A DSMC-based variance reduction formulation for low-signal flows

H.A.Al-Mohssen <u>husain@mit.edu</u> N.G. Hadjiconstantinou <u>ngh@mit.edu</u>

> Mechanical Engineering Dept., MIT September 2009

Motivation

Boltzmann Equation(BE): describes the evolution of PDF f=f(x,c,t)

$$\frac{\partial f}{\partial t} + \boldsymbol{c} \cdot \frac{\partial f}{\partial x} = \left[\frac{\partial f}{\partial t}\right]_{\text{Collision}} = \frac{1}{2} \int \int \int \int (\delta_1' + \delta_2' - \delta_1 - \delta_2) f_1 f_2 c_{12} \sigma \, d\Omega \, d\boldsymbol{c}_1 \, d\boldsymbol{c}_2$$

Direct Simulation Monte Carlo simulates the BE, the uncertainty in "measurement" is:

 $\sigma_{\text{Uncertainty}} = \frac{\sigma_{\text{Thermal}}}{\sqrt{N_{\text{Samples}}}} \Rightarrow \text{problems in low signal} (= \text{deviation from equilibrium}) \text{ flows}$ (eg. low *Ma* flows).

We want:

$$\sigma_{\text{Uncertainty}} = \frac{\sigma(\text{Signal})}{\sqrt{N_{\text{Samples}}}} \qquad \text{s.t. } \sigma(\text{Signal}) \to 0 \text{ as Signal} \to 0$$

Related Work:

- Öttinger, 1997: polymer simulation
- Chun and Koch, 2005: linearized BE
- Hadjiconstantionu, et el. 2004-2009: deviational particles

Notation

Let $\langle R \rangle$ be a property of interest (eg. $u_x = \langle c_x \rangle, \langle c_x^4 \rangle$ etc.). In general, it can be written as:

$$\langle R \rangle = \int R(c) f(c) dc$$
 and likewise for $f_{eq} \neq f$, $\langle R \rangle_{eq} = \int R(c) f_{eq}(c) dc$

Where f_{eq} is an arbitrary reference (equilibrium) distribution

An estimate of this quantity (that we will call \overline{R}) can be calculated by generating samples c_i from $f(c_i)$

 $\Rightarrow \overline{R} \simeq \frac{1}{N} \sum_{i=1}^{N} R(c_i)$

if $\int g(c) dc$ is known deterministically & $f(c) \simeq g(c)$

Variance Reduction Approach

$$I = \int f(c) dc \Rightarrow \overline{I} = \frac{1}{N} \sum_{i=1}^{N} f(c_i) \tag{1}$$

$$I = \int \{f(c) - g(c)\} dc + \int g(c) dc \tag{2}$$

$$\downarrow$$
if $\int g(c) dc$ is known deterministically & $f(c) \simeq g(c)$

(2) can be estimated more efficiently than (1)

Hadjiconstantinou, Baker, Homolle, Radtke

Hadjiconstantinou, Baker, Homolle, Radtke

This Work

Illustration

Illustration

Formulation

• Our Formulation:

• Use an **unmodified** DSMC to directly calculate \overline{R}

$$\overline{\boldsymbol{R}} \simeq \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{R}(\boldsymbol{c}_i)$$

- Use an **auxiliary** simulation to calculate \overline{R}_{eq} . The auxiliary simulation does not perturb the main DSMC simulation and uses the same samples c_i
- How can we calculate both \overline{R} and \overline{R}_{eq} from the same set of data?
 - Use weights!

Auxiliary Simulation Using Weights

Likelihood ratios $(W_i = W(c_i) = f_{eq}(c_i)/f(c_i))$:

$$\langle \boldsymbol{R} \rangle_{\text{eq}} = \int \boldsymbol{R}(\boldsymbol{c}) f_{\text{eq}}(\boldsymbol{c}) \, d\boldsymbol{c} = \int \boldsymbol{R}(\boldsymbol{c}) \left(\frac{f_{\text{eq}}(\boldsymbol{c})}{f(\boldsymbol{c})} \right) f(\boldsymbol{c}) \, d\boldsymbol{c} = \int \boldsymbol{R}(\boldsymbol{c}) \, W(\boldsymbol{c}) \, f(\boldsymbol{c}) \, d\boldsymbol{c}$$
$$\Rightarrow \ \overline{\boldsymbol{R}}_{\text{eq}} = \ \frac{1}{N} \sum_{i=1}^{N} W_i \, \boldsymbol{R}(\boldsymbol{c}_i)$$

$$\overline{R}^{\text{VR}} = \overline{R} - \overline{R}_{\text{eq}} + \langle R \rangle_{\text{eq}} = \frac{1}{N} \sum_{i=1}^{N} (1 - W_i) R(c_i) + \langle R \rangle_{\text{eq}}$$

