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Abstract

The goal of the present thesis is to develop a practical method for simulating low-
signal kinetic (small-scale) gaseous flows. These flows have recently received renewed
attention in connection with the design and optimization of MEMS/NEMS devices
operating in gaseous environments; they are typically described using the Boltzmann
equation which is most efficiently solved using a stochastic particle simulation method
known as direct simulation Monte Carlo (DSMC). The latter is a simple and versatile
simulation method which is very efficient in producing samples of the single particle
distribution function which can be used for estimating hydrodynamic properties. Un-
fortunately, in cases where the signal of interest is small (e.g. low-speed flows), the
computational cost associated with reducing the statistical uncertainty of simulation
outputs becomes overwhelming.

This thesis presents a variance reduction approach for reducing the statistical
uncertainty associated with low-signal flows thus making their simulation not only
possible but also efficient. Variance reduction is achieved using a control variate
approach based on the observation that low-signal flows are typically close to an
equilibrium state. As with previous variance reduction methods, significant variance
reduction is achieved making the simulation of arbitrarily small deviations from equi-
librium possible. However, in contrast to previous variance-reduction methods, the
method proposed, which we will refer to as VRDSMC, is able to reduce the variance
with virtually no modification to the standard DSMC algorithm. This is achieved
by introducing an auxiliary equilibrium simulation which, via an importance weight
formulation, uses the same particle data as the non-equilibrium (DSMC) calculation;
subtracting the equilibrium from the non-equilibrium hydrodynamic fields drastically
reduces the statistical uncertainty of the latter because the two fields are correlated.
By retaining the basic DSMC formulation, in contrast to previous approaches, the
VRDSMC approach combines ease of implementation with computational efficiency
and the ability to simulate all molecular interaction models available within the DSMC
formulation.

Our validation tests show that the proposed VRDSMC method provides consid-
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erable variance reduction for only a small increase in computational cost and ap-
proximation error compared to equivalent DSMC simulations. In other words, by
addressing the major weakness associated with DSMC, VRDSMC is well suited to
the solution of low-signal kinetic problems of practical interest.

Thesis Supervisor: N. G. Hadjiconstantinou
Title: Associate Professor
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Chapter 1

Introduction and Context

The study of rarefied gases has been an active field of research for well over a century,

with initial work by Boltzmann [1] paving the way to the widespread acceptance of

the molecular theory of gases. The Boltzmann Equation (BE) written more than

a century ago is still in widespread use in everyday engineering and science with a

surprisingly small amount of change.

Recent interest in small-scale, low-speed, gaseous flows [39] has renewed the need

for efficient methods for solving Boltzmann-type kinetic equations [40]. In this work,

we develop a method which addresses the major weaknesses associated with one of the

most successful methods of simulating the Boltzmann equation, known as the Direct

Simulation Monte Carlo method (DSMC), by reducing the statistical uncertainty

associated with sampling hydrodynamic quantities in low-signal simulations.

1.1 Thesis Overview

In the present Chapter, we present a detailed introduction to the problem of interest,

namely low-signal gaseous flows, as well as some of the basic ideas in the field of

kinetic gas theory and kinetic gas simulation. Furthermore, we provide an overview

of the best currently available methods for numerically describing slow rarefied gas

flows. In Chapter 2 we introduce the basic ideas used in this Thesis for achieving

variance reduction. Specifically, we discuss the concept of importance weights and
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show how they can be used to produce variance-reduced estimators that address the

weakness associated with DSMC. In the same Chapter we also give an overview of

Kernel Density Estimation, which is another important tool extensively used in this

work.

In Chapter 3 we present a new variance-reduced DSMC method which we will

refer to as VRDSMC. Chapters 4 and 6 present further refinements and validation of

the VRDSMC method.

In Chapter 6 we also introduce an alternative approach for deriving some of the

theoretical results of Chapter 3: this new approach not only generalizes the derivations

of the Chapter, but also provides a theoretical framework for extending our work to

other types of stochastic particle simulation methods. In Chapter 7 we apply our

refined VRDSMC method to a more complex and detailed problem. Finally, we

conclude in Chapter 8 with a summary and prospectus.

1.2 Dilute Gases at Small Scales

Although the majority of dilute-gas hydrodynamics can be described using the Navier-

Stokes equations, when the molecular mean free path becomes of the order of the

characteristic flow lengthscale, the latter description is no longer valid. This hap-

pens at low pressures when the mean free path is large [12] or in small scale devices

[57] where characteristic lengthscales are small. This Thesis focuses on the latter

applications that have become commonplace with the advent of MEMS/NEMS [18]

(We note here that due to the applications associated with reentry vehicles in the

upper atmosphere, this field is frequently referred to as Rarefied Gas Dynamics).

The hydrodynamics of dilute gases at all scales can be described using kinetic theory

[40, 46, 4, 1], which describes gases at the molecular level using probability distribu-

tions. For dilute gases, the assumption of molecular chaos [40] and binary collisions

allows kinetic theory to describe the gas in terms of the single particle distribution

function f(x, c, t) which gives the number of particles in a differential volume at lo-

cation {x, c} in phase space at time t. For engineering applications, many gases at
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standard temperature and pressure satisfy the dilute gas criteria [12, 4]. The evolu-

tion of f(x, c, t) is governed by the Boltzmann equation that is described in Section

1.3.

The degree of breakdown of the Navier-Stokes description is quantified by the

Knudsen number Kn = λ/H, where λ is the molecular mean free path and H is a

characteristic lengthscale [2]. For a hard-sphere gas which can be analyzed exactly

in some ways, the (equilibrium) value of λ is given by (
√

2π n d2)−1 where d is the

gas diameter and n is the gas number density. Because not all gases can be well-

approximated by hard-spheres, usually a viscosity-based definition is used for the

mean free path, namely λ = µ
P0

√
πRT0

2
. The mean time between collisions is defined

as τcollision = λ
c
, where c̄ =

√
8RT0

π
is the mean molecular speed. Here R is the gas

constant, T0 is the gas equilibrium temperature and P0 is the gas equilibrium pressure.

As expected, when Kn� 1, molecular motion is diffusive and the Navier-Stokes

description holds. For Kn � 1, particle motion is primarily collisionless (ballistic)

and can be described by a collisionless Boltzmann equation. In the regime 0.1 .

Kn . 10, particle motion is neither purely diffusive nor purely ballistic. As a result,

a Navier-Stokes description, in general, cannot describe this regime.

The present Thesis is focused on developing efficient methods for solving the gov-

erning kinetic equation describing gas dynamics in this regime. At atmospheric pres-

sure, 0.1 . Kn . 10 corresponds to a characteristic length scale of 0.5µm . H .

5nm.

1.3 Boltzmann Equation

In this section we present the equation governing the evolution of the particle distri-

bution function in dilute gases known as the Boltzmann Equation (BE). The BE

∂f

∂t
+ c · ∂f

∂x
=

[
∂f

∂t

]
Collision

(1.1)[
∂f

∂t

]
Collision

=

ˆ ˆ
(f ′f ′1 − ff1) crσdΩdc1
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can be rigorously derived from the Liouville Equation [6] and is given here for a hard-

sphere gas in the absence of body forces. Here cr is the magnitude of the relative

velocity of particles with velocities c and c1

cr = ‖cr‖, cr = c− c1

and

f = f(x, c, t) f1 = f(x, c1, t) f ′ = f(x, c′, t) f ′1 = f(x, c′1, t),

where c′, c′1 are the post-collision velocities, related to the pre-collision velocities

through the scattering angle Ω and σ the molecular cross section. In this section

and in the remainder of the paper, unless otherwise stated, integration in velocity

space extends over R3, while the solid angle integration is over the surface of the unit

sphere.

It is sometimes useful is to re-write the collision term in Equation 1.1 in the

following equivalent “weak” form [46]:

[
∂f

∂t

]
Collision

=
1

2

ˆ ˆ ˆ
(δ′1 + δ′2 − δ1 − δ2) f1f2crσdΩdc1dc2 (1.2)

where δ1 = δ(c1 − c), δ2 = δ(c2 − c), δ′1 = δ(c′1 − c), δ′2 = δ(c′2 − c).

The hard-sphere collision model assumes particles only interact when their centers

are a molecular diameter away from each other giving a molecular collision cross

section σ = πd2

4
that is constant. The hard-sphere model is not the only interaction

model; many others exist [12], including the Maxwell collision model (σ ∝ 1
cr

), and the

Variable Hard Sphere (VHS) model (σ ∝ c−Ar for a constant A > 0) which reproduces

a more realistic transport coefficient (e.g. viscosity) dependence on temperature.

The NS system of equations can be derived from the BE through what is known

as the Chapman-Enskog Expansion [19] in the limit Kn � 1. Connection to hydro-

dynamics is made through the moments of f(x, c, t). Specifically, the gas number

density is defined as

〈n〉 =

ˆ
f dc
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the flow velocity as

〈u〉 =

´
cf dc´
f dc

and so on. The angled brackets here are used to remind us that these quantities are

moments of f . In the remainder of this Thesis, we will be using the standard hydro-

dynamic notation that does not involve brackets, thus using n to denote the number

density, u ={ux, uy, uz} the flow velocity, T the temperature and q = {qx, qy, qz} the
heat flux vector. In the interest of simplicity, we will use these symbols to also denote

the cell-averaged simulation estimates of these quantities. Cell-averaged estimators

are described in more detail in Appendix B.

1.4 Low-Signal Problems

Although the field of kinetic theory has been dominated in a large part of the 20th

century by applications related to high-speed/low-pressure problems that are common

in the aerospace industry [24, 41], this has slowly changed over last two decades. As

the development of MEMS and small applications has matured, it has become more

common to find gas problems that can not be accurately described by the NS system

of equations, even with slip corrections, as the characteristic length-scale decreases.

Today, the development of accurate engineering models of such flows is not only

important for the fundamental understanding, but also for the design [25, 57], and

even fabrication of such devices [31].

An important differentiating feature of micro applications is that they are slow

flows with low Reynolds and Mach (Ma) numbers, in contrast to older applications

that were typically characterized by Ma & O(1). Because the deviation from equi-

librium scales with the Mach number [25], this regime change (Ma � 1 instead of

Ma ≥ 1) has resulted in new challenges in the search for efficient methods for solv-

ing the BE. In particular, when performing molecular-like simulations of such flows,

low Ma translates to low signals that require overwhelming amounts of sampling to

discern.

As an example of a low-signal (i.e. slow flow) MEMS device, let us look at a
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simple hard-drive head. A hard drive head is suspended over a rotating platter using

hydrodynamic forces that enable it to read and write data at high density. For a

typical 4200rpm drive, the gap between the drive surface and the head is about 30nm

[64] resulting in Kn = O(1). However, the characteristic velocity associated with the

disk is Ma . 0 .1 which is hard to model using today’s simulation methods as we will

elaborate on in the next section.

1.5 Solving the Boltzmann Equation

There are a number of general approaches to solving the BE for low-signal flows. One

route is to numerically solve the equation as in the work of Sone et. al. [7, 46]; this

approach is challenging because, in general, the solution has to be discretized in 7 di-

mensions (3 spatial, 3 velocity and time) which becomes computationally prohibitive.

