EMOTION CIRCUITS IN THE BRAIN

Joseph E. LeDoux
Center for Neural Science, New York University, New York, New York 10003; e-mail: ledoux@cns.nyu.edu

Key Words fear, memory, learning, conditioning, amygdala, limbic system

Abstract The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area. Much of the progress has come from studies of fear, and especially fear conditioning. This work has pinpointed the amygdala as an important component of the system involved in the acquisition, storage, and expression of fear memory and has elucidated in detail how stimuli enter, travel through, and exit the amygdala. Some progress has also been made in understanding the cellular and molecular mechanisms that underlie fear conditioning, and recent studies have also shown that the findings from experimental animals apply to the human brain. It is important to remember why this work on emotion succeeded where past efforts failed. It focused on a psychologically well-defined aspect of emotion, avoided vague and poorly defined concepts such as “affect,” “hedonic tone,” or “emotional feelings,” and used a simple and straightforward experimental approach. With so much research being done in this area today, it is important that the mistakes of the past not be made again. It is also time to expand from this foundation into broader aspects of mind and behavior.

INTRODUCTION

After decades of neglect, neuroscience has again embraced emotion as a research topic. This new wave of interest raises the question of why emotion was overlooked for so long. It is instructive to consider this question before examining what has been learned about emotional circuits, as some of the factors that led brain researchers to turn away from this topic may again hamper progress unless they can be grappled with.

Why Did Interest in Emotion Wane?

During the first half of the twentieth century, brain researchers were immensely interested in the brain mechanisms of emotional behavior. Some of the early pioneers in neuroscience worked in this area, including Sherrington, Cannon, Papez, and Hebb. Responses that occur when we defend against danger, interact with sexual partners, fight with an enemy, or have a tasty bite to eat promote the survival of individuals and their species. Emotional responses are thus inherently
interesting and important. So what happened? Why did research on the brain mechanisms of emotion come to a halt after midcentury?

For one thing, emotion research was a victim of the cognitive revolution. The emergence of cognitive science shifted the interest of those concerned with the relation between psychological functions and neural mechanisms toward processes (perception and memory, for example) that were readily thought of in terms of computer-like operations. From the start, cognitive scientists claimed that their field was not about emotion and other such topics (see Neisser 1967, Gardner 1987). The cognitive approach came to be the dominant approach in psychology and brain science, and research interest in emotion dwindled.

Another factor that hindered work on emotions in neuroscience was that the problem of how the brain makes emotions seemed to have been solved in the early 1950s by the limbic system concept (MacLean 1949, 1952). This appealing and convincing theory was the culmination of research on the brain mechanisms of emotion by many researchers, extending back to the late nineteenth century (see LeDoux 1987, 1991). Studies of how the brain mediates cognitive processes seemingly had a long way to go to catch up with the deep understanding that had been achieved about emotions, and researchers flocked to the new and exciting topic of cognition and the brain to begin filling the gap.

Cognitive questions also seemed more tractable than emotional ones, due in part to the dark cloud of subjectivity that hung over the topic of emotion. Although subjective experience and its relation to neural mechanisms is a potential difficulty for any area of psychology, cognitive scientists figured out how to study mental processes without having to solve the mind-body problem. They showed, for example, that it is possible to study how the brain processes (computes and represents) external stimuli without first resolving how the conscious perceptual experiences come about. In fact, it is widely recognized that most cognitive processes occur unconsciously, with only the end products reaching awareness, and then only sometimes (see Kihlstrom 1987). Emotion researchers, though, did not make this conceptual leap. They remained focused on subjective emotional experience. In spite of the fact that most research on emotions and the brain was, and still is, conducted with experimental animals, creatures in which subjective states are difficult if not impossible to prove, theoretical discussions of emotions and the brain typically reverted back to the age-old question of feelings. This approach puts the mind-body problem right smack in the middle of the path of progress.

The main lesson to be learned from this brief excursion into history is that emotion researchers need to figure out how to escape from the shackles of subjectivity if emotion research is to thrive. It is ironic that cognitive science, which led to the neglect of emotion research, may also be able to help in its resurrection by providing a strategy that allows the study of emotion independent of subjective emotional experiences. It is possible, for example, to ask how the brain processes emotional information (i.e. detects and responds to danger) without necessarily first solving the question of where conscious feelings come from. Contrary to popular belief, conscious feelings are not required to produce emotional
responses, which, like cognitive processes, involve unconscious processing mechanisms (see Öhman 1992, LeDoux 1996). If we want to understand feelings, it is likely going to be necessary to figure out how the more basic systems work. Failure to come to terms theoretically with the importance of processing systems that operate essentially unconsciously has been a major impediment to progress in understanding the neural basis of emotion. To overcome this, brain researchers need to be more savvy about the nature of emotions, rather than simply relying on common sense beliefs about emotions as subjective feeling states.

Research on emotion can also help cognitive science. A pure cognitive approach, one that omits consideration of emotions, motivations, and the like, paints an artificial, highly unrealistic view of real minds. Minds are not either cognitive or emotional, they are both, and more. Inclusion of work on emotion within the cognitive framework can help rescue this field from its sterile approach to the mind as an information-processing device that lacks goals, strivings, desires, fears, and hopes.

Once a processing approach to emotion is taken, emotion and cognition can be studied similarly: as unconscious processes that can, but do not necessarily, lead to conscious experiences. This would open the door for the integration of emotion and cognition, and such integration should be a major goal for the immediate future.

Should We Integrate the Cognitive Brain with the Limbic System?

