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1. Problem Definition 

The objective of this work is the development of efficient simulation tools for 

modeling gaseous flows in micro/nanoscale devices.  The development of accurate 

engineering models of such flows is not only important for the fundamental understanding, 

but also in the design [2,3], and even fabrication of such devices [4,5]. It is well known[6,7] 

that when the mean free path becomes comparable to the flow characteristic lengthscale, the 

flow deviates from the Navier-Stokes (NS) description. This deviation is typically quantified 

by the Knudsen number LKn /λ= , where λ  is the molecular mean free path and L is the 

characteristic flow lengthscale. In fact, kinetic models (such as the Boltzmann Equation 

(BE)) are required to describe such flows completely. In the case of a hard-sphere gas the 

non-dimensional BE can be written as [8]: 
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Here ),,( tCxff
rr=  is the single particle probability distribution function, x

r  is 

position, C
r

 is the molecular velocity vector, likewise, ),,( 11 tCxff
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 indicates a post-collision velocity); finally Ω,,σV  are the relative 
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velocity of colliding molecules, scattering angle and molecular collision cross section, 

respectively.  

One of the most widely used methods for solving the Boltzmann Equation is the 

Direct Simulation Monte Carlo (DSMC) procedure, a stochastic particle based simulation 

method. In DSMC quantities of interest (eg. flow velocities) are calculated as averages over a 

particle population. Consequently, as the flow speed is reduced (ie. 0→Ma ; where Ma is 

the Mach number) more samples are needed to resolve the flow (in fact, the cost scales like 
2/1 Ma ). And since gas molecules have an average speed of O(400)m/s at STP, DSMC 

becomes an impractical tool to use for most microfluidic applications.  

There have been a number of attempts to address the issue of modeling low speed 

kinetic flows. In particular, the work of [9] is very promising but has a major limitation when 

dealing with problems that take a long time to reach steady state; an issue we address in the 

first part of this work. Other, particle based, methods to resolve slow flows have also been 

proposed [10,11] and also seem very promising (particularly for multi-dimensional situations) 

but are not without limitations of their own. Specifically, [10] re-formulates the BE using the 

deviation from equilibrium and attempts to simulate the resulting dynamics using particles in 

a manner analogous to DSMC. Reference [11], on the other hand, starts from a linearized 

BE and devises a weighted particle scheme for the low speed kinetic flows.  In both cases, 

the particle dynamics lead to the net creation of particles that if left uncancelled make the 

calculation very inefficient when Kn<1. 

1.1. Objective of this work  

In this proposal we are interested in examining two basic questions:  

I. Can we find the steady state solution of kinetic problems in a manner that is 

faster than direct molecular integration? This is discussed in section 2. 

II. Is it possible to find an alternative method to resolve low speed flows in an 

exact, robust and elegant manner? This is discussed in section 3. 

This document details my proposals to deal with these two questions. In Section 2, I 

describe the work I have done to incorporate ideas from [12-14] to accurately find steady 

state solutions to kinetic problems that would take a very long time to integrate. In Section 3 

I describe an alternative method for reducing the variance of DSMC calculations using a 

particle weighting scheme. 
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2. Part I: Steady state solutions of multi-scale molecular 

problems 

When trying to find steady state solutions to kinetic problems most current 

integration schemes (particularly [9]) have strict limits on the maximum allowed integration 

timesteps. This makes finding steady state solutions at lower Knudsen numbers or of 

problems of mixed length scales computationally expensive. In the first part of my thesis we 

developed a method which addresses this limitation, the approach we used was to extend the 

equation-free framework of Kevrekidis and coworkers[12-14] to low speed kinetic flow 

problems. In other words, we extract the long term/coarse-grained behavior of the system 

by examining the results of a series of short-term/microscopic simulations.  

The iterative method proposed and used here consists of a short Boltzmann 

transient evolution step (using the low noise integration scheme in [9]) and a Newton-

Broyden contraction mapping step; the latter step only solves for the macroscopic field of 

interest (e.g. flow velocity { SSu }). The predicted macroscopic field is then used as an initial 

condition for the BE solver for the next iteration. Figure 1 illustrates the basic steps of the 

method. 
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Figure 1: Schematic of this section’s procedure. The left side shows a block diagram of the algorithm 

while the right one graphically summarizes the maturing process.  
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A crucial part of this procedure is the correct implementation of a maturing step as 

sketched on the right of the figure. The maturing step creates an “appropriate” microscopic 

distribution function ),(* Cxf
rr  that ensures that an accurate microscopic rate of change is 

measured when the system is integrated for each iteration of the macroscopic field )(}{ i
SSu . 