Though potentially very accurate, explicit numerical solutions of the BE are very

rare, as they are typically achieved by exploiting certain problem symmetries and are

usually obtained at great computational expense [7, 25]. Analytical approximations

can also be very powerful, especially if they lead to descriptions that are simple or

numerically tractable. Sections 1.5.1-1.5.3 discuss some of these approaches.

1.5.1 Linearization of the Boltzmann Equation

Due to the complexity associated with the Boltzmann collision operator, most theo-

retical studies proceed by linearizing this operator. This approximation is only valid

for small departures from equilibrium which fortunately, are very frequent in practical

applications of interest. The resulting linearized BE can be solved numerically [8] or

analytically.

1.5.2 Slip Flow Models

Slip flow models attempt to push the regime where the NS description can be used

beyond Kn � 0.1 up to Kn ≈ 0.1 by applying a number of corrections to the wall

26



boundary condition. This approach works because the breakdown of the continuum

assumption happens gradually and for small Knudsen numbers is localized around

boundaries [39]. Depending on the geometry in question, and the boundary conditions

of interest, the NS description with slip can be maintained for problems withKn ' 0.4

or more [34].

When satisfied, slip-flow models are by far the best method of solving slow kinetic

problems. This is because they are computationally cheap and are derived rigorously

from the Hilbert expansion of the linearized BE [46].

1.5.3 The BGK Model

The Bhatnagar-Gross-Krook collision model [4]

[
∂f

∂t

]
Collision

= ν(c)[f(c)− fl(c)] (1.3)

also referred to as the BGK model is sometimes used to replace the Boltzmann col-

lision operator. Here fl is a local equilibrium Maxwell-Boltzmann distribution. This

model essentially makes the rather crude assumption that the role of the collision

operator is to drive the system towards local equilibrium at a rate ν(c). Despite the

crudeness, the BGK method is probably the most widely used collision model after

the BE itself and it has been used very successfully in many (especially isothermal

[6]) applications [23]. Although, in this work, we focus on solving kinetic flows us-

ing the exact hard-sphere BE, our methodology is applicable to direct Monte Carlo

Simulations of the BGK Model [67].

1.6 Direct Simulation Monte Carlo (DSMC):

Although quite powerful, analytical or deterministic numerical solutions of the Boltz-

mann equation can only be obtained for very simple specialized problems [46]. In other

words, the majority of engineering problems of practical interest are not amenable to

such approaches.
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In principle, the BE can be solved using a molecular-dynamics approach. However

in 1963 Bird invented DSMC [12], a stochastic particle method which has gone on

to be by-far the most successful numerical method for solving the BE. At the heart

of its success is the ability to solve engineering (complex) problems using modest

computational resources without requiring complex setup or discretization. Moreover,

DSMC is unconditionally stable, and very easily parallelizable (see [36, 54, 24]).

Advection Step

Yes

No

Collision Step

Select i & j
Accept with probability 

cr� � cr �MX ci � ci�, c j � c j�

ci � ci, c j � c j

❶ Initialize N particles
at ci

❷

❹Sample non-Equilibrium 
cell properties

Accepted particles 

Rejected particles 

❸

Figure 1-1: A flowchart of the standard DSMC method. We will return to variations
of this in the next chapters as we build the method that is the subject of this Thesis.

As usual in particle methods, the distribution function in DSMC is represented

by N particle-simulators by writing

f ≈ NEff

N∑
i=1

δ(x− xi)δ(c− ci) (1.4)

where each particle represents NEff physical molecules. The computational domain is
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divided into cells that contain Ncell particles. The Boltzmann equation is integrated

in time by splitting molecular motion into a series of a collisionless advection and

collision sub-steps of length ∆t.

The advection sub-step updates the distribution function due to the action of the

advection operator
∂f

∂t
+ c·∂f

∂x
= 0 (1.5)

simulated by updating all the particle positions which move in a collisionless manner.

The collision sub-step updates the distribution function due to the action of the

collision operator

[
∂f

∂t

]
Collision

=
1

2

ˆ ˆ ˆ
(δ′1 + δ′2 − δ1 − δ2) f1f2crσdΩdc1dc2 (1.6)

Collisions take place between particle partners selected randomly within the cell. A

convergence proof for this algorithm in the limit of taking ∆t → 0 and ∆x → 0,

can be found in [10, 12], while an analysis of the error associated with the timestep

discretization can be found in [20].

Cell quantities of interest are calculated as averages over the sample particle sim-

ulators in that cell. The main steps, as summarized in Figure 1-1, are:

1. Initialize particles: Based on initial conditions, create particles in simulation

domain with positions xi and velocities ci.

2. Advection Step: Particle positions are updated based on their current veloc-

ities. For each particle

xi → xi + ∆tci

This step also includes boundary condition imposition, e.g. detecting wall in-

teractions and updating particle velocities based on the boundary condition.

3. Collision Step: For each cell Ncandidate = NEffN
2
cellMXσ∆t/(2V ) candidate
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particles from that cell are randomly selected and collided with probability

P = cr/MX

where MX is the maximum relative velocity in a cell. If a pair i and j are

accepted for collision, their velocities are updated according to

ci → c′i

and

cj → c′j

where the post-collision velocities c′i , c′j are calculated using a random scatter-

ring plane and conservation of momentum and energy. No velocity update is

performed for rejected particle pairs.

4. Sample step: Properties of interest are calculated by sampling particle sim-

ulators. For example, if 〈R(c)〉 =
´
R(c)f(c)dc then the DSMC estimate is

given by

R(c) = NEff

N∑
i=1

R(ci)

DSMC in Low-Signal Flows

Since the kinetic properties of interest are calculated as averages over samples from

each cell, the DSMC method produces results that are inherently stochastic in nature

and can be thought of as being “noisy”. For N samples, it is easy to show that, in

general, the variance of R, σ2{R}, will scale as

σ2
{
R
}
∝ σ2

R

N
(1.7)

where σR is a constant that is determined by the physical conditions of the problem of

interest (e.g. local gas temperature, velocity etc.); this is discussed in more detail by
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Hadjiconstantinou et. al. in [29]. Clearly, if we are interested in a constant relative

error
√
σ2{R}/〈R〉 then 〈R〉 → 0 requires N → ∞. In other words, as the problem

of interest approaches equilibrium (for example, the wall speed UW → 0 in a Couette

flow problem), more samples are needed to maintain a constant relative uncertainty

in our estimates and keep our solutions useful. In fact, due to the slow convergence

with N (σ{R} ∝ N−
1
2 ) low signal problems quickly become intractable.

1.7 Variance Reduction

Due to the overwhelming cost associated with resolving low-signal flows using Monte

Carlo formulations, variance reduction approaches have recently received considerable

attention: Baker and Hadjiconstantinou [36] showed that solving for the deviation

from equilibrium drastically reduces the statistical uncertainty and enables the simu-

lation of arbitrarily small deviations from equilibrium. In this general approach, the

BE is re-written in terms of the deviation function fd = f − fMB (with fMB being an

appropriately chosen reference Maxwell-Boltzmann distribution) and results in a set

of equations that can efficiently simulate fd.

The same authors also showed that variance-reduced formulations can be devel-

oped for both particle methods [61], referred to as deviational, and PDE-type ap-

proaches [36, 60]; a particle method that is equivalent to the one detailed in [61] has

also been proposed by Chun and Koch [35]. Unfortunately, in these particle methods,

if collision operator 1.1 is used, particle cancellation in the collision dominated regime

is required for stability [35, 61]; this adversely affects both accuracy and efficiency.

Later the variance-reduction approach was extended to a Discontinuous Galerkin

formulation in an attempt to combine the advantages of PDE approaches (high-order

convergence) with low-variance Monte Carlo evaluations.

1.7.1 LVDSMC

More recently, Homolle and Hadjiconstantinou [50, 54] have extended the deviational

simulation approach in a manner that removed the stability limitation reported by
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previous researchers [62, 35]. The main innovation was to introduce a special form

of the collision operator that can be written in a form that “pre-cancels” particle

creation and deletion leading to a significantly smaller number of simulation particles

and thus avoiding the problem of uncontrolled particle number growth. Using this

approach, they developed an efficient particle method for simulating the hard-sphere

gas known as LVDSMC (Low-Variance Deviational Simulation Monte Carlo) [50, 54].

LVDSMC differs from DSMC only in ways necessary to simulate the deviation from

equilibrium, and so combines the strengths of particle methods with substantially

reduced variance. This method has recently been extended to treat the relaxation-

time BGK approximation [66].

The starting point of the LVDSMC method is the hard-sphere collision integral

[51] [
∂f

∂t

]
Collision

= C(f, f) (c)

where

C(f, h) =

ˆ ˆ
(f ′h′1 − fh1) ‖c−c1‖σdΩdc1

By making the substitution f → fMB + fd, this can be re-written as

[
∂f

∂t

]
Collision

= C(fMB+fd, fMB+fd) = C(fMB , fMB)+C(fMB , fd)+C(fd, fMB)+C(fd, fd)

Since a Maxwell-Boltzmann distribution does not change under the influence of

the collision integral, the first term is zero while the last one is 2nd order and will be

ignored in the interest of simplicity. (In their work they are able to include it without

significant challenges [50, 54]). The linear terms are given by

C(fMB , fd) + C(fd, fMB) =

ˆ ˆ (
f ′MBf

′

d1 + f ′df
′

MB1

)
‖c−c1‖σdΩdc1−ˆ ˆ

fMBfd1‖c−c1‖σdΩdc1 −
ˆ ˆ

fdfMB1‖c−c1‖σdΩdc1 (1.8)
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In Equation 1.8 the first term of the right hand side can be written as

ˆ ˆ (
f ′MBf

′

d1 + f ′df
′

MB1

)
||c−c1||σdΩdc1 =

ˆ
K1(c, c1)fd(c1)dc1 (1.9)

while the second term can be written as

ˆ ˆ
fMBfd1‖c−c1‖σdΩdc1 =

ˆ
K2(c, c1)fd(c1)dc1 (1.10)

Finally the last term can be written as

ˆ ˆ
fMB1fd‖c−c1‖|σdΩdc1 = ν(c)fd(c) (1.11)

for some functions K1(c, c1), K2(c, c1), and ν(c) that are explicitly listed in the given

reference. The details of the method are quite complex but the key point about

the approach is that Equation 1.11 can be interpreted as a loss term that deletes

particles while the convolutions in 1.9 and 1.10 create deviational particles. We will

further discuss some of the features of LVDSMC in Chapter 5; We close by noting

that LVDSMC is a rigorous method (convergence proof can be found in [58]) that has

very little bias and it has been used to produce accurate results reliably over the last

few years. Most recently it has been extended to other collision models like the VHS

[58], although implementations are still in progress, primarily due to the additional

complexity involved.

1.8 Thesis Objective and Solution Approach

The objective of the present Thesis is to develop a numerical method that enables the

efficient simulation of low-signal rarefied gas flows. More specifically, our objective is

to produce a method that retains many of the features that made DSMC so successful

over the last four decades, while providing a significant advantage over DSMC in low-

signal flows that are of current interest. Specifically, we seek a method that is:

1. Accurate; in the sense that is rigorously based on the governing equation (BE).
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2. Simple compared to other methods that are used today to solve the BE. Ideally,

it will be only marginally more complex than DSMC.