The rise of cognitive science led to important advances in understanding the brain mechanisms of perception, attention, memory, and other cognitive processes. One might be tempted to say that the way to foster the synthesis of cognition and emotion into a new science of mind would be to put all this new information about the cognitive brain together with the definitive view of the emotional brain provided long ago by the limbic system concept. However, this would be a mistake. In spite of the fact that the limbic system concept remains the predominant view about how the brain makes emotions, it is a flawed and inadequate theory of the emotional brain.

The limbic system concept was put forth in the context of an evolutionary explanation of mind and behavior (MacLean 1949, 1952, 1970; Isaacson 1982). It built upon the view, promoted by comparative anatomists earlier in the century, that the neocortex is a mammalian specialization—other vertebrates have primordial cortex but only mammals were believed to have neocortex. And because thinking, reasoning, memory, and problem solving are especially well developed in mammals, particularly in humans and other primates that have relatively more neocortical tissue, these cognitive processes must be mediated by the neocortex and not by the old cortex or other brain areas. In contrast, the old cortex and related subcortical ganglia form the limbic system, which was said to mediate the evolutionarily older aspects of mental life and behavior, our emotions. In this
way, cognition came to be thought of as the business of the neocortex and emotions of the limbic system.

The limbic system theory began to run into trouble almost immediately when it was discovered, in the mid-1950s, that damage to the hippocampus, the centerpiece of the limbic system, led to severe deficits in a distinctly cognitive function, long-term memory (Scoville & Milner 1957). This was incompatible with the original idea that the primitive architecture of the limbic system, and especially of the hippocampus, was poorly suited to participate in cognitive functions (MacLean 1949, 1952). Subsequently, in the late 1960s, it was discovered that the equivalent of mammalian neocortex is present, though rudimentary, in nonmammalian vertebrates (see Nauta & Karten 1970). As a result, the old/new cortex distinction broke down, challenging the evolutionary basis of the assignment of emotion to the limbic system and cognition to the neocortex (Swanson 1983).

The limbic system itself has been a moving target. Within a few years after inception, it expanded from the original notion of “old cortex” and related subcortical forebrain nuclei to include some areas of the midbrain (Nauta 1979), and even some regions of neocortex (Kaada 1960). Several attempts have been made to salvage the limbic system by defining it more precisely (see Isaacson 1982, Swanson 1983, Livingston & Escobar 1971). Nevertheless, after half a century of debate and discussion, there are still no agreed upon criteria that can be used to decide which areas of the brain belong to the limbic system. Some have suggested that the concept be abandoned (Brodal 1982; LeDoux 1987, 1991; Kotter & Meyer 1992).

In spite of these difficulties, the limbic system continues to survive, both as an anatomical concept and as an explanation of emotions, in textbooks, research articles, and scientific lectures. This is in part attributable to the fact that both the anatomical concept and the emotional function it was supposed to mediate were defined so vaguely as to be irrefutable. For example, in most discussions of how the limbic system mediates emotion, the meaning of the term emotion is presumed to be something akin to the common English language use of the term (because no other definition is given). However, the common English use of the term emotion is at best a poor theoretical notion, for emotion is a rich and complex theoretical concept with many subtle aspects, some of which are nonintuitive and thus inconsistent with the common use of the term (for discussions see Lewis & Haviland 1992, Ekman & Davidson 1994, LeDoux 1996). On the neural side, the criteria for inclusion of brain areas in the limbic system remain undefined, and evidence that any limbic area, however defined, contributes to any aspect of any emotion has tended to validate the whole concept. Mountains of data on the role of limbic areas in emotion exist, but there is still little understanding of how our emotions might be the product of the limbic system.

Particularly troubling is the fact that one cannot predict, on the basis of the original limbic theory of emotion or any of its descendants, how specific aspects of emotion work in the brain. The explanations are all post hoc. Nowhere is this
more apparent than in recent work using functional imaging to study emotions in the human brain. Whenever a so-called emotional task is used, and a limbic area is activated, the activation is explained by reference to the fact that limbic areas mediate emotion. And when a limbic area is activated in a cognitive task, it is often assumed that there must have been some emotional undertone to the task. We are, in other words, at a point where the limbic theory has become an off-the-shelf explanation of how the brain works. However, this explanation is grounded in tradition rather than data. Deference to the concept is inhibiting creative thought about how mental life is mediated by the brain.

Although the limbic system theory is inadequate as an explanation of the specific brain circuits of emotion, MacLean’s (1949, 1952, 1970) original ideas are very interesting in the context of a general evolutionary explanation of emotion and the brain. In particular, the notion that emotions involve relatively primitive circuits that are conserved throughout mammalian evolution seems right on target. Furthermore, the idea that cognitive processes might involve other circuits, and might function relatively independent of emotional circuits, at least in some circumstances, also seems correct. These functional ideas are worth holding on to, even if we abandon the limbic system as a structural theory of the emotional brain.

ESCAPING THE LIMBIC SYSTEM LEGACY:
FEAR CIRCUITS

One of the main exceptions to the bleak state of affairs regarding the brain mechanisms of emotion is the body of research concerned with neural system underlying fear, especially in the context of the behavioral paradigm called fear conditioning. It has, in fact, been research on fear conditioning, and the progress that has been made on this topic, that has been largely responsible for the renaissance of interest of emotion within neuroscience. In this work, the fear system has been treated as a set of processing circuits that detect and respond to danger, rather than as a mechanism through which subjective states of fear are experienced. Through this approach, fear is operationalized, or made experimentally tractable. Some limbic areas turn out to be involved in the fear system, but the exact brain areas and the nature of their involvement would never have been predicted by the limbic system theory.