Conditional Weight Update Rules

For every particle at c_i there will be <u>on average</u> $P_{c_i \to c'_i}$ particles at c'_i . If we have x particles at c_i there will be (at c'_i)

- $x P_{eq:c_i \rightarrow c'_i}$ particles in an Equilibrium simulation
- $x P_{c_i \rightarrow c'_i}$ particles in a Non-equilibrium simulations

Since we advance particles per the Non-equilibrium rules each particle at needs to simulate:

$$\frac{P_{\text{eq:}c_i \rightarrow c'_i}}{P_{c_i \rightarrow c'_i}}$$

🔸 т

The final collision rules

Accepted

$$W_i \& W_j \to W_i W_j$$

Rejected

$$W_i \to W_i \; \frac{1 - W_j \, \hat{c}_r}{1 - \hat{c}_r} \; \& \; W_j \to \; W_j \; \frac{1 - W_i \, \hat{c}_r}{1 - \hat{c}_r}$$

Stability

Problem:

• These weight update rules are not stable \Rightarrow loss of Variance Reduction

Solution:

- From definition $W_i = f_{eq}(c_i)/f(c_i) \Rightarrow$ we need knowledge of PDF
- \bullet Re-construct the PDF from samples, this is a standard numerical method known as Kernel Density Estimation. Specifically, for every particle at c replace

$$f(\boldsymbol{c}_i) \to \hat{f}(\boldsymbol{c}_i) = \int K(\boldsymbol{c}' - \boldsymbol{c}) f(\boldsymbol{c}') d\boldsymbol{c}'$$
 since $\hat{f}(\boldsymbol{c}_i) \to f(\boldsymbol{c}_i)$ as $K(\Delta \boldsymbol{c}) \to \delta(\Delta \boldsymbol{c})$

Implementation:

• For accepted particles

$$W_i \to \hat{W}_i = \frac{1}{\|S_i\|} \sum_{j \in S_i} W_j$$
 (average weights within a sphere of radius ε in velocity space)

σ_u 1000 100 DSMC 1,000,000 less samples for the same 10 uncertainty at 5cm/s! _1 **VR-DSMC** -0-0.1 $U_{\rm wall}$ 1×10^{-4} 5×10^{-4} c_0 0.001 0.005 0.010 0.050 0.100 ≈ 5 cm/s

Relative Sampling Uncertainty

MITMECHE

Conclusions

Main advantage: the DSMC simulation is never perturbed

Small increase in computational cost

• Need to find NN of some particle \Rightarrow total cost scales as $O(N_{Cell} Log(N_{Cell}))$

Stability Issues:

- KDE introduces bias that is a function of ε
- for <u>low Kn N_{Cell} </u> for a <u>Stable</u> and <u>Accurate</u> solution

Looking forward:

- Other collision Models
 - BGK
 - Maxwell
- Improve bias for a given N_{Cell}

More info including sample code: http://web.mit.edu/husain/www

Appendix

DSMC with weights: Scattering probability

- DSMC is a set of probabilistic steps
- Start by selecting the same number of candidate particles:

Candidates= $N_{Eff}N_{Cel}(N_{Cell}-1)MX\sigma\Delta t/V_{Cell}$

if we choose particles of velocity classes c_i and c_j with weights W_i and W_j respectively there will be:

 $(N_{Eff})^2 W_i W_j C_{ij} \sigma \Delta t / V_{Cell}$ Collisions

to correctly account for this we use the following collision probabilities:

$$P_i = \frac{W_j c_{ij}}{MX}$$

$$P_j = \frac{W_i c_{ij}}{MX}$$