3. Practical; in the sense that it should not have excessive resource requirements

(unlike for example [35, 62]) or only apply to special cases (e.g. [7, 65]).

4. Flexible; so that it can easily incorporate as many collision models or special

boundary conditions as possible.

5. Efficient; in the sense that allows the simulation of “large” problems ([42, 41])

with a cost that scales with linearly (or close to) N .

Although many of the methods examined in Section 1.7 have some of these features,

we believe that the method proposed in this Thesis holds a significant advantage in

terms of requirements 2 and 4.
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Chapter 2

Variance Reduction Using

Importance Weights and Kernel

Density Estimation

This Chapter will give a general introduction to a set of tools and concepts that are

critical to our proposed approach and that will be developed further in Chapters 3 and

6. The first three Sections of this Chapter give a general introduction of the concept

of importance sampling and how it can be used to find variance-reduced estimators of

some integrals that are common, especially when evaluating hydrodynamic properties.

A key concept that will be introduced and used will be that of importance weights.

Section 2.4 proceeds to show how stability problems can appear in applications when

importance weights are generated in a conditional manner and how the stability

problem can be dealt with. The final section introduces Kernel Density Estimators

(KDE) which are mathematical tools that will be instrumental in producing stable

variance-reduced calculation methods that are compatible with DSMC and low-signal

flows.
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2.1 Historical Introduction to Variance Reduction

Variance reduction is a well-established approach used in many numerical analysis

applications ranging from medicine to finance [32] in addition to many disciplines of

science and engineering [38]. Variance reduction using weights lends itself particularly

well to applications describing linear processes, for example, simulations of luminosity

[15], or radiation problems [9].

Variance reduction techniques have been used for particle simulation applications

in many different contexts especially when there is little interaction between the

simulated particles. In [33] a variance reduction technique is used to increase the

fidelity of the simulation of Brownian dynamics of suspended particles resulting in

major computational savings. Indeed, a major inspiration for this work is the use of

variance reduction to simulate long molecules or chains of molecules [47]. This work

has been extended to a more solid mathematical basis in [13].

In the area of kinetic gas simulation, variance reduction approaches using weights

have been used to simulate gas mixtures where one of the components is of trace

amounts and needs to have its properties accurately sampled. In such situations, it is

common for particles of different effective weights to be used, despite some challenges

related to random walks in momentum and energy as the simulation progresses in

time [12]. In particular, [14] introduced a method of conserving mass, momentum

and energy that has been successfully used in many applications [31].

2.2 Importance Sampling, Weights, and Variance Re-

duction

Before we can describe our variance reduction approach, we introduce importance

sampling, a useful tool that is used in many applications, especially in performing
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Figure 2-1: Plot of the functions used in the example described in Section 2.2. The
purple line is that of fs(c) which is a Gaussian function while the blue line is the more
complex function fu(c).

Monte Carlo integration. The simplest example is that of evaluating the integral

I =

b̂

a

fu(c)dc

for some complex function fu. This can be done by finding the average value of fu over

the interval [a, b], f̄u, and writing I = (b− a) fu. fu can be estimated by uniformly

generating N samples in the integration interval and using

fu =
1

N

N∑
i=1

fu(ci)
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where ci ∼ uniformly distributed from [a, b], where ∼ denotes “drawn from” the stated

distribution.

It is well established [32] that the error in the above estimate scales as 1√
N

which

implies that a large number of samples is required if an accurate estimate of the

integral is desired.

Is there some alternative formulation which results in a reduced uncertainty if

we are able to generate samples from a distribution fs such that fs ≈ fu? It turns

out that this can be readily done using a standard approach [48] called Importance

Sampling integration. The first step in this process is to define an importance weight

W (c) =
fu(c)

fs(c)
(2.1)

which can be evaluated at every sampling point ci. Here and in the rest of this Thesis

we will use the notation

Wi = W (ci)

Intuitively we interpret Wi as the ratio of the probability of finding sample ci in

the distribution fu for every sample we find in fs. Using this, we can write

I =

ˆ b

a

fu(c)dc =

ˆ b

a

fu(c)

fs(c)
fu(c)dc =

ˆ b

a

W (c)fs(c)dc

For N samples {ci}∼ fs we make the approximation fs(c) ' 1
N

N∑
i=1

δ(c− ci). This
can be used to approximate the integral I by direct substitution

I =
1

N

N∑
i=1

Wi

To illustrate this concept, let us evaluate the integral

I =

2̂

−2

fu(c)dc
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Table 2.1: Importance sampling integration using weights. The table compares the
uncertainty (standard deviation) of the importance sampling approach to that of
uniform sampling.

Error Standard Deviation
Sample Points Importance Sampling Uniform Sampling IS Advantage
10 0.0725 0.2074 2.86
100 0.0231 0.0611 2.64
500 0.0113 0.0272 2.42
5000 0.0035 0.0091 2.63

where

fu(c) = H(c) +
1

10
J0(3c)

such that J0 is a Bessel function of the 1st kind of order 0 and

fs(c) = H(c) =
e−

c2

2√
2π

is a function that can be sampled and evaluated analytically as shown in Figure 2-1.

By creating samples ci and calculating weights from Equation 2.1, I can be estimated

using the importance weights and compared to the exact result. Table 2.1 shows

the results of this approach for a number of different sample sizes and the benefit

importance sampling brings for this simple problem.

Importance Sampling can be thought of as a variance-reduction technique since

it reduces the variance associated with estimators. In the next Section we discuss a

related variance reduction technique based on the method of control variates.

2.2.1 Variance Reduction Using Importance Weights

Let us assume we are interested in evaluating

〈R〉 =

ˆ
R(c)f(c)dc (2.2)
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for some function f(c) that can be sampled using a Monte Carlo procedure as

R =
1

N

N∑
i=1

R(ci) (2.3)

An alternative approach to 2.3 is to use a function fref (c) (that is close to f(c))

such that the integral

〈R〉ref =

ˆ
R(c)fref (c)dc

can be evaluated in a deterministic way. By rewriting Equation 2.2 as

〈R〉 =

ˆ
R(c)f(c)dc =

ˆ
R(c)f(c)dc−

ˆ
R(c)fref (c)dc+

ˆ
R(c)fref (c)dc

and judiciously choosing fref , we can obtain the following variance-reduced estimate

of 〈R〉 (that will be labeled RV R for the rest of this document)

RV R = R−Rref + 〈R〉ref (2.4)

Provided fref is appropriately chosen, this approach can have a substantial advantage

in estimating 〈R〉 compared to Equation 2.3 [48]. Using the device of weights, defined

here as

Wi =
fref (ci)

f(ci)

expression 2.4 becomes

RV R =
1

N

N∑
i=1

(1−Wi)R(ci) + 〈R〉ref (2.5)

In other words, provided fref is selected such that ‖Wi − 1‖ � 1 , this approach

results in an estimator with significantly smaller variance[63]. This is illustrated via

an example in Section 2.3.

Low Signal Flows and Variance Reduction The variance reduction approach

just described lends itself naturally for our purposes: in DSMC, the hydrodynamic
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properties of interest (density, velocity, etc.) are simply integrals of the form (2.2) that

are estimated via sampling leading to expressions such as 2.3. As will be detailed in

the next chapters, the main thrust of this work is to use variance-reduced estimators

of the form 2.5 to accurately evaluate hydrodynamic properties of interest.

2.3 Variance Reduction Magnitude as a Function of

Deviation From Equilibrium: a Simple 1D Prob-

lem

Before we proceed, we would like to discuss some properties of the variance-reduced

estimator R̄V R (see Equation 2.5) introduced in the last Section. Specifically, the goal

of this section is to examine how the variance of this estimator, σ2{RVR}, depends on
f and fref . Ideally we would like σ2{R̄V R} → 0 as f → fref sufficiently fast so that

arbitrarily small deviations from equilibrium can be sampled (with finite resources).

We will see in Chapter 3 that this property is the key feature that will allow us to

simulate kinetic problems that are arbitrarily close to equilibrium.

To proceed, let us consider a simple case where f(c) = 1√
2πς

exp(− (c−u)2

2ς2
) and

fref (c) = 1√
2πς

exp(− c2

2ς2
) for some constant ς. Let us assume that we are interested in

〈c〉 =
´
cf(c)dc (known here analytically, 〈c〉 = u). A Monte Carlo evaluation of this

integral results in statistical uncertainty characterized by a variance of ς2

N
, where N

is the number of samples. Clearly as u→ 0 the relative statistical error
√
ς2/N

u
→∞.

It is precisely this phenomenon that prevents DSMC from resolving low-signal flows.

We now proceed to find how the statistical uncertainty associated with c̄V R scales

with u. If we take N samples {ci} generated from the distribution f(c) the corre-

sponding weights are:

W (c) =
fref (c)

f(c)
= exp

[
u(u− 2c)

2ς2

]

And the set {ci,Wi} (where Wi = W (ci) =
fref (ci)

f(ci)
) allows us to sample the properties
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Figure 2-2: Left: Plot of distribution functions f and fref both of which are Gaus-
sian with the same variance(ς2) but different means. Right: The corresponding set
{ci,W i} which samples the distribution fref . As f → fref , σ2{Wi} → 0.

of fref . A sample set is illustrated on the right plot of Figure 2-2.

We start by using Equation 2.4 to write a variance-reduced estimator of 〈c〉

cVR = c− cref + 〈c〉ref

Since the last term is zero, the estimator becomes

cV R =
1

N

N∑
i=1

(1−Wi) ci

Of particular interest is the behavior of the variance of this estimator for small
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signals (u→ 0). This can be analytically evaluated by using the definition of variance:

σ2 {x} =

ˆ
x2f(x)dx−

(ˆ
xf(x)dx

)2

yielding

σ2 {(1−Wi) ci} =

ˆ
c2 (1−W (c))2 f(c)dc− u2

which can be evaluated to

σ2 {(1−Wi) ci} = eu
2/ς2(u2 + ς2)− ς2

When u2 � ς2 this can be expanded as

σ2 {(1−Wi) ci} '
(
u2

ς2
+ 1

)(
u2 + ς2

)
− ς2 = 2u2 +O(

u4

ς4
)

Ignoring the higher order term we see that the variance scales like u2 and the variance

of cV R will go to 0 as u → 0. In other words, the variance-reduced estimator will

maintain its utility regardless of how small u becomes. Alternatively, the relative

statistical error
√

2u2/N

u
=
√

2
N

remains constant and independent of u as u → 0.

This result is ideal because it implies that for a given relative statistical uncertainty,

arbitrarily small signals (u) can be captured at a cost that does not scale with u.

2.4 Variance Reduction and Stability: a Biased Coin

Example

To further explore the ideas introduced up to this point and to set the stage for the

introduction of principles that we will need later, let us examine an other simple “toy”

problem that is based on coin flipping. Let {0, 1} (or equivalently {heads , tails}) to be

the space of allowed samples ci which are drawn from some specified coin distribution.