What is Fear Conditioning

Since Pavlov (1927), it has been known that an initially neutral stimulus [a conditioned stimulus (CS)] can acquire affective properties on repeated temporal pairings with a biologically significant event [the unconditioned stimulus (US)]. As the CS-US relation is learned, innate physiological and behavioral responses come under the control of the CS (Figure 1). For example, if a rat is given a tone CS followed by an electric shock US, after a few tone-shock pairings (one is often sufficient), defensive responses (responses that typically occur in the presence of danger) will be elicited by the tone. Examples of species-typical defensive responses that are brought under the control of the CS include defensive behaviors (such as freezing) and autonomic (e.g. heart rate, blood pressure) and endocrine (hormone release) responses, as well as alterations in pain sensitivity (analgesia) and reflex expression (fear-potentiated startle and eyeblink responses). This form of conditioning works throughout the phyla, having been observed in flies, worms, snails, fish, pigeons, rabbits, rats, cats, dogs, monkeys, and humans.

Figure 1 Fear conditioning involves the presentation of a noxious unconditioned stimulus, typically footshock, at the end of the occurrence of a relatively neutral conditioned stimulus (CS), such as a light or tone (top). After conditioning, the CS elicits a wide range of behavioral and physiological responses that characteristically occur when an animal encounters a threatening or fear-arousing stimulus (bottom). Thus, a rat that has been fear conditioned will express the same responses to a CS as to a natural threat (i.e. a cat).
Neuroanatomy of Fear Conditioning

Research from several laboratories combined in the 1980s to paint a relatively simple and remarkably clear picture of the neuroanatomy of conditioned fear (see Kapp et al 1992, LeDoux 1992, Davis 1992, Fanselow 1994). In short, conditioned fear is mediated by the transmission of information about the CS and US to the amygdala, and the control of fear reactions by way of output projections from the amygdala to the behavioral, autonomic, and endocrine response control systems located in the brainstem. Below, the input and output pathways, as well as the connections within the amygdala that link inputs and outputs, are described. The focus is on findings from rodents and other small mammals, as most of the work on fear conditioning has involved these species (for the contribution of the primate amygdala to fear and other emotions see Pribram et al 1979, Pribram & Melges 1969, Aggleton & Mishkin 1986, Ono & Nishijo 1992, Gaffan 1992, Rolls 1992, 1999).

Amygdala Terminology and Connections

The amygdala consists of approximately 12 different regions, each of which can be further divided into several subregions (Figure 2). Although a number of different schemes have been used to label amygdala areas (see Krettek & Price 1978, de Olmos et al 1985, Amaral et al 1992), the scheme adopted by Amaral et al (1992) for the primate brain and applied to the rat brain by Pitkänen et al (1997) is followed here. The areas of most relevance to fear conditioning are the lateral (LA), basal (B), accessory basal (AB), and central (CE) nuclei and the connections between these (Figure 2). In other classification schemes, B is known as the basolateral nucleus and AB as the basomedial nucleus. The term basolateral complex is sometimes used to refer to LA and B (and sometimes AB) together. Studies in several species, including rats, cats, and primates, are in close agreement about the connections of LA, B, AB, and CE (see Pitkänen et al 1997, Paré et al 1995, Amaral et al 1992, Cassell et al 1999). In brief, LA projects to B, AB, and CE, and both B and AB also project to CE. However, it is important to recognize that the connections of these areas are organized at the level of subnuclei within each region rather than at the level of the nuclei themselves (see Pitkänen et al 1997). For simplicity, though, for the most part we focus below on nuclei rather than subnuclei.

CS Pathways

The pathways through which CS inputs reach the amygdala have been studied extensively in recent years. Much of the work has involved the auditory modality, which is focused on here.

Auditory and other sensory inputs to the amygdala terminate mainly in LA (see LeDoux et al 1990b, Romanski & LeDoux 1993, Mascagni et al 1993, Amaral et al 1992, McDonald 1998), and damage to LA interferes with fear conditioning to an acoustic CS (LeDoux et al 1990a, Campeau & Davis 1995).
Auditory inputs to LA come from both the auditory thalamus and the auditory cortex (see LeDoux et al 1990b, Romanski & LeDoux 1993, Mascagni et al 1993), and fear conditioning to a simple auditory CS can be mediated by either of these pathways (Romanski & LeDoux 1992) (Figure 3). It appears that the projection to LA from the auditory cortex is involved with a more complex auditory stimulus pattern (Jarrell et al 1987), but the exact conditions that require the cortex are poorly understood (Armony et al 1997). Although some lesion studies have ques-

Figure 2 The amygdala consists of a number of different regions. Those of most relevance to the pathways of fear conditioning are the lateral (LA), basal (B), accessory basal (AB), and central (CE) nuclei. The piriform cortex (PIR) lies lateral to the amygdala, and the caudate-putamen (CPU) is just dorsal to it. Comparison of the Nissl-stained section (upper left) and an adjacent section stained for acetylcholinesterase (upper right) helps identify the different nuclei. The major pathways connecting LA, B, AB, and CE are shown (lower left panel). (Lower right) A blowup of the LA, emphasizing the fact that each nucleus can be divided into subnuclei. Although anatomical studies have shown that the pathways are organized at the level of the subnuclei, rather than the nuclei (see Pitkanen et al 1997), the nuclear connections (lower left panel) provide a sufficiently detailed approximation of the connections for the purposes of considering how the fear conditioning system is, in general, organized.
Figure 3 The neural pathways involved in fear conditioning are well characterized. When the CS is an acoustic stimulus, the pathways involve transmission to the lateral nucleus of the lateral amygdala (LA) from auditory processing areas in the thalamus [medial division of the medial geniculate body (MGm/PIN)] and cortex [auditory association cortex (TE3)]. LA, in turn, projects to the central amygdala (CE), which controls the expression of fear responses by way of projections to brainstem areas. ANS, Autonomic nervous system; CS, conditioned stimulus; HPA, hypothalamic-pituitary axis; MGv, ventral division of the medial geniculate body; PRh, perirhinal cortex; TE1, primary auditory cortex.

