (Very) Simple Example

To better understand the distinction between fixed- and
random-effects, and to see how a two-stage analysis
might work for the random case, it helps to consider the
simplest possible model: One-way ANOVA, for a single
voxel.

Fixed Effects Model:

yij = µ+ βi + εij

where i = 1, . . . , s indexes subjects, j = 1, . . . , n indexes
acquisitions within a subject. The noise term, εij is
assumed independent N (0, σ2).

– p. 59

A (Very) Simple Example (Cont’d)

Random Effects Model:

yij = µ+ bi + εij

where i = 1, . . . , s indexes subjects, j = 1, . . . , n indexes
acquisition times within a subject. The noise term, εij is
assumed independent N (0, σ2). The subject effects bi are
independent N (0, σ2

b ).

– p. 60



Fixed-Effects Estimates: One-Way ANOVA

Grand Mean:

µ̂ = ȳ.. ≡
s

∑

i=1

n
∑

j=1

yij/(ns)

Conventional notation: dot indicates summation over
index, bar indicates average.

Subject Effects:

β̂i = ȳi. − ȳ..

(Note that
∑

i β̂i = 0.)

Variance:

σ̂2 =

∑s
i=1

∑n
j=1(yij − ȳi.)

2/

s(n− 1)

∼ σ2χ2
s(n−1)/[s(n− 1)].

– p. 61

One-Way FE ANOVA (Cont’d)

Inference for µ:

µ̂ ∼ N
[

µ, σ2/(ns)
]

Under H0 : µ = 0

µ̂

σ̂/
√
ns

∼ Ts(n−1)

– p. 62

Random-Effects Estimates: One-Way ANOVA

Grand Mean:

µ̂ = ȳ.. ≡
s

∑

i=1

n
∑

j=1

yij/(ns)

Variance Components:

σ̂2 =

∑s
i=1

∑n
j=1(yij − ȳ..)

2/

s(n− 1)

∼ σ2χ2
s(n−1)/[s(n− 1)].

MSb =
s

∑

i=1

n(ȳi. − ȳ..)
2/(s− 1)

∼ (nσ2
b + σ2)χ2

s−1/(s− 1)
– p. 63

One-Way RE ANOVA (Cont’d)

Inference for µ:

µ̂ ∼ N
[

µ, σ2
b/s+ σ2/(ns)

]

MSb/(ns) ∼
[

σ2
b/s+ σ2/(ns)

]

χ2
s−1/(s− 1)

Under H0 : µ = 0

µ̂
√

MSb/(ns)
∼ Ts−1.

– p. 64



Comments on One-Way ANOVA

The estimates (here, µ̂) are the same for both the random
and fixed analyses.

The standard errors are different. The standard error of µ̂
under a FE model is σ/

√
ns. Under a RE model it is

√

σ2
b/s+ σ2/(ns). Note the between-subject component,

which depends only on s, not on n.

– p. 65

One-Way ANOVA Comments (Cont’d)

The estimated standard error of µ̂ for the FE analysis
makes use of all of the data:

σ̂2 =

∑s
i=1

∑n
j=1(yij − ȳ..)

2/

s(n− 1)

The estimated standard error of µ̂ for the RE analysis
uses only the group means:

Var (µ̂) =

∑s
i=1 n(ȳi. − ȳ..)

2

(s− 1)ns

– p. 66

Two-Stage Approach for Random Effects

Stage 1: Obtain the a map of effects for each subject.

Stage 2: Use these effect maps (by analogy, the
estimates yi. in our one-way ANOVA example).

Form the t-statistic for an overall test of significance of the
effect or contrast.

Note why the subject-separability, balance, and equal
variance assumptions are required: we need to be able to
estimate the individual subject maps independently, and
these maps need to enter into the second stage on “equal
footing”.

– p. 67

Critique of Usual Two-Stage Approach

The usual two-stage approach to multi-subject analyses
treats the contrast estimate maps from each subject as
given data, without consideration of the uncertainty in
these values, which may be considerable and which may
differ from subject to subject.

A better approach is two summarize a contrast of interest
by two maps: a contrast estimate map, and a
corresponding standard error map. This is the approach
advocated by Worsley (NeuroImage (2002)), for example.

– p. 68



Worsley et al. NeuroImage, 2002, 1-15

Within-run analysis: Fit linear model with cubic regression
spline terms for trend, assuming AR (p) error structure.
Prewhiten using estimated covariance matrix, and refit.