Furthermore, we assume there are two classes of coins that give us the samples ci with

different probabilities. The first distribution is a fair coin (denoted by subscript F )
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that starting from a state ci will arrive at state c′i with a probability

TF (ci → c′i) =
1

2
(2.6)

In other words, regardless of the current state the coin will give us 0 or 1 with

equal probability. In contrast, we have a biased coin (subscript B) that produces

states/samples c′i according to the probabilities

TB(ci → c′i = 1) =
1

2
+ α (2.7)

TB(ci → c′i = 0) =
1

2
− α (2.8)

for some 0 < α < 1
2
.

We can use direct sampling to evaluate the expected mean of the coin flip. As-

suming there are N samples {ci} from the biased coin, the expected mean is:

〈c〉B =
1

N

N∑
i=1

ci (2.9)

An identical formula can be written for the fair coin if we can directly generate

samples ci from it. Let us imagine that we are not able to directly sample the fair

coin but instead are given the set {ci,Wi} where the ci samples come from the biased

coin and Wi are chosen to properly reflect the relative likelihood that a particular

event happens in the fair experiment given that it happened in the biased experiment.

Clearly, using importance sampling, the mean of the fair coin can be written as

〈c〉F =
1

N

N∑
i=1

Wici

But since we already know that the long term value of this is 1
2
we can use Equation

2.4 to write the following variance-reduced estimator of the mean of the biased coin:

〈c〉VR,B =
1

N

N∑
i=1

(1−Wi) ci +
1

2
(2.10)
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We expect that this estimator will be much more efficient than estimator 2.9 as long

as W i ∼ 1 [63, 68].

This process becomes somewhat more complicated when attempting to generate

the set {Wi} sequentially based on previous states. Let us consider a set of samples

and weights {ci,Wi} as before; furthermore let us take a “step” updating the samples

ci → c′i according to the biased distribution Equation 2.7-2.8. Intuitively, we see that

for every biased coin that starts at ci and ends at 1 there are

TF (ci → 1)

TB(ci → 1)
=

1
2

1
2

+ α
=

1

2α + 1

fair coins that arrive at 1. In a similar fashion, for every biased coin that arrives at

0 there are
TF (ci → 0)

TB(ci → 0)
=

1
2

1
2
− α =

1

1− 2α

fair coins arriving at 0. For each new biased coin state c′i, we can represent the new

state of the fair coin {c′i,Wi
′} where

W ′
i = Wi

TF (ci → c′i)

TB(ci → c′i)
(2.11)

In other words if we continue to flip coins in a biased way, the set {c′i,Wi
′} will

continue to represent a fair coin distribution as long as weights are updated according

to Equation 2.11.

If we take a set of N coins and apply these update rules we will notice that the

variance of the set of weights σ2{Wi} will increase as we apply more and more steps

using Equation 2.11. Symbolically, if we take t steps we will have

lim
t→∞

σ2 {Wi} |t =∞ (2.12)

Practically, this means that we can not continue to apply the above update rule

and still have a useful variance-reduced estimator of the properties of the biased coin.

To illustrate this we show in Figure 2-3 a numerical simulation of N = 1, 000 coins
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and plot the variance σ2{Wi}|t as a function of the number of times we update the

weights. Clearly, after a certain time, this approach is of little practical value.

Direct application of transition rules

“Stabilized” transition rules

Update (#)
1000 2000 3000 4000 5000 6000 7000

0.001

0.01

0.1

1

10

Σ2 �Wi � t

Figure 2-3: Illustration of different update rules for a simple iterative coin weight
update scheme. On the one hand the variance of the weights grows without bound if
we use the simple conditional weight update rule but we have a stable weight growth if
we use the stabilized update rules explained in the main text. This plot was produced
for α = 1

100
using N = 1000 simulated coins.

So what can be done to update the weights such that the simulation of the coin

state is stable over time? The answer lies in using more than the conditional prob-

ability of the change of state based on only a sample’s current state. Instead, we

explicitly estimate the distribution functions of biased coins fB(c) and the fair coins

fF (c). Since the N coin samples ci are drawn from the biased distribution, we can
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write

fB(0) =
||S0||
N

fB(1) =
||S1||
N

where Sci is the set of coins that are at ci and ‖Si‖ is the number of elements in that

set implying ||S0|| + ||S1|| = N and fB(0) + fB(1) = 1. Using importance sampling

we can apply a similar approach to calculate the distribution of fair coins:

fF (0) =
1

N

∑
i∈S0

Wi

fF (1) =
1

N

∑
i∈S1

Wi (2.13)

These relations allow us to write an estimate of weights of particles at ci which

utilizes the definition

Ŵi(ci) =
fF (ci)

fB(ci)
=

∑
i∈Sci

Wi

||Sci ||
(2.14)

rather than conditional probability argument 2.11.

We will call Equation 2.13 and Equation 2.14 our stabilization step because when

they are applied they have the effect of keeping the variance σ2{Wi} from growing

without bound, regardless of the length of the simulation. A plot of the variance of

such a stabilized simulation is given in Figure 2-3.

Conceptually, one reason we are able to stabilize the coin simulation is that we

are able to explicitly estimate the values of the distribution functions fB and fF

at the sample points c′i by counting the samples that are at each state instead of

estimating samples of these probabilities via the conditional probabilities T . We will

see later in Section 3.3.2 that our proposed variance-reduced simulation of the BE

has a stabilization step that is based on this idea. The stabilization step in that case

will be more complex for reasons we will describe in the next section.
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2.5 Kernel Density Estimation and Stability

In the last section we saw how the key to producing a stable propagation scheme for

weights is finding a way of estimating the unknown distributions fB and fF from their

samples. Unlike a coin that has only two states, we will be later interested in gas dis-

tributions that are over R3×R3 making it impossible to directly sum over each point

in the space to estimate the value of the distribution function. The generalization of

the “measurement” step used in Section 2.4 for functions that are defined over con-

tinuous variables is called Kernel Density Estimation (KDE) and will be introduced

here. As we will see later (Section 3.3.2), KDE will be used to calculate estimates

of distribution functions from their samples in situations where the distributions are

not analytically available.

2.5.1 Introduction to KDE

Let us assume we have N samples of an unknown probability distribution function

f . We can reconstruct an approximation of f , which we will label f̂ , by writing it as

a sum of kernel functions:

f̂(c) =
1

N

N∑
i=1

K(c− ci) ' f(c) (2.15)

such that K is a normalized (
´
K(c) d c = 1) and positive function with a local

support. In this setup, f̂ is called a Kernel Density Estimate of f and can be a

faithful representation of f given enough samples and a kernel K that has a small

enough support.

To illustrate this concept, let us look at a simple visualization of an example

function and its KDE reconstruction. In Figure 2-4 we show a KDE reconstruction

of a Gaussian function f from 100 sample points ci ∼ f . In this particular example
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we have selected the kernels to be simple box functions

K(∆c) =


1
ε
|∆c
ε
| < 1

0 otherwise

(2.16)

Although the correspondence between f and its reconstruction f̂ is far from per-

fect, the two functions get closer to each other as we increase the number of samples

and decrease ε.

�3 �2 �1 1 2 3
c

0.2

0.4

0.6

0.8

f

f �c� � �� c22
2 Π

f
��c�

Figure 2-4: KDE reconstruction of a Gaussian distribution function using kernels of
width ε=0.1 and 100 sample points. The original function f(c) is smooth, while the
reconstructed function f̂(c) is not since it is a sum of the box kernels in 2.16.

It can be shown that in the limit of a large number of samples, the above procedure
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will result in reconstructed functions f̂ that are calculated using

f̂(c) =

ˆ
K(c− c′)f(c′)dc′ (2.17)

In fact, Equation 2.15 can be though of as a numerical approximation of this relation

by making the approximation f(c) ≈ 1
N

Σδ(c− ci). This last relation is useful because

it allows us to deduce some general properties of a KDE approximation.

2.5.2 KDE Limitations and The Average Number of Contribut-

ing Samples

One of the important features of KDE is that there is a fundamental trade-off between

the ability to faithfully reproduce f without bias and the uncertainty in f̂ . Kernels

with large supports produce smoother approximations of f since more samples con-

tribute to the value of f̂ at each point but this happens at the cost of introducing bias

in the reconstruction. Conversely, the bias introduced in f̂ is significantly decreased

as we choose kernels that have narrow supports and the bias completely disappears in

the limit ε→0. This bias-smoothness trade-off has long been known [3, 11],in fact has

been shown that this is a fundamental limitation that can not be overcome despite

some creative attempts [16]. This means that more and more samples are needed

if we want to reconstruct a distribution with the minimum amount of bias possible.

Although this is a burden in all cases, it is even more problematic when the functions

we are interested in are in multiple dimensions.

We will see in the next chapters how KDE is the key to making our proposed

variance reduction method practical for simulations of arbitrary time. Unfortunately,

we will also see that as the sole approximation in our approach, it is also responsible

for the majority of the numerical error in our simulations.
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Chapter 3

Variance-Reduced DSMC

In this Chapter we present a variance-reduced DSMC formulation which can simulate

arbitrarily small deviations from equilibrium. The variance reduction is achieved

using the methodology presented in Chapter 2. In other words, the present Chapter

describes how importance weights and Kernel Density Estimation can be seamlessly

integrated within the DSMC algorithm, to yield VRDSMC, an efficient low-variance

algorithm that differs very little from the original DSMC algorithm. The material

presented here has appeared in a more condensed form in [59, 68].

3.1 Method Overview

As we described in Section 1.8, one of our objectives was the development of a vari-

ance reduction method which retains the majority of DSMC features. The method

described in this Chapter fulfills this requirement. As a result, as we show in Chapter

6, the present formulation can be readily extended to other molecular models; in con-

trast, extension of LVDSMC to other molecular models – other than the relaxation-

time approximation [66]– can be very challenging [58]. Moreover, the formulation

presented here does not rely on explicit knowledge of the collision operator, which

is advantageous not only because it can be used to simulate more complex collision

processes, but also due to its considerable potential to be extended to other particle

simulation methods [67, 69].
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Our approach is based on the variance reduction technique of control variates

discussed in Section 2.2.1. Specifically, our approach utilizes an auxiliary equilibrium

simulation that uses the same data as the main DSMC simulation but uses importance

weights to account for the difference between the two distributions. This chapter

discusses how importance weights defined by initial and boundary conditions evolve

in time under the action of Boltzmann dynamics. Unfortunately, as we also saw in

Section 2.4, stability problems appear for long simulation times when conditional

weight update rules are used. An extensive discussion of how these are overcome in

this work is given in Section 3.3.2. Our formulation is validated by comparison to

DSMC results for a number of benchmark flows in Section 3.4.

3.2 VRDSMC: Basic Concepts

As we saw in Section 2.2.1, the basic idea behind the present approach is to produce

the variance-reduced estimator, RVR, by writing

RVR = R−Req + 〈R〉eq (3.1)

and ensuring that R and Req are estimated using correlated molecular data, while

the distribution feq (the reference distribution is taken to be some equilibrium) is

chosen such that 〈R〉eq is known. This concept is illustrated in Figure 3-1 for a

simple relaxation problem; the figure shows how actual simulation data [59] of R,

Req , and 〈R〉eq can be combined to yield the low-uncertainty estimator RVR . In this

particular case, the figure shows a hydrodynamic variable (here R = c4
x) of interest

for the relaxation problem outlined in Section 3.2.1.