mentioned the ability of the thalamic pathway to mediate conditioning (Campeau & Davis 1995, Shi & Davis 1998), single-unit recordings show that the cortical pathway learns more slowly over trials than does the thalamic pathway (Quirk et al 1995, 1997), thus indicating that plasticity in the amygdala occurs initially through the thalamic pathway. Recent functional magnetic resonance imaging studies in humans have found that the human amygdala shows activity changes during conditioning that correlate with activity in the thalamus but not the cortex (Morris et al 1999), further emphasizing the importance of the direct thalamo-amygdala pathway.

In addition to expressing fear responses to the CS, rats also exhibit these when returned to the chamber in which the tone and shock were paired, or a chamber in which shocks occur alone. This is called contextual fear conditioning and requires both the amygdala and the hippocampus (see Blanchard et al 1970, Phillips & LeDoux 1992, Maren et al 1997, Kim & Fanselow 1992, Frankland et al 1998). Areas of the ventral hippocampus (CA1 and subiculum) project to the B and AB nuclei of the amygdala (Canteras & Swanson 1992), and damage to these
areas interferes with contextual conditioning (Maren & Fanselow 1995, Majidishad et al 1996). Hippocampal projection to B and AB thus seem to be involved in contextual conditioning (for a comparison of the amygdala pathways involved in conditioning to a tone CS and to a context, see Figure 4).

Figure 4 Conditioning to a tone [conditioned stimulus (CS)] involves projections from the auditory system to the lateral nucleus of the amygdala (LA) and from LA to the central nucleus of the amygdala (CE). In contrast, conditioning to the apparatus and other contextual cues present when the CS and unconditioned stimulus are paired involves the representation of the context by the hippocampus and the communication between the hippocampus and the basal (B) and accessory basal (AB) nuclei of the amygdala, which in turn project to CE. As for tone conditioning, CE controls the expression of the responses.
US Pathways

For conditioning to occur, pathways transmitting the CS and US have to converge in the brain. It is widely believed that the amygdala is a site of plasticity during conditioning, and thus of CS-US convergence. Although the US pathways have received less attention than CS pathways, some progress has nevertheless been made.

Given that LA is the site of termination within the amygdala of pathways carrying acoustic CS inputs, it is important to ask whether US inputs might also reach this area and potentially lead to plasticity in this region. Thalamic areas that receive afferents from the spino-thalamic tract (LeDoux et al 1987) project to LA (LeDoux et al 1990a) (Figure 3). Furthermore, cells in LA are responsive to nociceptive stimulation, and some of the same cells respond to auditory inputs as well (Romanski et al 1993). Thus, the substrate for conditioning (convergence of CS and US information) exists in LA, and as shown below, conditioning induces plasticity in CS-elicited responses in this area.

Cortical areas that process somatosensory stimuli, including nociceptive stimuli, project to LA and some other amygdala nuclei (see Turner & Zimmer 1984, McDonald 1998). Recent behavioral studies show that conditioning can be mediated by US inputs to the amygdala from either thalamic or cortical areas (Shi & Davis 1998), a finding that parallels the conclusions above concerning CS inputs.

The accessory basal amygdala (AB) receives inputs from the posterior thalamus (PO) (LeDoux et al 1990a), which is a terminal region of the spinothalamic tract (LeDoux et al 1987). Although AB does not receive CS inputs from auditory systems, it does receive inputs from the hippocampus (Canteras & Swanson 1992). The hippocampus, as described above, is necessary for forming a representation of the context, and these contextual representations, transmitted from the hippocampus to AB, may be modified by the US inputs to the AB.

CE receives nociceptive inputs from the parabrachial area (Bernard & Besson 1990) and directly from the spinal cord (Burstein & Potrebic 1993). Although the CE does not receive inputs from sensory areas processing acoustic CSs, it is a direct recipient of inputs from LA, and from B and AB. US inputs to CE could be involved in higher-order integration. For example, representations created by CS-US convergence in LA or context-US convergence in AB, after transfer to CE, might converge with and be further modified by nociceptive inputs to CE.

Output Pathways

CE projects to brainstem areas that control the expression of fear responses (see LeDoux et al 1988, Kapp et al 1992, Davis 1992). It is thus not surprising that damage to CE interferes with the expression of conditioned fear responses (Kapp et al 1979, Hitchcock & Davis 1986, Iwata et al 1986, van der Kar et al 1991, Gentile et al 1986). In contrast, damage to areas to which CE projects selectively interrupts the expression of individual responses. For example, damage to the lateral hypothalamus affects blood pressure but not freezing responses, and damage to the periaqueductal gray interferes with freezing but not blood pressure responses (LeDoux et al 1988). Similarly, damage to the bed nucleus of the stria terminalis has no effect on either blood pressure or freezing...
responses (LeDoux et al 1988), but it disrupts the conditioned release of pituitary-adrenal stress hormones (van der Kar et al 1991). Because CE receives inputs from LA, B, and AB (Pitkänen et al 1997), it is in a position to mediate the expression of conditioned fear responses elicited by both acoustic and contextual CSs (Figure 4).