Detailed of this can be found in [15].  

We have validated this approach for isothermal, one-dimensional flows in a wide 

range of Knudsen numbers. We find that the Newton-Broyden iteration converges in O(10) 

iterations, starting from an arbitrary guess solution and a Navier-Stokes based initial 

Jacobian. When using this procedure the cost to reach steady state, to first approximation, is 

comparable to the time to integrate O(40) mean collision times regardless of the Knudsen 

number. Thus this method is preferable to explicit integration when the flow’s characteristic 

timescale is longer than approximately 40 collision times.  

3. Part II: Variance reduction using weighting factors  

We will proceed in this section to propose a new methodology to reduce variance 

when modeling kinetic flows. The strength of the proposed methodology lies in the fact that 

it requires minimal modifications of the standard DSMC scheme. In what follows we will 

start by describing DSMC, proceed to detail the inspiration of our work, describe weighting 

factors and will finally discuss some initial results.  

3.1. Direct Simulation Monte Carlo 

The DSMC is a stochastic particle simulation technique that has been shown to solve 

the non-linear BE[17,8]. It works by applying a splitting approach to the motion of the 

particle-simulators comprising the system; the time evolution of the system is approximated 

by a sequence of discrete timesteps of duration dt, in which particles successively undergo 

collisionless advection and collisions. Collisions take place between partners selected 

randomly within cells of a maximum side length smaller than a mean free path. And as  

mentioned earlier, quantities of interest are calculated as averages over the sample particle 

simulators. The DSMC formulation eliminates the computational cost associated with 

calculating exact particle trajectories and leads to a simulation method that is significantly 

more efficient than “brute force” molecular dynamics approaches.  
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3.2. Basic principle of variance reduction: parallel 

processing of simulations 
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 Figure 2: Schematic of two systems running in parallel with an identical sequence of random 

numbers used for a simple 1D kinetic Couette flow. A denotes the results of a non-equilibrium flow 

while B denotes those of an equilibrium flow. Finally, C denotes the results of a very high resolution 

calculation attempting to resolve the flow in a traditional manner.  

The basic inspiration for the proposed approach can be illustrated by looking at 

Figure 2 for a simple low speed kinetic flow. The plot at the top shows the calculated wall 

speed versus time for two computations with an identical set of initial conditions and 

random sequences differing only in boundary conditions (A is flow of interest and B is an 

equilibrium flow). It is very hard to discern the behavior of the system because the flow 

speed is much smaller than the thermal fluctuations of the system and only a much more 

expensive calculation (labeled C) would be able to directly give meaningful information. On 

the other hand, simply subtracting the results of both systems will give a result that is 

essentially unaffected by the thermal fluctuations. This idea has been successfully pioneered 

in the field of polymer modeling by Öttinger and others and has been the basis of large body 

of work in variance reduction there[1]. Our work tries to apply this idea to DSMC by 

introducing weighting factors as a method of representing and calculating, in parallel, the 

equilibrium flow in addition to the normal non-equilibrium flow.  
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3.3. Basic building block: weighting factors 

The weighing factors that are discussed here are a method of “effectively” generating very 

correlated sample sequences from two different distributions. While only one of the 

sequences is explicitly generated, weighting factors are used to extract properties of the 

second sequence.  To illustrate the concept let us consider two random sequences NES  and 

EqS  that are generated from different PDFs, )(xPNE  and )(xPEq (elements of NES  and EqS  

are labeled NEiS  and 
iEqS  respectively). If we want to estimate EqNE SS − , we can simply 

calculate ∑
=

−
N

i
EqiNEi SS

N 1

)(
1  which would, in general, have a variance of the order of the 

variance of the sequences NES  and EqS . An other approach however is to generate elements 

of sequence NES  and a conjugate sequence iW  instead of 
iEqS . Here iW  is the ratio of 

probability of a sample in distribution Eq to the same sample in distribution NE: 

)(

)(

NEiNE

NEiEq
i SP

SP
W =  

Using this, EqNE SS −  is estimated by calculating ∑
=

−
N

i
NEii SW

1

)1( and if both )(xPNE  and 

)(xPEq  are close to each other the values of the weights will be of O(1) and consequently 

)())1(( AiAii SOSWO <<− . Hence, the variance of the new estimator EqNE SS −  (and NES  

since EqS =0) will be much smaller than the one generated by sampling NES  or EqS  directly. 
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Figure 3: Flow chart of the new method. Blocks in light blue are standard DSMC steps, while purple 

ones are steps that are added by our VR implementation. 