The major challenge associated with implementing this approach is in the develop-

ment of a framework which provides molecular data that sample the non-equilibrium

single-particle distribution function f(c), while at the same time are correlated to the

(equilibrium) DSMC data that sample feq(c). To achieve this we have chosen to use
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Figure 3-1: Illustration of the variance reduction principle for a molecular relaxation
problem [59]. The variance of R̄V R is significantly reduced by replacing the “noisy”
estimate R̄eq with its exact expected value 〈Req〉.

the importance weight formulation, first introduced in Chapter 2 by defining W (c)

W (c) =
feq(c)

f(c)
(3.2)

Using this definition, an estimate of the equilibrium property is

Req =

Ncell∑
i=1

WiR(ci)

where ci is drawn from f(c) andWi provides a correction for the relative frequency of
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each sample ci in the two distributions. Using this formulation, Equation 3.1 becomes

RVR =

Ncell∑
i=1

(1−Wi)R(ci) + 〈R〉eq

and can be evaluated by sampling the non-equilibrium distribution only, provided the

weights Wi are known. In the next section we present a method for initializing the

weights Wi and a description of the rules that govern for the dynamical evolution of

these weights based on the governing Boltzmann equation.

It is straightforward to verify (recall Section 2.3) that the variance of the estimator

RVR is significantly smaller than the variance of R when the distribution functions f

and feq are close (i.e. ‖Wi−1‖ � 1). In this sense, a Maxwell-Boltzmann equilibrium

distribution

fMB(c;nMB,uMB , TMB) = nMB(πc2
MB)−3/2 exp(−‖c− uMB‖2

c2
MB

)

where cMB =
√

2RTMB, is a reasonable and convenient choice, since in cases where

variance reduction is needed, i.e. when the deviation from equilibrium is small, the

parameters nMB , TMB and uMB can usually be easily chosen such that ‖Wi−1‖ � 1.

In this Chapter and the next we will be using a single global reference equilibrium

state

feq,0(c) = fMB(c;n0,u0 , T0)

where n0,T0 and u0 = 0 are chosen global equilibrium properties throughout the sim-

ulation domain. In the interest of brevity, we will use feq to represent this state when

there is no possibility of ambiguity. In Chapter 5 we will introduce local reference

states and will use fMB,loc to represent a local equilibrium reference state and feq,0 to

represent the global reference state defined above.
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3.2.1 Quantifying Variance Reduction For a Simple Case

Sections 2.2 and 2.3 illustrated how we can use importance weights to produce esti-

mators that have variance that decreases as the sampling distribution gets closer to

a reference state. In this section we use a relaxation problem to demonstrate that

this property still holds for 3-dimensional distributions of molecular velocities. In

particular, we will take as an example problem a homogeneous relaxation problem

that was presented in [59, 50]. In that work, we studied the relaxation to equilibrium

for a gas that is initially in a state

f(c, t = 0) =
1

2
(fMB(c;n0,uα, T0) + fMB(c;n0,−uα, T0))

with some reference number density n0 and T 0 and uα = {αc0, 0, 0}. Here α parame-

terizes the deviation from equilibrium with f(c, t = 0)→ fMB(c;n0,0, T0) = feq,0(c)

as α→0.

We would like to illustrate how the variance of the variance-reduced estimator of

〈c4
x〉 scales with the magnitude of α and will restrict our attention for now at the

initial point of the simulation (i.e. t = 0), since it is the only point that we have an

analytical formula for both fMB and f .

The estimator c4
xVR is given by

c4
xVR = c4

x − c4
xeq,0 +

〈
c4
x

〉
eq,0

and can be evaluated using

c4
xVR = NEff

Ncell∑
i=1

(1−Wi) c
4
x,i +

〈
c4
x

〉
eq,0

where ci ∼ f(c)

To understand the variance of this estimator let us calculation the variance of the

individual terms (1−W )c4
x as a function of α as follows

σ2
{

(1−W ) c4
x

}
=

ˆ
(1−W (c))2(c4

x

)2
f(c)dc−

(ˆ
(1−W (c)) c4

xf(c)dc

)2

(3.3)
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We can explicitly evaluate this by numerically evaluating the above integrals using

the explicit formula of f and fMB .We plot the variance versus the non-equilibrium

parameter in Figure 3-2 which clearly shows that σ2{(1−W )c4
x} → 0 as α→0.

In fact Figure 3-2 shows that σ2{(1 − W )c4
x} ∝ α4. This is because it can be

shown that 〈c4
x〉 |t=0−〈c4

x〉eq = 3α2 2kT
m

and so, in this particular case, we have a signal

that is proportional to α2.
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x}

Figure 3-2: Variance of variance-reduced estimator c4
xVR vs. α for the homogeneous

relaxation problem of Section 3.2.1. These plots were produced by numerically eval-
uating Equation 3.3; for the sake of simplicity, we take NEff = 1.

3.3 VRDSMC Implementation

Having introduced the basics of using variance reduction to provide low-uncertainty

estimators, we will proceed in this section to incorporate them in DSMC.
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In the present Chapter as well as the next, we consider a hard-sphere gas in the

absence of external fields. As will be clear from the analysis below, both assumptions

can be relaxed in a fairly straightforward manner. We refer the reader to Chapter 6

as well as [67] for a more detailed exploration of these issues.

3.3.1 Weight Update Rules

In VRDSMC, the difference between the equilibrium and non-equilibrium distribu-

tions is described by the set of weights {Wi} giving the relative frequency of finding

a particle of velocity ci in the equilibrium simulation relative to the non-equilibrium

simulation. As the simulation evolves in time, the non-equilibrium distribution and

the particle velocities ci (sampling this distribution) change. Below, we develop the

rules that will be used to describe the evolution of particle weights in response to

these changes.

3.3.1.1 Initialization

The initial values of the weights can be readily determined since initially both f and

feq are explicitly known (i.e. the initial distributions of the simulated gas is known

for both the equilibrium and non-equilibrium simulation). Specifically, when DSMC

particles are initialized at the start of the simulation, the weight corresponding to

each particle is calculated using the definition 3.2.

3.3.1.2 Boundary Conditions

Boundary conditions are in some ways similar to initial conditions in the sense that,

in typical applications of interest, particle velocities (and thus weights) are redrawn

from a pre-specified distribution when interacting with a wall. The boundary condi-

tions associated with the Boltzmann equation in the applications of interest here are

typically of the no-flux type [6]. In Chapter 4 we give a longer discussion of boundary

conditions; for now let us consider a fully accommodating no-flux boundary. In this

case, the boundary condition for particles that come in contact with the boundary is
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the distribution

fW (c) = fMB(c;nW ,uW , TW ) =
nW

(πc2
W )3/2

exp

(−‖c− uW‖2

c2
W

)
= nWgW (c)

parameterized by the wall properties, namely the “wall number density” nW and the

other wall parameters uW , TW and cW =
√

2kTW/m. The wall number density may

be thought of as the number density of an equilibrium gas that would be in contact

with the boundary; it is determined from mass conservation at the wall, namely

−nW
ˆ

c·n>0

c · ngW (c)dc =

ˆ
c·n<0

c·nf(c)dc (3.4)

where n denotes the wall normal pointing into the gas. Here for simplicity we have

assumed that n ·UW = 0 the more general expression can be found in [46]. If nW is

known, the weights of re-emitted particles can be readily calculated from Equation

3.2; one such case is isothermal low-speed flows with no flow component normal to the

wall which can be shown to be a constant-density flow. With such an arrangement

weights are completely determined at the walls and as we will see in Section 3.3.2,

will result in superior stability properties especially at high Kn.

In the more general case, nW may need to be explicitly calculated using equation

Equation 3.4 which we will explore more fully in Chapter 4. In this Chapter we apply

this boundary condition by using the following process: At the beginning of every

timestep we assume a value for nW , e.g. nW = n0, and particle weights for particles

colliding with the wall are assigned based on this value. At the end of the timestep

the total weight of the particles that collided with the wall during that timestep is

tallied and the weight of particles re-emitted from the wall rescaled such that there is

no net change in the total equilibrium particle weights due to the wall interaction. In

Chapter 4 we show that this approach is numerically equivalent to the more general

approach derived there.
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3.3.1.3 The Advection Sub-step

During the advection sub-step the auxiliary simulation needs to integrate

∂feq
∂t

+ c·∂feq
∂x

= 0 (3.5)

Making the substitution feq = Wf we obtain

f(
∂W

∂t
+ c·∂W

∂x
) +W (

∂f

∂t
+ c·∂f

∂x
) = 0

Since f > 0 and ∂f
∂t

+ c· ∂f
∂x

= 0 we conclude that, during the advection step, the

weights need to satisfy
∂W

∂t
+ c·∂W

∂x
= 0

or in other words, weights are advected with their corresponding particles.

3.3.1.4 Collision Sub-step

In this section we present a derivation based on the standard hard-sphere form of the

collision integral; extension to other collision models (e.g. variable hard sphere [12])

directly follows. An alternative derivation based on conditional probability arguments

is presented in Chapter 6.

During the collision sub-step, the auxiliary simulation integrates the equilibrium

version of Equation 1.6, namely

[
∂feq
∂t

]
Collision

=
1

2

ˆ ˆ ˆ
(δ′1 + δ′2 − δ1 − δ2)W1W2f1f2crσdΩdc1dc2

To facilitate the interpretation of this equation within the context of the DSMC
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collision algorithm, we rearrange it in the following form:

[
∂feq
∂t

]
Collision

=
MX

2

ˆ ˆ ˆ (
δ′1 + δ′2 −

δ1

W2

− δ2

W1

)
W1W2f1f2

cr
MX

σdΩdc1dc2+

MX

2

ˆ ˆ ˆ (
−δ1 − δ2 +

δ1

W2

+
δ2

W1

) cr
MX(

1− cr
MX

)W1W2f1f2σ(1− cr
MX

)dΩdc1dc2

(3.6)

where MX is an upper bound for Wcr. Using an importance sampling interpreta-

tion [36, 52, 53, 61], the first term of this equation can be thought of as an event

occurring with probability ĉr = cr/MX, while the second one as an event occurring

with probability (1− ĉr). In other words, provided collisions are accepted with prob-

ability ĉr (and thus rejected with probability 1 − ĉr) in the DSMC calculation, [61]

provides a means of connecting the complementary events of collision acceptance and

rejection in the “main” DSMC collision routine, with weight evolution in the auxiliary

equilibrium calculation.

To make this more concrete, consider a collision-candidate particle pair with ve-

locities c1and c2 and weights W1 and W2, respectively. If the collision is accepted

in DSMC, according to the first term in Equation 3.6, a particle pair with velocities

c′1 and c′2 and weights W1W2 should be created, in addition to a pair of negative

particles with velocities c1 and c2 and weights W 1 and W 2, respectively. Note that,

by design, the negative particles cancel the colliding particles and thus the collision

proceeds by the update c1 → c′1, W 1 → W1W2 and c2 → c′2, W 2 →W 1W 2. Since

the update c1 → c′1, c2 → c′2 is part of the original DSMC algorithm, we conclude

that if the collision is accepted in DSMC the weight update is W 1,W 2 → W1W2. In

the case of a rejected collision (in DSMC), the second term in Equation 3.6 implies

that W1W2
ĉr

1−ĉr negative particles with velocities c1 and c2, as well as W1
ĉr

1−ĉr parti-

cles with velocity c1 and W 2ĉr/(1− ĉr) particles with velocity c2 need to be created.