Intraamygdala Pathways From the findings described above, it would appear that information about a simple CS (such as a tone paired with shock) is directed toward CE (where response execution is initiated) by way of pathways that originate in LA. Although LA projects to CE directly, and by way of B and AB, the direct projection from LA to CE seems to be sufficient because lesions of B and AB have no effect on simple fear conditioning to a tone (Majidishad et al 1996). An alternative was recently proposed by Killcross et al (1997). They argued that a direct projection to CE that bypasses LA can mediate conditioning. However, fibers from auditory areas terminate mainly in LA (see above). Moreover, auditory response latencies in LA are shorter than in CE (both before and after conditioning) (see next section below), which suggests that CE depends on LA for its inputs. These facts aside, though, it is important to point out that the task used to rule out LA as a way station to CE involved hundreds of training trials, whereas the tasks used to implicate LA have involved tens of trials (see Nader & LeDoux 1997). It is possible that the additional training trials used in the Killcross study allowed the brain to learn in a way that is not normally used when fewer trials are given. At most, a direct pathway to CE would be an alternative rather than the main route of transmission through the amygdala.

Physiological Plasticity in the Amygdala Related to Fear Conditioning

With the basic elements of the circuitry understood from lesion studies, researchers have turned to questions about the nature of the plasticity within the amygdala that might underlie fear learning. Fear plasticity in the amygdala has been studied in three closely intertwined ways. First, single-unit recordings have been made in areas of the amygdala implicated in fear conditioning by lesion studies. Second, long-term potentiation (LTP), an experimentally advantageous but artificial form of plasticity, has been studied in these same areas. Third, drugs that block LTP have been infused into amygdala areas where LTP is believed to occur, and effects on the acquisition of conditioned fear behavior assessed. These approaches are summarized below. In addition, evidence regarding the molecular basis of fear learning is described.

Unit Recordings Pathway tracing and lesion studies suggest that LA is the sensory gateway to the amygdala, and thus the first possible site in the amygdala where cells processing the CS might be modified by association with the US in fear conditioning. As already noted, some cells in LA are responsive to both CS
and US inputs. Further, CS-elicited responses in LA cells are modified after pairing with the US (Quirk et al 1995, 1997) (Figure 5). Conditioned plasticity also occurs in the auditory cortex (Weinberger 1995, 1998; Quirk et al 1997). However, the response latencies in LA within trials (<20 ms) and the rate of acquisition (one to three trials) are best explained in terms of direct auditory thalamo-amygdala transmission, rather than cortico-amygdala transmission, because conditioned responses in the auditory cortex occur later both within and across trials (Quirk et al 1997). Plasticity in the auditory thalamus (Weinberger 1995, 1998) could contribute to LA plasticity. Plasticity has also been observed in B (Maren et al 1991, Uwano et al 1995) and CE (Pascoe & Kapp 1985) during aversive conditioning, but the acoustic responses latencies both before and after conditioning are longer than in LA. LA thus seems to be both the initial point of sensory processing and the initial site of plasticity in the amygdala.

Long-Term Potentiation
LTP is a physiological procedure pioneered in studies of the hippocampus (Bliss & Lomo 1973) and is believed to engage the cellular mechanisms similar to those that underlie natural learning (see Lynch 1986, Bliss & Collingridge 1993). The most extensively studied form of LTP occurs in the CA1 region of the hippocampus and involves the interaction between presynaptic glutamate and two classes of postsynaptic receptors (Nicoll & Malenka 1995). First, glutamate binds to AMPA receptors and depolarizes the postsynaptic cell. The depolarization allows glutamate to bind to the N-methyl-D-aspartate (NMDA) class of receptors. Calcium then flows into the cell through the NMDA channel and triggers a host of intracellular events that ultimately result in gene induction and synthesis of new proteins (Dudai 1989, Huang et al 1996, Kandel 1997). These then help stabilize the changes over long periods of time.

There have been a number of studies of LTP in the amygdala, mostly involving in vitro brain slices and pathways carrying information from the cortex to LA and B (Chapman et al 1990, Chapman & Bellevance 1992, Gean et al 1993, Huang & Kandel 1998). These studies have led to mixed results regarding the possible role of NMDA receptors in cortico-amygdala LTP, with some studies finding effects (Huang & Kandel 1998) and some not (Chapman & Bellevance 1992). Recent in vitro studies indicate that LTP in the thalamo-amygdala pathway requires postsynaptic calcium but the calcium does not enter through NMDA receptors (Weisstock et al 1999). Instead, calcium entry appears through L-type voltage-gated calcium channels. These channels have also been implicated in a form of LTP that occurs in the hippocampus (Cavus & Teyler 1996). It has also been shown that prior fear conditioning leads to an enhancement in synaptic responses recorded subsequently in vitro from amygdala slices (McKernan & Schinnick-Gallagher 1997). The receptor mechanisms underlying this form of plasticity have not been elucidated.