We have successfully applied this basic idea to DSMC and developed a method that samples 

the flow state with a standard deviation of the order of the flow speed (rather than the 

molecular thermal speed). Figure 3 shows a sketch of DSMC and the major modifications 

made to it (details are discussed in Appendix I). In addition, the diagram also shows the 

three basic rules applied to correctly derive dynamical rules for the weights in the simulation. 

3.4. Numerical results and the stability issue 

As we can see in Figure 4, our method is able to accurately re-produce solutions to 

the BE for a number of different Couette flows of varying Knudsen numbers. 

Unfortunately, on close inspection we can see the major flaw of the method, namely, that 

after a few collision times noise starts to creep in the result and contaminates the variance 

reduced solution.  
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Figure 4: Plots of the solution velocity (normalized to wall speed) of a 1D Couette flow at Kn=1.0. The 

plot is of the L1 norm of the solution with the VR solution (blue) comparing reasonably well to the 

direct DSMC result show in red1 (timesteps are on the abscissa). The error slowly grows until it 

overwhelms the solution but at this Kn number we reach steady state before this happens.  

The noise growth is caused by an increase in the number of very heavy ( ∞→iW ) 

and very light ( 0→iW ) particles that represent the equilibrium distribution; the divergence 

seems to be exponential in nature but of a long time constant. Specifically, our suspicion is 

that the collision steps allow a random addition or subtraction of particles that represent 

equilibrium at a certain velocity class. As the simulation progresses these do not completely 

cancel out and we get a random drift that is somewhat analogous to a random walk. 

Consequently, as the weights drift away from being O(1) the variance reduction is destroyed.  

4. Outlook 

The approach presented in Part II seems to provide an accurate, efficient, and 

elegant method of modeling low speed flows. Unfortunately, due to the stability issue just 

described we are limited to runs shorter than 4-5 mean collision times. This is a serious 

limitation that practically precludes the efficient simulation of flows characterized by Kn<1.   

The main objective of this thesis is to address this limitation in a satisfactory manner.  

Although it is fairly easy to see “mechanically” how the instability issue arises by 

looking at collision weight propagation scheme in Figure 3, it is harder to fit this issue (and 

indeed the whole scheme) in a more general theoretical framework. It would be of most 

                                                
1 But at a wall speed of 10m/s for DSMC vs. 1m/s for the VR result. 
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interest if such a framework can be found and if it would point to a robust method of 

controlling the divergence of the weights.  

Alternatively, I can envision a number of different ways of overcoming this 

limitation; using mass/momentum/energy consideration to derive restrictions on weights 

may lead to a stable scheme. A different approach would be to reduce the noise by 

smoothing the “troublesome” particles either by averaging, filtering or perhaps a particle re-

meshing approach similar to [16]. Finally, using the course-grained framework of Part I is 

also a possibility, since within this framework steady state solutions can be found using short 

transient evolution periods.   
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6. Appendix: Details of variance reduction weighting 

scheme for DSMC 

Figure 5 shows two sketches describing the concept of variance reduction in DSMC using 

parallel processing. Starting from identical initial conditions, equilibrium and non-equilibrium 

runs are represented by particles with identical positions and velocities but different weights. 

At a point x
r  the average velocity is ∑ iC

r
for the non-equilibrium flow and ∑ ii WC *

r
 for 

the equilibrium flow, the difference between the two (∑ − ii CW
r

*)1( ) is the variance 

reduced flow velocity. The challenge in this technique lies in developing rules for processing 

and assigning weights that ensure that for every particle 
)(

)(

iNE

iEq
i

CP

CP
W r

r

=  at all times.  

 
Figure 5: Sketch of two different Couette flows modeled using DSMC. The one on the left is a non-

equilibrium flow with moving walls while the right sketch is of an equilibrium gas with fixed walls. 

Only weights distinguish one from the other.  