Combining these with the colliding particles we obtain a net ofW 1(1−W 2ĉr)/(1− ĉr)
at c1and W2(1−W 1ĉr)/(1− ĉr) at c2.

In summary, if the DSMC collision is accepted, the colliding particle weights are
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Table 3.1: Summary of weight update rules.

1.

In Intermediate Steps Final Result

Accepted
probability= ĉr

W1 at c1

and
W2 at c2

Create:
W1W2 at c1 and c2

Annihilate:
W1 at c1 and W2 at c2

W1W2 at c1

and
W1W2 at c2

Rejected
probability=1− ĉr

W1at c1

and
W2 at c2

Create:
W1ĉr
1−ĉr at c1 and W2ĉr

1−ĉr at c2

Annihilate:
W2W1ĉr

1−ĉr at c1 and c2

1−W2ĉr
1−ĉr at c1

and
1−W1ĉr

1−ĉr at c2

updated as W1,W2 → W1W2; if the DSMC collision is rejected, the candidate particle

weights are updated asW 1 → W1(1−W 2ĉr)/(1−ĉr) andW 2 → W2(1−W 1ĉr)/(1−ĉr).
These steps are summarized in Table 3.1.

3.3.2 Stability Considerations

In a manner analogous to the coin simulation in Section 2.4, the implementation of this

algorithm reveals a numerical stability issue. In particular, after a few collision times

the variance of particle weights is observed to diverge (i.e. individual particle weights

tend to either 0 or ∞), which results in loss of variance reduction. This behavior

not only is similar to what we saw in Section 2.4, it also has many similarities to the

stability problems observed in other variance-reduced particle methods [49, 65, 35],

despite significant differences in formulation. Furthermore, we find that the instability

appears in collision dominated flows (Kn < 1), while collisionless and near collisionless

(Kn & 3) calculations are much more stable. In our experience, this issue is one of the

biggest challenges associated with this approach as well as previous variance reduction

approaches.

As in Section 2.4, in the present formulation, this behavior is a result of the

particular collision weight update rules used. In collisionless flows this issue simply

does not arise, while in near-collisionless flows (Kn� 1) with fixed density boundaries
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particles reach the walls (where their weights are reassigned) before their weights

diverge.

As in Section 2.4, we have developed an approach for stabilizing the calculation

based on KDE. As we introduced before, KDE is used to reconstruct the distribution

functions at the end of each timestep and is explained in the next subsection.

3.3.2.1 Stabilization Using Kernel Density Estimation

To proceed, let us reconstruct f using f̂(c) =
´
K(c − c′)f(c′)dc′ ' f(c), for some

appropriate kernel K(c− c′). If such an approach is used, from the weight definition

3.2 we can make the approximation

Ŵ (c) =
f̂eq(c)

f̂(c)
=

´
K(c− c′)W (c′)f(c′)dc′´

K(c− c′)f(c′)dc′
(3.7)

In the work presented here we have used the normalized kernel

K(c− c′) =

 1
4/3πε3c30

if ||c− c′|| < εc0

0 otherwise

Using Equations 1.4 and 3.7, we obtain an expression for the “reconstructed”

weight

Ŵi =
1

||Si||
∑
k∈Si

Wk (3.8)

where Wk are the weights obtained using the collision update rules detailed in Table

3.1. Here, Si denotes the set of particles that are within a sphere of radius εc0 centered

on particle i in velocity space, and we denote the number of such particles with ‖Si‖.
Particles within Si can be found using a KD Tree [48] in O(Log(Ncell)) operations,

implying that the overall algorithm will scale as O(NcellLog(Ncell)) instead of O(Ncell)

for regular DSMC. In our implementation we find the set Si using a non-uniform

velocity space binning that is both faster and simpler to code which is detailed in

Section A.1.

This procedure introduces a new discretization parameter, ε, that in general affects
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the results of our simulation as we will discuss in more detail in Chapter 8. A

large ε means that we average over many particles which improves the stability of

the calculation but also introduces numerical error. Because of this, the numerical

accuracy of VRDSMC is directly affected by the averaging radius parameter ε which

we would ideally want to make as small as possible. On the other hand, if ε is too

small, there will be a small number of particles in each estimate of Ŵi(c) and in such

a situation we will need to increase Ncell if we are to keep ‖Si‖ constant. In fact, by

numerical experimentation with problems close to equilibrium, we were able find that

the relation between ‖Si‖ and ε for a stable calculation is

||Si|| ' 0.26Ncellε
3

In other words stability strongly depends on the average number of particles in a

sphere of radius εc0 and not on the total number of particle in a cell. For example, a

3 order of magnitude increase in Ncell, while holding ‖Si‖ constant, only results in a

20% change in the average weight variance, σ2{Wi}, in a simple shear (Couette) flow.

Figure 3-3, on the other hand, shows that ‖Si‖ has a strong effect on stability for vari-

ous Knudsen numbers. We also see that stability, defined as σ2{Wi}
σ2{Wi}|Kn=10,||Si||=0

= O(1),

is strongly affected not only by ‖Si‖ but also by Kn. As expected, increasing ‖Si‖
(by increasing Ncell for a fixed ε) improves the stability; moreover, flows characterized

by Kn > 1 are stable in a wide range of values of ‖Si‖, while flows with Kn < 1

typically require ‖Si‖ � 1 for stability. We close by noting that the data of Figure

3-3 were generated using the analytically known value of nW (low-speed Couette flow

is essentially isothermal). The effect of more complex flow conditions on stability is

discussed in the next Chapter.

Although we have decided to employ KDE reconstruction of weights to stabilize

our simulation, it is not clear how to choose which samples (particles) to employ

for this reconstruction. After much experimentation we found that a good balance

between bias and stability is achieved if we only apply of KDE to accepted (for col-
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Figure 3-3: Steady-state average weight variance in a Couette flow as a function of
‖Si‖ and Kn. Note that we normalize our stability measure by the average variance
of a Kn = 10 flow problem since it requires no stabilization when we have walls with
fixed density. Note stability when ‖Si‖ = 0 (i.e. no KDE is performed) due to the
fixed nW in contrast to Figure 5-5.

lision) particles. In contrast, original attempts [59] applied the KDE approximation

to all particles in the domain after the end of every collision step; in many cases, this

approach requires more than 100, 000 particles per cell for accurate results. By in-

troducing further refinements in the following Chapters, we will show that VRDSMC

can produce accurate and stable calculations with Ncell < 3, 000 for many problems

of interest in the range 0.1 < Kn < 10.

A flow chart of the proposed simulation method is shown in Figure 3-4; modifica-

tions to the original DSMC algorithm are shown in blue highlight.
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Figure 3-4: Flowchart of VRDSMC as described in this Chapter.
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3.4 Validation and Computational Performance

An extensive validation of a variant of VRDSMC applied to the homogeneous relax-

ation problem (like the one described in Section 3.2.1) can be found in a previous

publication [59] of that study. Here we note the most important result, namely that

bias decreases with ε. This is of course not a surprising result since the use of the

reconstructed distribution f̂ instead of f is the only approximation we make in our

scheme (in addition to the numerical approximations inherited from DSMC).

In this section, we validate VRDSMC using various one-dimensional problems for

both transient and steady situations to show that similar trends hold.

3.4.1 Validation Using One-dimensional Problems

Figure 3-5 is a schematic of the one-dimensional geometry that we will consider in

this section and the reminder of this Thesis. We consider a dilute gas of density n0

between two fully accommodating, parallel plates (walls) a distance H apart in the y

direction. The gas is initially stationary and at equilibrium with temperature T0 and

velocity u = 0. The coordinate system that we adapt is such that the walls move in

the x direction and the domain is divided into Ny cells in the y direction with width

∆y = H
Ny

.

Example 1: 1D steady state Couette flow problem We first consider a

simple Couette flow in which the plates move in the x direction with velocities

UW = ±0.085c0. The wall velocity magnitude was chosen to minimize the DSMC

cost since as shown below and before, VRDSMC can resolve arbitrarily small flow

disturbances at fixed cost. Figure 3-6 shows the resulting flow field for Kn = 1 and

Kn=0.1 at steady state. The discrepancy between the results of VRDSMC (as pre-

sented in this chapter) and DSMC is less than 1% for both cases. For the Kn = 1,

the calculation uses Ncell = 500 and ‖Si‖ = 10 which corresponds to ε ' 0.43. In

contrast, for the same ‖Si‖, we find that for Kn = 0.1 we are only able to reproduce

the DSMC solution to within ∼ 1% by using Ncell = 50, 000, which corresponds to
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Figure 3-5: Schematic of the physical setup of our one-dimensional validation prob-
lems.

ε ' 0.09.

We note that for UW � c0, Couette flow problems are, to a good approximation,

isothermal. We could though simplify these calculations by assuming nW = n0. This

action would also have the effect of requiring no KDE for stability for Kn ' 2.5.

Example 2: 1D unsteady boundary heating problem In these examples we

consider the transient response of the gas to an impulsive boundary temperature

change. Specifically, at time t = 0, the wall temperatures impulsively change from T 0

to T0 = ±0.033T0. Figure 3-7 shows the normalized results for the temperature (T ),

the heat-flux in the wall-normal direction (qy), the density (ρ) and the y component

of flow velocity (uy) for Kn = 10 and ‖Si‖ = 10; ρ, T and uy and qy are normalized
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Figure 3-6: Steady state DSMC results (dots) and VRDSMC results (solid lines) for
Couette flow. Left Kn=1.0 with ‖Si‖ = 10 and Ncell = 500; Right: Kn = 0.1 with
‖Si‖ = 10, Ncell = 50, 000.

by ρ0, T 0, c0 and ρc3
0 respectively.

Figure 3-8 shows similar transient results for the Kn = 1.0 case, where VRDSMC

can reproduce the DSMC solution within 1% using ‖Si‖ = 10 and Ncell = 500.

3.4.2 Magnitude of Variance Reduction Compared to DSMC

Figure 3-9 shows a comparison of the relative statistical uncertainty in the flow veloc-

ity, σu = σ/UW , achieved by the two methods when simulating a steady Couette flow

at Kn = 1. Here, σ =
√
σ2{u} is the standard deviation in the flow velocity samples.

The figure shows that VRDSMC exhibits a constant relative statistical uncertainty

for UW/c0 � 1, as expected, and in sharp contrast to DSMC whose statistical uncer-
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Figure 3-7: Transient results for an impulsive boundary temperature change problem
for Kn = 10 and ‖Si‖ = 10. Solid lines denote VRDSMC results while DSMC
results are shown in dots. The snapshots shown correspond to t = 5, 10, 40∆t where
∆t = 1

240

√
πλ/(2c0).

tainty for UW/c0 � 1 is dominated by equilibrium fluctuations, resulting in σu ∝ 1
UW

in this limit [29]. We can thus conclude that VRDSMC provides a very considerable

amount of variance reduction and thus computational benefit compared to DSMC for

the same number of particles per cell.