LTP has also been studied in vivo in the thalamo-amygdala pathway using recordings of extracellular field potentials (Clugnet & LeDoux 1990, Rogan & LeDoux 1995, Rogan et al 1997). These studies show that LTP occurs in fear
Figure 5 During fear conditioning, cells in the lateral amygdala (LA) of rats show plasticity (increased firing rates) during exposure to a conditioned stimulus tone. (Left) Some cells are responsive to tones prior to conditioning (Pre), but their rate of firing increases after conditioning, especially the earliest latency response (10–15 ms after tone onset). This early plasticity goes away after extinction. From simultaneously recorded cells, it can be seen that conditioning also leads to an increase in the synchrony of firing, such that cells that were not correlated before conditioning become so afterward (right panel). In some cases (not shown), the synchrony remained even after extinction, which suggests that long-term memory may be in part encoded by connections between cells rather than just in the rate of firing. Based on Quirk et al (1995).
processing pathways, that the processing of natural stimuli similar to those used as a CS in conditioning studies is facilitated following LTP induction, and that fear conditioning and LTP induction produce similar changes in the processing of CS-like stimuli (Figure 6). Although exploration of mechanisms are difficult in these in vivo studies, they nevertheless provide some of the strongest evidence to date in any brain system of a relation between natural learning and LTP (Barnes 1995, Eichenbaum 1995, Stevens 1998). LTP has been found in vivo in the hippocampal-amygdala pathway, which is believed to be involved in context conditioning (Maren & Fanselow 1995).

Infusion of Drugs that Block LTP The fact that blockade of NMDA receptors with the drug D,L-2-amino-5-phosphonovaerate (APV) prevents LTP from occurring in the CA1 region of the hippocampus inspired researchers to attempt to prevent fear conditioning by infusion of APV into the amygdala. Initial studies were promising (Miserendino et al 1990). Infusion of APV prior to learning blocked fear conditioning, but infusion prior to testing had no effect. NMDA receptors thus seemed to be involved in the plasticity underlying learning and not in the transmission of signals through the amygdala. However, subsequently both in vivo (Li et al 1995, 1996; Maren & Fanselow 1996) and in vitro (Weisskopf & LeDoux 1999) studies have suggested that NMDA receptors make significant contributions to synaptic transmission in pathways that provide inputs to the amygdala. Furthermore, several studies have found that blockade of NMDA receptors affects both the acquisition and the expression of fear learning (Maren et al 1996, Lee & Kim 1998), which is more consistent with the transmission rather than the plasticity hypothesis, but others have confirmed that acquisition could be affected independently from expression (Gewirtz & Davis 1997).

The contribution of NMDA receptors to fear conditioning and its underlying plasticity, as opposed to synaptic transmission in amygdala circuits, remains unresolved. Given the relatively weak contribution of NMDA receptors to transmission in the cortical input, perhaps the disruption of fear learning is explained by a combination of different effects on the two pathways: blockade of transmission and plasticity in the thalamic pathway, and blockade of plasticity in the cortical pathway. It is also possible that behaviorally significant plasticity occurs downstream from LA input synapses in the amygdala, and that the effects of APV infusions is on this plasticity rather than on the plasticity at input synapses. Additional work is needed.

Intracellular Signaling Mechanisms Some progress has been made in elucidating intracellular signals that underlie long-term memory. These mechanisms are best worked out in invertebrates, but many of the details also seem to apply to hippocampal LTP and spatial learning (Kandel 1997, Huang et al 1996). The general view is that the molecular cascade starts with the influx of calcium during action potentials. The rise in calcium then triggers several kinases and transcription factors, including calmodium-activitated kinase II, mitogen-activated protein
Figure 6 Following high-frequency electrical stimulation of the thalamo-amygdala pathway, low-frequency electrical stimulation of the same pathway or external auditory stimulation elicits a larger evoked potential with a sharper slope than before (upper left). This pathway thus shows long-term potentiation (LTP), which can be measured by electrical stimulation or natural stimulation of the inputs to the amygdala. Similar changes in auditory-evoked potentials are elicited following fear conditioning (bottom). The enhancement of the evoked response by fear conditioning is further illustrated (upper right panel). (Caption continues at bottom of next page.)
Before conditioning, the auditory-evoked potential elicited by the conditioned stimulus (CS) in the lateral amygdala did not differ in groups that were to be given paired conditioning trials or unpaired presentations of the CS and the unconditioned stimulus. The responses separated during conditioning and remained different after training. (Bottom) Behavioral conditioned fear learning in the same animals. The groups do not differ before conditioning. During training both groups “freeze.” Freezing in the control group during training was not due to the formation of a conditioned fear memory because as soon as training was terminated the response decreased. Only the paired group showed training-induced enhancement of the auditory-evoked response and of fear behavior. The similarity of the behavioral responses during training, a time when the neural responses differed, indicates that the response after training is unlikely to be due to nonspecific factors related to the expression of the behavior. Based on Rogan & LeDoux (1995) and Rogan et al (1997).
Figure 7 Blockade of protein synthesis (with anisomycin), protein kinase A (with Rp-cAMPS), or mitogen-activated protein kinase (with PD098059) interferes with the expression of long-term memory (LTM), but not short-term memory (STM), for fear conditioning in rats. Drugs were administered intraventricularly immediately after conditioning, and fear responses were tested 24 h later while the rats were drug free. Based on Schafe et al (1999).

Two additional points should be noted. First, although plasticity in the amygdala appears to be required for Pavlovian fear conditioning to occur, the site of long-term memory storage is not known. It is possible that the storage is in the amygdala itself or, alternatively, that the storage is distributed and involves inter-
actions between the amygdala and cortical or other areas. Second, plasticity within the amygdala is probably not required for learning cognitive aspects of fear, as suggest by Cahill & McGaugh (1998). This would explain why humans with amygdala damage are able to lead fairly normal lives in spite of the fact that they have certain deficits in processing danger signals (see below).