Covariance matrix is estimated by implicitly solving
Yule-Walker equations; correlations are corrected for bias
and spatially smoothed.

For a contrast of interest, summarize each run with a
contrast map and a SE map.

– p. 69

Worsley et al. NeuroImage, 2002, 1-15 (Cont’d)

Between-Subject Analysis: Fit a second-level model, fixing
the “within” errors at their estimates, and estimating
(EM/REML) “between” variance σ2, and possible
second-level fixed-effect covariates.

Regularize σ2 by spatially smoothing between/within ratio.
Estimate approximate degrees of freedom of smoothed
σ2 using Gaussian random field theory, form T− or
F−statistic map for second-level covariates.

– p. 70

Figure 1: Fmristat flow chart for the analysis of several runs (only one session per subject);
E = effect, S = standard deviation of effect, T = E/S = T statistic.

21
– p. 71

A Bayesian Approach

Assume χ2 and normal contributions to the likelihood for
the within-subject variances and contrast estimates,
respectively.

Model the betwen-subject effects as normally distributed
with mean zero and unknown variance.

Use non-informative prior distributions for within-subject
standard deviations, contrast estimates, and usually (but
not necessarily) for the between-subject standard
deviation.

– p. 72



Bayesian Approach (Cont’d)

Calculation of posterior distribution of contrast is
straightforward by numerical integration.

Introducing subject-level covariates (e.g., age, treatment)
is easy in principle, though simulation (“Gibbs Sampler”)
will have to replace exact integration.

– p. 73

Bayesian Hierarchical Model for RE Analysis

i = 1, . . . , k indexes subjects

j = 1, . . . , ni indexes time points

p(xij|δi, σ2
i ) = N (δi, σ

2
i )

p(σi) ∝ 1/σi

p(δi|µ, σ2) = N (µ, σ2)

p(µ) ∝ 1

p(σ) ∝ 1

– p. 74

Posterior for µ given σ = 0, k ≥ 1

Given σ = 0, then the posterior distribution of the consensus
mean µ is proportional to a product of scaled t-densities:

p(µ|{xij}|σ = 0) ∝
k

∏

i=1

1

ti
T ′

ni−1

(

xi − µ

ti

)

– p. 75

The General Case: σ ≥ 0

In general, p(µ|σ, {xij}) is proportional to a product of the
distributions of the random variables

Ui = xi +
si√
ni
Tni−1 + σZ,

where Tni−1 is a t-distributed random variable with
ni − 1 degrees of freedom, Z is distributed N (0, 1), and
Tni−1 and Z are independent.

ti = si/
√
ni is within-subject SE; xi is within subject

mean.

– p. 76



A Useful Probability Density

Let Tν and Z denote independent Student-t and standard
normal random variables, and assume that ψ ≥ 0 and ν > 0.
Then

U = Tν + Z

√

ψ

2

has density

fν (u;ψ) ≡ 1

Γν/2
√
π

∫

∞

0

y(ν+1)/2−1e
−y

h

1+ u2

ψy+ν

i

√
ψy + ν

dy.

– p. 77

Posterior of (µ, σ)

Assume δi ∼ N (µ, σ2), σ ∼ p(σ),
p(µ) ∝ 1, p(σi) ∝ 1/σi.

Then the posterior of (µ, σ) is

p(µ, σ|{xij}) ∝ p(σ)

p
∏

i=1

1

ti
fν

[

xi − µ

ti
;
2σ2

t2i

]

.

The posterior of µ given σ = 0 is a product of scaled
t-densities centered at the xi, since

1

ti
fν

[

xi − µ

ti
; 0

]

=
1

ti
T ′

ν

(

xi − µ

ti

)

.

We will take p(σ) = 1, though an arbitrary proper prior
does not introduce additional difficulties.

– p. 78

Example 1: Spatial Visual Cueing

Pollmann, S. and Morillo, M. (2003). “Left and Right
Occipital Cortices Differ in Their Response to Spatial
Cueing,” NeuroImage,18, 273-283.

Neumann, J. and Lohmann, M. (2003). “Bayesian
Second-Level Analysis of Functional Magnetic
Resonance Images,” NeuroImage, 20, 1346-1355.

– p. 79

Occipital Cortex and Spatial Cueing

Visual cue (large or small) on one side of screen (left or
right).