6.1. Convection and wall collisions 

The calculation is started in an equilibrium configuration with all iW ’s assigned a value of 

1.0. The standard DSMC convection step is used to update the positions of the particles in 

the domain and only particles that interact with the walls are assigned updated weights.  

When a particle hits a wall it is assigned a new velocity vector iC
r

, and a weight 
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Here wallV  is the wall speed and xC  is the velocity assigned to the particle by DSMC in the 

direction of the wall’s movement and mpvC  is the most probable speed of the equilibrium 

Maxwell-Boltzmann distribution2.  

6.2. Particle-particle collisions  

The simple fact to keep in mind when designing the collision weight update formulas 

is that while a standard DSMC particle represents EffectiveN  real molecules, a weighted particle 

in the equilibrium simulation represents Effectivei NW *  molecules. When this is done, 

everything else follows quite naturally as is explained in the next subsections. 

6.2.1. Collision candidates and probabilities   

We start by devising a method of calculating collision probabilities that is common 

to both the equilibrium and non-equilibrium flows. We proceed in a manner that is identical 

to what is done in standard gas kinetic theory (ie. calculate the number of particles swept in 

unit time etc.) and arrive at the conclusion that in a time dt and volume V a particle i will 

have: 
V

dtCWN ijjEffective

2

σ  collisions with particle j (where particles i and j have velocities iC
r

 and 

jC
r

respectively and ijC  is their relative speed)3. Consequently, if one would select 

V

dtMXNEffective

2

σ  collision candidates and collide them with a probability 

 
MX

CW
P ijj

iEq =,      and      
MX

CW
P iji

jEq =,           (s.t. )(max ii
celli

CWMX
r

∈
= ) 

                                                
2 This is not the only possible procedure to assign weights and in fact this procedure assumes a fixed gas 

density (ie. the incoming particles on average have a known density). An alternative  

( )(/)(* iNEiEqii CPCPWW
rr

=′ ) would work but the variance reduction is reduced appreciably in a similar fashion 

to the collisions update formulas.  
3 NB: The collision rate (from a weighted particle’s perspective) is Asymmetric! The number of collisions 

particle i faces is 
V

dtCWN ijjEffective

2

σ  while particle j is expected to have 
V

dtCWN ijiEffective

2

σ  collisions.  
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one would guarantee the correct collision rate in a cell for the weighted particles. The above 

formulae reduce to the standard DSMC ones if a unit weight is used.  

6.2.2. Weight propagation scheme for collisions  

To understand the basis for the collision update formula let us look at 
iC

N r  particles 

of class iC
r

 that have collision probabilities NEP  and EqP  and end up in class iC ′
r

 as illustrated 

in Figure 6. In the non-equilibrium case (blue) we start out with 
iC

N r  collision candidates of 

class iC
r

 and end up with
iCNE NP r*  particles of class iC ′

r
 and 

iCNE NP r*)1( −  particles that 

stay in class iC
r

. Likewise, in the equilibrium case (red), when we collide iW *
iC

N r equilibrium 

candidate particles with probability EqP  we would end up with iW *
iC

N r * EqP  particles at iC ′
r

 

and iW *
iC

N r *(1- EqP ) that stay at iC
r

.  
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Figure 6: illustration of expected number of accepted and rejected particles for the non-equilibrium 

(Blue) and equilibrium (Red) if processed with probability NEP  and EqP  respectively.  

The key to this scheme is to realize that we are executing the collisions with a 

probability NEP  not EqP , to retain the equilibrium distribution we need to have the accepted 

and rejected particles represent the correct number of equilibrium particles as if they have been 

collided at the correct probability. But since there is NEP *
iC

N r  particles (each with a weight 

iW ′ ) that represent iW *
iC

N r * EqP  particles the post collision weight for accepted particles 

should be: 
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Likewise, to correctly account for the difference between the equilibrium and non-

equilibrium rejection rate we would need to modify the weights of the rejected particles so 

that:  

i
NE

iEq
i W

P

P
W

−
−

=′
1

1 ,  and j
NE

jEq
j W

P

P
W

−
−

=′
1

1 , . 

One fundamental difference between our work and that of Wagner et el. [18] and Chun et el. 

[11] is that they account for different collision rates by introducing extra particles to 

represent deviation while our approach does that by modifying expected weights. Although 

we do not create new particles, we still have problems simulating Kn<1 flows efficiently 

because of the weight instability issue explained in Section 3.4. 

 