THE HUMAN AMYGDALA

Over the past several years, there has been an explosion of interest in the role of the human amygdala in fear. Deficits in the perception of the emotional meaning of faces, especially fearful faces, have been found in patients with amygdala damage (Adolphs et al 1995, Calder et al 1996). Similar results were reported for detection of the emotional tone of voices (Scott et al 1997). Furthermore, damage to the amygdala (Bechara et al 1995) or areas of temporal lobe including the amygdala (LaBar et al 1995) produced deficits in fear conditioning in humans. Functional imaging studies have shown that the amygdala is activated more strongly in the presence of fearful and angry faces than of happy ones (Breiter et al 1996) and that subliminal presentations of such stimuli lead to stronger activations than do freely seen ones (Whalen et al 1998). Fear conditioning also leads to increases in amygdala activity, as measured by functional magnetic resonance imaging (LaBar et al 1998, Buchel et al 1998), and these effects also occur to subliminal stimuli (Morris et al 1998). Additionally, when the activity of the amygdala during fear conditioning is cross correlated with the activity in other regions of the brain, the strongest relations are seen with subcortical (thalamic and collicular) rather than cortical areas, further emphasizing the importance of the direct thalamo-amygdala pathway in the human brain (Morris et al 1999). Other aspects of emotion and the human brain area are reviewed by Davidson & Irwin (1999), Phelps & Anderson (1997), Cahill & McGaugh (1998).

CLINICAL IMPLICATIONS

Although it is clear that studies of acute fear responses elicited by conditioned fear stimuli cannot account for all aspects of fear and fear disorders, there is growing enthusiasm for the notion that fear learning processes similar to those occurring in fear conditioning experiments might indeed be an important factor in certain anxiety disorders. For example, fear conditioning models of posttraumatic stress disorder and panic disorder (Pitman & Orr 1999, Goddard et al 1998) have been proposed recently by researchers in these fields.

Earlier in this century, the notion that conditioned fear contributes to phobias and related fear disorders was fairly popular. However, this idea fell out of favor because laboratory fear conditioning seemed to produce easily extinguishable fear, whereas clinical fear is difficult to treat. The notion arose that fear disorders
involve a special kind of learning, called prepared learning, where the CS is biologically significant rather than neutral (Seligman 1971, Marks 1987, Öhman 1992). Although preparedness may indeed contribute, there is another factor to consider. In studies of rats, Morgan et al (1993; but see Gewirtz & Davis 1997) found that easily extinguished fear could be converted into difficult-to-extinguish fear in rats with damage to the medial prefrontal cortex. This suggested that alterations in the organization of the medial prefrontal regions might predispose certain people in some circumstances (such as stressful situations) to learn fear in a way that is difficult to extinguish (treat) under normal circumstances. These changes could come about because of genetic or experiential factors, or some combination.

COGNITIVE-EMOTIONAL INTERACTIONS IN THE BRAIN FROM THE PERSPECTIVE OF FEAR CONDITIONING

One of the key issues for the coming years is to integrate research on emotion and cognition. As already noted, this will not be achieved by simply linking research on the limbic system with research on the cortex. An approach that offers more anatomical precision on the emotion side is needed. Studies of fear conditioning provide a framework for beginning such an endeavor. Although this bottom up approach focused on fear may seem needlessly tedious, it is possible that once other emotions are understood in sufficient anatomical detail, some general principles that apply to other emotions will emerge. For the time being, it is best to restrict the discussion to fear circuits and their interactions with cognitive systems. Thus, in this section we consider how fear processing by the amygdala is influenced by and can influence perceptual, attentional, and memory functions of the cortex.

The amygdala receives inputs from cortical sensory processing regions of each sensory modality and projects back to these as well (Amaral et al 1992, Turner et al 1980, McDonald 1998). As shown above, these projections allow the amygdala to determine whether danger is present in the sensory world. But in addition to processing the significance of external stimuli, the amygdala can also influence sensory processing occurring in cortical areas. The amygdala only receives inputs from the late stages of cortical sensory processing, but it projects back to the earliest stages (Turner et al 1980, Amaral et al 1992). Thus, once the amygdala is activated by a sensory event from the thalamus or cortex, it can begin to regulate the cortical areas that project to it, controlling the kinds of inputs it receives from the cortex. The amygdala also influences cortical sensory processes indirectly, by way of projections to various “arousal” networks, including the basal forebrain cholinergic system, the brainstem cholinergic system, and the locus ceruleus noradrenergic system, each of which innervates widespread areas of the cortex (e.g. Aston-Jones et al 1996, Gallagher & Holland 1994, Holland & Gallagher
EMOTION AND THE BRAIN

1999, Kapp et al 1992, Weinberger 1995). Thus, once the amygdala detects danger, it can activate these arousal systems, which can then influence sensory processing. The bodily responses initiated by the amygdala can also influence cortical areas, by way of feedback either from proprioceptive or visceral signals or hormones (e.g. McGaugh et al 1995, Damasio 1994). Amygdala regulation of the cortex by either direct or indirect routes could facilitate the processing of stimuli that signal danger even if such stimuli occur outside the attention field (Armony et al 1996, 1998; Armony & LeDoux 1999).

In humans, damage to the amygdala interferes with implicit emotional memories but not explicit memories about emotions, whereas damage to the medial temporal lobe memory system interferes with explicit memories about emotions but not with implicit emotional memories (Bechara et al 1995, LaBar et al 1995). Although explicit memories with and without emotional content are formed by way of the medial temporal lobe system, those with emotional content differ from those without such content. The former tend to be longer lasting and more vivid (see Christianson 1989, Cahill & McGaugh 1998). Lesions of the amygdala or systemic administration of a beta-adrenergic antagonist prevent this amplifying effect of emotion on declarative memory (Cahill & McGaugh 1998), which suggests that the amygdala can modulate the storage of explicit memories in cortical areas. At the same time, the medial temporal lobe memory system projects to the amygdala (Amaral et al 1992). Retrieval of long-term memories of traumatic events may trigger fear reactions by way of these projections to the amygdala.