Subject told to fixate on center of screen, but pay
attention to side where cue appeared.

Target appeard either on same side as cue (valid trial) or
opposite side (invalid trial)

– p. 80



Pollman and Marillo, Results

Main results: Contrast of valid-trial LHS with valid trial
RHS showed significant differences in bilateral lingual
gyrus and lateral occipital gyrus, and IPS/TOS.

Second contrast: valid-trial-small-cue with valid-trial-big-cue
significant in three regions from Bayesian analysis of
Neumann and Lohmann (2003).

– p. 81

Region A: valid-small-cue vs valid-large-cue
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Posterior A: valid-small-cue vs valid-large-cue
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Example 2: Sensitization to Angry Faces

Strauss M., Makris N., Kennedy D., Etcoff N., Breiter H.
(2000). “Sensitization of Subcortical and Paralimbic
Circuitry to Angry Faces: An fMRI Study,” NeuroImage 11,
S255.

Strauss, M.M. (2003). “A Cognitive Neuroscience Study
of Stress and Motivation,” Phd Dissertation, Department
of Psychology, Boston Univeristy.
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Sensitization to Angry Faces

Eight participants passively viewed alternating blocks of
angry and neutral Ekman faces, with fixations in between.

– p. 85

Angry Faces: Design

Subject Sequence
A 1 2 1 2
B 1 2 1 2
C 2 1 2 1
D 2 1 2 1
E 1 2 2 1
F 1 2 2 1
G 1 2 2 1
H 2 1 1 2

. . . where NAAN = 1 and ANNA = 2.

– p. 86

Habituation vs. Sensitization

One typical aspect of block designs (such as the “angry
faces” study) is that subjects tend to habituate to the
stimulus, with consequent decreased BOLD activation.

An interesting aspect of the present data is that, in many
regions subjects tended to have a stronger BOLD
response in the second half as compared to the first. This
is called sensitization.

– p. 87

A Regression Model

For “representative” voxels in each subject:

log(yt) = β0 + βhalf + βtype +

βhalf × βtype + εt

where βtype is a 3-level factor for face type (Angry,
Neutral, Fixation); βhalf (levels 1 and 2) compares the
first and second half of the experiment, and εt is (for
simplicity) here modeled as white noise.

– p. 88



Habituation/Sensitiziation Contrast

For models of log of the data, contrasts become
dimensionless ratios. (Only BOLD changes have real
meaning.)

The following contrast is useful for testing for
sensitization/habituation:

cS = exp[(βA,2 − βN,2) − (βA,1 − βN,1)

We also looked at

cH = exp(βN,2 − βN,1)

Data from each subject are summarized by contrasts
estimates and standard errors, which are used as input
to a second-level Bayesian analysis.

– p. 89

Typical ‘Raw’ BOLD Timecourse
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Block Averages For All Subjects
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Posterior for LPHIP Sensitization
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A/N: Sensitization N/N: Habituation
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The Problem of Not Enough Subjects

Random-effects models include variability between
subjects into the standard errors of estimates.

If you only have a few subjects (e.g., 5 or so), then there
is not much information in the data to estimate this
variability!

So your standard errors are large, and it’s much harder to
establish significance than it is with FE analyses. (Note
the degrees of freedom of the t-statistics in our example:
n(s− 1) for FE; s− 1 for RE. So the t-distribution is more
diffuse, and the standard error has the extra σ2

b/s term.)

– p. 94

Not Enough Subjects (Cont’d)

It’s important to realize that the large standard errors for
RE analyses with few subjects is usually not a fault of the
metholdogy. Rather, one is incorporating σ2

b in the
standard errors of the estimates, and this is quantity
which can’t be well estimated except under two
conditions:

You have lots of subjects, and so σ2
b/s is reasonably

small, and your t-test for effect significance has
adequate degrees of freedom.

You regularize the estimate of σ̂2
b by including

information which isn’t in the data. This can be done
explicitly, via a prior distributions and a Bayesian
analysis, or implicitly, as in Worsley (2002).

– p. 95

Typicality

Friston, Holmes and Worsley (NeuroImage, 1-5, 1999)
introduce the concepts of typicality and conjunction
analysis as a way to make inference with respect to a
population in a fixed-effects context.