3.4.3 Approximation Error and Limitations

Although, as shown in Figure 3-3, VRDSMC is unconditionally stable at Kn & 3

when the boundary has a prescribed density (nW ), for 3 & Kn a KDE procedure

is required which introduces numerical error (bias). This error can be decreased by
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Figure 3-8: Transient results for an impulsive boundary temperature change problem
for Kn= 1.0. Solid lines denote VRDSMC results with ‖Si‖ = 10 and Ncell = 500;
DSMC results are shown in dots. The snapshots shown correspond to t = {5, 10, 40}
where ∆t = 1

24

√
πλ/(2c0).

reducing the discretization parameter ε, at the expense of requiring a larger Ncell

for stability (recall that ‖Si‖ � 1 is required for small Kn). In other words, as

already explained in the previous sections, although accurate low-Kn calculations

are feasible, they do require large numbers of particles per cell. This requirement is

almost non-existent in DSMC, which can provide very accurate solutions with as few

as 100 particles per cell, independently of the Knudsen number. We will see in the

next Chapters how this constraint can be substantially reduced for most problems of

interest by using local equilibrium reference states when performing collisions.

The requirement of large Ncell for accuracy is not very limiting in one-dimensional
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Figure 3-9: Comparison of the relative statistical uncertainty (σu =
√
σ2{u}/UW )

of the DSMC (squares) and VRDSMC (circles) methods for different values of wall
velocities. Results are for steady Couette flow at Kn = 1.0 for 500 particles per cell
at steady state. We clearly see that VRDSMC has constant relative error while the
relative error of DSMC increases as UW → 0.

flows, but can be limiting in higher dimensions if the Knudsen number is small in

all dimensions. On the other hand, these large numbers of particles do contribute

towards reducing the already small statistical uncertainty of the calculation. In other

words, if low statistical uncertainty calculations are required and a large number of

particles (or ensembles) were to be used in DSMC, then VRDSMC provides the full

benefit shown in Figure 3-9. It should also be noted that our numerical experiments

have shown that the numerical error associated with this version VRDSMC is not

strongly affected by other discretization parameters (e.g. ∆y) and thus provided ε

remains small, much like DSMC [20, 17, 21], accurate solutions can be obtained with
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fairly coarse grids. Consequently, the total number of particles that are needed for an

accurate simulation is not excessively large. We will return to this issue in Chapter

6 where we give a more detailed account of the tradeoffs associated with VRDSMC

and discuss how it compares to other simulation methods.

3.5 Chapter Review

In this Chapter we have presented a basic algorithm of a variance-reduced version

of DSMC whose main ingredients are importance weights and Kernel Density Es-

timation. The VRDSMC method was validated using DSMC results for a number

of different flows for 0.1 ≤ Kn ≤ 10. Our numerical results show that provided a

sufficient number of particles is used, significant variance reduction is achieved with

little additional discretization error. However, these results also show that in the

most general case a basic trade-off between accuracy (requiring a small ε) and sta-

bility (requiring a large ‖Si‖) exists for a given number of simulation particles Ncell .

Consequently, a large number of particles may be needed to accurately simulate small

Knudsen number flows but, as we have shown above, once we have a sufficient number

of particles, all problems of interest (0.1 ≤ Kn ≤ 10) can be simulated with small

numerical error.

It is interesting to note that for most problems, stable simulations using VRDSMC

can be performed without using KDE weight reconstruction if our interest is limited

to transient flows when t . 3 mean collision times, provided we use the appropriate

boundary condition (described in Section 6.2.3). In this case VRDSMC will have

nearly identical execution times and no measurable discrepancy between the two

simulation methods.

In Chapter 5, we introduce the concept of an adjusted equilibrium reference state

to dramatically reduce the required number of particles in a cell for a given bias and

variance. Therefore, the final version of VRDSMC that we will arrive at will not

have many of the limitations that we discussed here and it will become practical to

simulate kinetic flows in a very wide spectrum of Kn at reasonable cost. As stated
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before, one major advantage of the proposed VRDSMC method is that it requires

essentially no modification of the DSMC algorithm and introduces relatively little

additional complexity. Moreover, it can be easily extended to other collision models

and processes (e.g. chemical reactions). We will return to these themes in more detail

in Chapter 6.
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Chapter 4

Detailed Treatment of the No-Flux

Boundary Condition

In this Chapter we give a more detailed description no-flux boundary conditions as-

sociated with solid boundaries (walls). In particular, starting from the definition

of the no-flux boundary condition we will derive the weight update rules associated

with interaction with the wall. We will restrict our discussion here to fully accommo-

dating walls (the Maxwell accommodation model [6]) at arbitrary temperature TW

moving with a speed UW in a direction parallel to the plane of the wall. Extension

to non-accommodating walls or ones that are moving in the wall-normal direction is

fairly straightforward, and is not presented here. Likewise, dealing with a constant

pressure open wall boundary conditions is also a simple extension of the procedure

used in regular DSMC calculations (see for example [31]); in a few words one can

use the explicit form of the open wall boundary distributions fW and fW,eq to eval-

uate weights of new particles entering the domain. Such boundary conditions are in

fact expected to contribute to simulation stability since they reset particle weights

(outgoing particles are deleted).

To proceed with the problem of interest, let the Maxwell-Boltzmann distribution

associated with the boundary be written as

fW (c) = nWgW (c)
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where ˆ
fW (c)dc = nW

i.e. ˆ
gW (c)dc = 1

For the sake of simplicity, let us assume that the wall lies in the x = 0 plane and

does not move normal to this plane (e.g. a problem setup as shown in Figure 3-5).

The no-flux boundary condition [46], which describes the DSMC simulation is given

by

−nW
ˆ
cx>0

cxgW (c)dc =

ˆ
cx<0

cxf(c)dc (4.1)

and since Nin particles arrive at a wall of area ∆s in a timestep of ∆t, the flux of

particles to the wall is given by
NEffNin

∆s∆t

Similarly, for the equilibrium case we have

−nW,eq

ˆ
cx>0

cxgW,eq(c)dc =

ˆ
cx<0

cxfeq(c)dc (4.2)

Note that the right hand side of 4.2 can be written as

ˆ
cx<0

cxfeq(c)dc =

ˆ
cx<0

cxW (c)f(c)dc

which can be approximated as
NEff

∆s∆t

Nin∑
i=1

Wi (4.3)

Solving for nW and nW,eq in Equation 4.1 and Equation 4.2 we get:

nW =

´
cx<0

cxf(c)dc´
cx>0

cxgW (c)dc
=

NEffNin

∆s∆t´
cx>0

cxgW (c)dc
=

NEffNin

∆s∆t

GNE
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and

nW,eq =

NEff

NinP
i=1

Wi

∆s∆t´
cx>0

cxgW,eq(c)dc
=
NEff

NinP
i=1

Wi

∆s∆t

Geq

where we define the functions G to be

GNE =

ˆ
cx>0

cxgW (c)dc

Geq =

ˆ
cx>0

cxgW,eq(c)dc (4.4)

which we will deal with shortly. The post-collision weights of the particles that have

just collided with the wall can now be written as

W ′
i = W (c′i) =

feq(c′i)

f(c′i)
=
nW,eqgW,eq(c′i)

nWgW (c′i)
=
GNE

Geq

Nin∑
j=1

Wj

Nin

gW,eq,i

gW,i

The terms GNE and Geq can be analytically evaluated using 4.4 to yield

ˆ
cx>0

cxgMB(c)dc =
1√
2π

√
kTMB

m

and so GNE/Geq =
√
TW,NE/TW,eq which finally gives:

W ′
i =

Nin∑
j=1

Wj

Nin

gW,eq,i

gW,i

√
TW
TW,eq

(4.5)

Note that the first term in Equation 4.5 is the average weight of particles reaching

a surface in a timestep while the other two terms are purely determined by the

scattering properties of the wall surface.

It is interesting to note that there are alternative approaches to deriving the no

flux wall boundary condition that lead to variations of Equation 4.5. We introduced

one in Section 3.3.1.2 that can be shown to be equivalent to this formula for a large

number of particles but will have problems in the limit of small number of particles

colliding with the wall in a given timestep . Equation 4.5 can be applied even when
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∆t is so small that there is only one particle colliding with the wall in each step

giving:

W ′
i = Wi

gW,eq,i

gW,i

√
TW
TW ,eq

(4.6)

Equation 4.6 can, in fact, be applied to each particle even when more particles

collide with the wall in every timestep. Our numerical experiments confirm that this

equation is still valid though it has a slight performance disadvantage, because it pro-

duces simulations which are marginally less stable but with a bias that is practically

identical to that of Equation 4.5. A longer discussion of this as well as an alterna-

tive way of deriving it based on the conditional probability principles introduced in

Chapter 6, can be found in [67].

4.1 Conservation of Equilibrium Mass In Closed Sim-

ulations

Figure 4-1 shows the total gas mass in a Kn = 1.0 Couette simulation domain for

the equilibrium and non-equilibrium parts of the simulation; these simulations use

Equation 4.5 to implement boundary conditions. Clearly, the total mass in the equi-

librium simulation is randomly walking as we take more and more steps. Although

this walk is very slow (and decreases with increasing Ncell) it adversely affects the

accuracy of equilibrium gas properties at long times. The cause of this random walk

is not hard to understand in light of the stochastic nature of the weight update rules

(Table 3.1) and the enforcement of the no-flux boundary condition on both sides of

the domain. Specifically, the particle-particle as well as the wall-particle collision

steps are a source of random updates for the weights. This would not be an issue in

any simulation that has a fixed number density in one of its boundary conditions (say,

an open wall boundary condition for example) but the no-flux on both wall allows

the total equilibrium weights to “float” and randomly walk.

One solution to this problem is to scale the total weights in the domain such that

the total weight of equilibrium particles is the same as its initial value. This can be
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Main non-equilibrium simulation 

Timestep

Total domain mass

Auxiliary equilibrium simulation 

Figure 4-1: Total mass of gas in simple one-dimensional VRDSMC simulation domain
as a function of timesteps for the equilibrium (blue) and non-equilibrium (purple)
simulations without enforcing conservation of mass. The equilibrium simulation ran-
domly walks due to the stochastic nature of the weight update steps associated with
inter-particle collisions. Both simulations start with a total mass of 500.

justified by recalling that [38]:

Total equlibrium mass = α =

ˆ ˆ
feqdxdc =

ˆ ˆ
Wfdxdc (4.7)

implying that

1 =

´ ´
Wfdxdc

α
'

N∑
i=1

Wi

α
(4.8)

where N is the number of particles in all cells. The expected value of α is known

79



exactly using Equation 4.7 and so applying the transformation

W ′
i =

α(
N∑
i=1

Wi

)Wi (4.9)

to all particles in the domain will result in the exact conservation of mass in the

equilibrium simulation. This step requires an extra loop over all particles in the

domain and so will not change the scaling of the overall algorithm. Furtheremore, a

similar relation to Equation 4.9 can derived and applied on a cell-by-cell basis.
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Chapter 5

Using a Variable Reference State

In this Chapter we build on the techniques and results from the last two Chapters

to produce an improved version of VRDSMC. As we will see, a small modification

to the equilibrium collision routine of Chapter 3 results in a substantial reduction in

the number of particles needed for accurate simulations. Specifically, we will show

in Section 5.3 that the method is able to produce results that are within engineering

accuracy (∼ 1% relative error) with Ncell < 5, 000 for the majority of problems of

practical interest. Indeed, as we will argue in Section 5.4, VRDSMC is currently one

of the most appropriate methods for practically solving low-signal kinetic flows.