Although there has been relatively little work on the role of the amygdala in cognitive-emotional interactions, the importance of the amygdala as a bridge between emotion and attention was pointed out over thirty years ago (e.g. Pribram & Melges 1969). Given the extensive connections between the amygdala and cortical areas, this topic is begging for research.

WHAT ABOUT FEELINGS?

Consciousness is an important part of the study of emotion and other mental processes. Although we are far from understanding what consciousness is, a number of theorists have proposed that it may be related to working memory, a serially organized mental workspace where things can be compared and contrasted and mentally manipulated (Baddeley 1992). A variety of studies of humans and non-human primates point to the prefrontal cortex, especially the dorsolateral prefrontal areas—as well as the anterior cingulate and orbital cortical regions—as being involved in working memory (Fuster 1998, Goldman-Rakic 1996, Braver et al 1997, Carter et al 1998). Immediately present stimuli and stored representations are integrated in working memory by way of interactions between prefrontal areas, sensory processing systems (which serve as short-term memory buffers, as well as perceptual processors), and the long-term explicit (declarative) memory system involving the hippocampus and related areas of the temporal lobe.
In the case of an affectively charged stimulus, such as a trigger of fear, the same sorts of processes will be called upon as for stimuli without emotional implications, but in addition, working memory will become aware of the fact that the fear system of the brain has been activated (Figure 8). This additional information, when added to perceptual and mnemonic information about the object or event, could be the condition for the subjective experience of an emotional state of fear (LeDoux 1996).

Figure 8 Conscious experiences are often said to reflect the contents of working memory. In this sense, a conscious emotional experience may not be that different from any other kind of conscious experience. The difference would be more in the systems that are providing inputs to working memory rather than in the mechanisms of consciousness itself. In the case of fearful experiences, or fearful feelings, the conscious emotion may be the result of some immediately present stimulus triggering long-term explicit memories and amygdala activation. The simultaneous representation in working memory of the outputs of these three, and perhaps other, systems may be the stuff that fearful feelings are made of. Other feelings would come about similarly but would not necessarily involve the amygdala.
By way of projections to cortical areas, the amygdala can influence the operation of perceptual and short-term memory processes, as well as processes in higher-order areas. Although the amygdala does not have extensive connections with the dorsolateral prefrontal cortex, it does communicate with the anterior cingulate and orbital cortex, two other components of the working memory network. But in addition, the amygdala projects to nonspecific systems involved in the regulation of cortical arousal and it controls bodily responses (behavioral, autonomic, endocrine), which then provide feedback that can influence cortical processing indirectly. Thus, working memory receives a greater number of inputs, and receives inputs of a greater variety, in the presence of an emotional stimulus than in the presence of other stimuli. These extra inputs may just be what is required to add affective charge to working memory representations, and thus to turn subjective experiences into emotional experiences.

CONCLUSION

Research on the emotional brain has progressed significantly in recent years, largely as a result of a highly focused approach centered on the study of fear mechanisms, and especially the mechanisms underlying fear conditioning. This work has mapped out pathways involved in fear learning in both experimental animals and humans, and it has begun to shed light on interactions between emotional and cognitive processes in the brain. Although the focus on fear conditioning has its limits, it has proven valuable as a research strategy and provides a foundation upon which to build a broader understanding of mind and brain.

At the same time, there is a disturbing rush to embrace the amygdala as the new center of the emotional brain. It seems unlikely that the amygdala is the answer to how all emotions work, and it may not even explain how all aspects of fear work. There is some evidence that the amygdala participates in positive emotional behaviors, but that role is still poorly understood. If an amygdala theory of emotion is on the horizon, let it get there by data rather than by faith.

Neuroscience meetings these days have numerous papers on the role of the brain in emotion, affect, hedonic tone, and the like. Unless these vague concepts can be operationalized, as was done in the work on fear, they are likely to impede, if not recede, the progress. The future of emotion research can be bright if we keep in mind the way that emotion became respectable again: by focusing on a psychologically well-defined aspect of emotion, by using an experimental approach that simplified the problem in such a way as to make it tractable, by circumventing vague and poorly defined aspects of emotion, and by removing subjective experience as a roadblock to experimentation. This is not to suggest that the hard problems should not be worked on but instead that they should be worked on in a way that advances the field.

LITERATURE CITED

Burstein R, Potrebic S. 1993. Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat. *J. Comp. Neurol.* 335:469

Hitchcock J, Davis M. 1986. Lesions of the amygdala but not of the cerebellum or red nucleus block conditioned fear as measured with the potentiated startle paradigm. *Behav. Neurosci.* 100:11–22

Kaada BR. 1960. Cingulate, posterior orbital, anterior insular and temporal pole cortex. In
Emotion and the Brain

Li X, Phillips RG, LeDoux JE. 1995. NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp. Brain Res. 105:87–100

MacLean PD. 1949. Psychosomatic disease and the “visceral brain”: recent develop-

Romanski LM, LeDoux JE. 1993. Information cascade from primary auditory cortex to the amygdala: corticocortical and cortico-
Weisskopf MG, Bauer E, LeDoux JE. 1999. L-type voltage gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. *J. Neurosci.* 10512–19