If one has a small sample of subjects, and a certain
feature is observed in several of these subjects (adjusting
for multiple comparisons), then one can say, qualitatively,
that this feature is “typical,” and thus likely to be present in
a population.

This is to be contrasted from quantitative assessment of
what the “average” effect is in a randomly selected
subject from a population.

– p. 96



Conjunction Analysis

In conjunction analysis, one attempts to find what
activation is statistically significantly in all (or, perhaps,
most) subjects.

This feature can then be thought of as typical, i.e., more
likely than not to be present in the population from which
the subjects are drawn.

– p. 97

III. Model Validation

The GLM is a very powerful tool, but like any modeling
tool, it is only good to the extent that the modeling
assumptions are valid.

If assumptions are grossly violated, then inferences can
be seriously misleading.

– p. 98

Linear Model (GLM) Assumptions

The assumptions underlying the model include:

The form of the model for the mean.

The temporal correlation structure, and equal-variance
assumptions.

Gaussian errors.

Separation of signal from noise (e.g., What part of the
trend in a time course is a “nuisance effect” to be
filtered out, and what part of it is slowly varying
signal?)

– p. 99

The Form of the Model

If your X matrix does not appropriately model the factors
contributing to mean activation, then your estimates can
be seriously biased.

This bias can, in principle, be detected by looking at the
residuals.

Think of the example of a straight line fit to data for which
a parabola would be much

How would the residuals (deviations from the fit) tell you
that your model is inappropriate?

– p. 100



Error Variance Assumptions

Inappropriate modeling of temporal correlation can give
you a biased estimate of the uncertainty in effects, and
grossly incorrect estimates of degrees of freedom for
voxel t- or F -statistics.

In principle, one can test this by looking to see if the
residuals at each time course are (at least approximately)
white noise.

– p. 101

Error Variance Assumptions (Cont’d)

How does the temporal autocorrelation vary from voxel to
voxel? Is it adequate to use the same model for each
voxel?

Assuming equal within-voxel variances when these
variances differ considerably is also something that one
might want to look out for, though checking the correlation
estimates is probably more important.

– p. 102

Gaussian Errors

When doing inference, we assume that the noise in our
data follows Gaussian distributions.

(This assumption is necessary for determining standard
errors of estimates; it is not required for the estimates
themselves.)

Fixed effects analysis are not very sensitive to violation of
this assumption. The central limit theorem implies that
averages tend to be Gaussian in many situations, and
coefficient estimates are essentially weighted averages.
The central limit theorem also tells us that standardized
contrasts will have approximate t-distributions under fairly
general conditions (provided the standard errors and
degrees of freedom are appropriately estimated). – p. 103

Gaussian Errors (Cont’d)

This robustness, unfortunately, does not extend to
random effects. Estimates of variances between subjects,
for example, will likely be sensitive to to the assumption of
Gaussianity. That being said, Gaussian random-effects
models are very widely used, because there are not good
alternatives.
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Separation of Signal from Noise

A necessary step in any fMRI analysis is to remove
nuisance effects from the data.

Usually these results are low-frequency trends, and they
are removed either by high-pass filtering, or by explicit
modeling via covariates in the GLM.

Always keep in mind that if your have signal which looks
like the trend being removed, then you might be “throwing
the baby out with the bathwater.”

One example might be a nuisance physiological effect,
which you’d like to model and remove. If this effect is, at
least in part, associated with an experimental stimulus,
then you could be discarding important signal with the
noise. – p. 105

Model Selection

In any course in regression analysis, one learns how to
choose a “best” model from within a family of interesting
candidate models.

Part of this approach involves examining candidate
models for goodness-of-fit, mostly be examining residuals
as discussed earlier.

Another part of this approach is model comparison, which
involves fitting a “large” model, with perhaps too many
parameters, and then comparing this fit to a “smaller”
model in which some of these parameters are
constrained, either to equal zero, or else perhaps to equal
each other.

– p. 106

Model Selection (Cont’d)

Model comparison thus reduces to hypothesis testing, in
the simplest textbook situations, to F -tests.

This approach can be applied to fMRI, although instead
of a single F -test, we will have F maps and associated
p-value maps to interpret.

More general model comparison tool compare the
reduction in residual sum of squares between nested
models, penalizing for complexity due to adding
parameters. Two such criteria are AIC and BIC (Akaike
Information Criterion; Bayesian Information Criterion).

– p. 107
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