We start by introducing the concept of a local reference equilibrium state and

describe how to utilize it to obtain improved computational performance. Section

5.2 gives a overview of the final version of the VRDSMC method that includes the

results of Chapter 4. We conclude the Chapter with a few examples that illustrate

the improvement in performance.

5.1 Reducing Bias Using a Local MB Reference Dis-

tribution

As outlined before and discussed further in Chapter 7, the VRDSMC procedure in-

troduced in this work gives results that are biased due to the KDE step required to
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stabilize the simulation. In particular, the bias increases with increasing ε (the ra-

dius of the density estimator kernel) which means that accurate results, especially for

small Kn, require ε to be as small as possible. On the other hand, stability demands

a finite average number of nearest neighbors ||Si||, which implies that a relatively

large Ncell is needed for a stable calculation. For example, we saw in Section 3.4 that

the simulation of a Kn = 0.1 Couette flow problem required Ncell ' 50, 000 to yield

a relative error (bias) smaller than 1%.

In this chapter we show that the number of particles per cell for a stable and

practically unbiased simulation can be dramatically reduced by modifying the way

we perform our collision weight updates. Specifically, by temporarily modifying the

reference equilibrium state from the global one, feq,0, (that is identical across the

simulation domain) into a local Maxwell-Boltzmann distribution, fMB ,loc, we find

that we need a substantially smaller Ncell for a given bias level.

The key challenge in implementing this approach is updating particle weights such

that they represent fMB ,loc during the collision step only, since the reminder of the

formulation (initial and boundary conditions, advection) are most easily dealt with

based on a global reference equilibrium.

5.1.1 Variable Reference State

We will use a simple 1D problem to illustrate how we can change the reference state

of the equilibrium simulation without explicitly tracking or resampling f(c). To

proceed, let there be N samples {ci} drawn from a distribution fsample(c), e.g. a 1D

non-equilibrium distribution. There are two reference states that we are interested in

representing: the first is fstart(c) which could be for example, the global equilibrium

reference distribution feq,0, and fend which may be a specific local MB reference

distribution. By taking

Wi =
fstart(ci)

fsample(ci)

82



�2.0 �1.5 �1.0 �0.5 0.5 1.0 1.5
ci

0.5
1.0
1.5
2.0
2.5
3.0
3.5
Wi

�2.0 �1.5 �1.0 �0.5 0.5 1.0 1.5
ci

2

4

6

8

Γi

�2.0 �1.5 �1.0 �0.5 0.5 1.0 1.5
ci

0.5
1.0
1.5
2.0
2.5
3.0

Wi
�

�2 �1 0 1 2
ci

0.1

0.2

0.3

0.4

0.5

0.6
f

Wi =
fstart(ci)

fsample(ci)

W �
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γi =
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fstart(ci)

fstart fend
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Figure 5-1: Illustration of γi for a simple one-dimensional problem with 100 sample
points. Left: Plots of the PDF of the sampling distribution fsample , the first reference
state fstart and the final reference state fend . Top: {ci,Wi}. Right:{ci, γi}. Bottom:
{ci,W ′

i}.

we can represent and sample the distribution fstart using the set of pairs

{ci,Wi} ∼ fstart

What we would like is a method of finding weights W ′
i such that we can sample

the new distribution fend by using the set of pairs

{ci,W ′
i} ∼ fend (5.1)

without changing the samples ci. Let us assume that W ′
i can be found and has the
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relation W ′
i = γiWi for some γi = γ(ci). In such a case we can write:

γi = γ(ci) =
W ′(ci)

W (ci)
=

fend (ci)
fsample(ci)

fstart (ci)
fsample(ci)

=
fend(ci)

fstart(ci)

Clearly this allows us to readily generate the set 5.1 without explicitly evaluating

fsample or fend at every sample point ci. We can use an identical argument to define

a factor γi in three dimensions that will allow us to generate a representation of a

local MB distribution fMB ,loc(c) from a set {ci,Wi} that samples the global reference

distribution feq,0(c). In other words, if fMB,loc is some local Maxwell-Boltzmann

distribution, we can use the relation

γi =
fMB ,loc(ci)

feq,0(ci)
(5.2)

and

W ′
i = γiWi (5.3)

to find the new weight for each particle in the cell.

To further illustrate this point using a numerical example, let us turn our atten-

tion to Figure 5-1. In the top panel we plot the analytical value of three distributions

fsample , fend , and fstart . In the other three panels we plot Wi, γi and W ′
i vs. ci, respec-

tively. In this example have chosen the three distributions fsample , fend , and fstart to

have the means 〈c〉sample , 〈c〉end , 〈c〉start respectively. We see that using the transfor-

mation described above we can readily go from sampling fstart to fend and back.

5.2 Final Algorithm Summary

The diagram in Figure 5-2 is a flowchart of the improved VRDSMC algorithm that

incorporates a change of reference equilibrium (to the local equilibrium) for the colli-

sion step. This is possible because the value of the collision integral is identically zero

for all Maxwell-Boltzmann distributions [6]. The key steps of this new algorithm are:

1. Advection Step: This is identical to a regular DSMC simulation with weights
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�
Wj
�
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�

ci � ci�, c j � c j�
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Initialize N particles

estimateW
�
i andW

�
j using KDE

&Wi �
feq,0�ci�
f �ci�

feq,0 → fMB,loc

fMB,loc → feq,0

Figure 5-2: Final VRDSMC flowchart. Note that the only difference between this
algorithm and the one shown in Figure 3-4 are the steps 2 and 4. These are the steps
that change the reference state in the equilibrium simulation to and from a local
Maxwell-Boltzmann state.

simply following the particles as detailed in Section 3.3.1.3. As a reminder, all

initial conditions and wall interactions are calculated with a reference equilib-

rium state feq,0 that is constant across all cells.

2. Change the equilibrium reference state from feq,0 to a local MB fMB ,loc:

For each cell, update the weights using Equation 5.2 so that the equilibrium sim-

ulation samples the local equilibrium distribution fMB ,loc. The local equilibrium

distribution of a cell is specified by nVR, ūV R, and TVR, which are estimated

using the variance-reduced estimator. The weight adjustment γ(ci) for each cell

is given by

γi = γ(ci) =
fMB ,loc(ci;nVR, ūV R, TVR)

feq,0(ci)
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3. Collision Step: As detailed in Section 3.3.1, a set of candidate particles are

chosen in a manner that is identical to a regular DSMC simulation and are

accepted for scattering with a probability proportional to their relative speed

(ĉr = cr/MX for some constant MX ).

• Accepted Particles: Are scattered using the standard DSMC procedures

[12]. The post-collision equilibrium weights are updated ( W ′
i = ŴiŴj)

using weights estimated using a KDE with a kernel of diameter εc0. For

more details see Section 3.3.2.

• Rejected Particles: Velocities are not changed but weights are updated

without using KDE. For more details see Section 3.3.1.4.

4. Change equilibrium reference state from local MB fMB ,loc to global

reference state feq,0: This is the opposite of Step 2 and is needed to allow

particle advection across cells. Since the collision step conserves mass, mo-

mentum and energy we can use properties n̄V R, ūV R, T̄V R from Step 2 leading

to

γi = γ(ci) =
feq,0(ci)

fMB ,loc(ci;nVR, ūV R, TVR)
(5.4)

5. Sample: This step is very similar to the regular DSMC sampling step that is

typically implemented in the sorting routine. For completeness, we include in

Table 5.1 a summary of the variance-reduced estimators (as well as their DSMC

counterparts) for the most common hydrodynamic properties of interest.

5.3 Results

The major advantage associated with a variable reference equilibrium is the ability

to get the same level of bias with a substantially reduced Ncell. This is illustrated

and further discussed in this Section.
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Table 5.1: Table summarizing regular DSMC estimators vs. VRDSMC estimators.
Although slightly more complex, VRDSMC estimators have the same computational
complexity
Prop. VRDSMC DSMC

n
NEff

V
(
Ncell∑
i=1

(1−Wi) +Ncell,eq)
NEffNcell

V

ux
1

NcellNEff
(NEff

Ncell∑
i=1

cx,i(1−Wi) +

V nequx,eq)

1
Ncell

Ncell∑
i=1

cx,i

T

m
3k

{
3kNcell,eqTeq

m Ncell

− (ū2
x,V R + ū2

y,V R + ū2
z,V R)

+ 1
Ncell

Ncell∑
i=1

(1−Wi)(c
2
x,i + c2

y,i + c2
z,i)

}
m
3k

{
1

Ncell
×{Ncell∑

i=1

(c2
x,i + c2

y,i + c2
z,i)
}

−(ū2
x + ū2

y + ū2
z)

}
q See Appendix B

5.3.1 Examples

The physical setup of the following simulations are identical to that presented in

Chapter 3.

Steady State Simulation of Couette Flows with Kn = 0.1 & Kn = 1.0

Figure 5-3 shows the results for steady Couette Flows at Kn = 0.1 and Kn = 1; these

problems were also considered in Section 3.4.1. The Figure shows that we can obtain

the same accuracy (∼ 1%) for substantially smaller Ncell. Specifically, for ||Si|| = 10,

we used Ncell = 100 particles for the Kn = 1 simulation and Ncell = 2500 for the

Kn = 0.1 simulation which is a substantially smaller than the older results (500 and

50, 000 particles respectively). In other words, for a Knudsen of 0.1 a factor of 20

improvement is achieved.

Transient Simulation of an impulsive wall-temperature change problem at

Kn = 0.1

A more challenging problem involves the transient response of a gas to an impulsive

change to its boundary temperature. In this one-dimensional simulation, we solve for
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Figure 5-3: Steady state Couette flow solution. In both cases we have ||Si|| = 10 and
less than 1% relative error can be achieved with Ncell = 100 and 2, 500 for Kn = 1.0
and 1.0 respectively.

the evolution of a gas that is initially at 300K when the walls are instantaneously

changed to 310K and 290K at t = 0+. Figure 5-4 shows VRDSMC results in excel-

lent agreement with DSMC counterpart for all hydrodynamics properties of interest

(namely ρ, qy, T and uy). In this calculation Kn = 0.1 and Ncell = 7, 500.

5.3.2 Stability Plot Using Adjusted Reference State

Use of a variable reference state does not change the stability limits of VRDSMC

as originally presented in Figure 3-3. This is verified in Figure 5-5 which shows the

stability map for the algorithm of Section 5.2. The trend is very similar to the one

shown in Figure 3-3 with the notable exception that the calculation is unstable even
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Figure 5-4: Transient temperature step problem with walls going from 300 to 300±
10K at time t = 0. Snapshots of 1, 3 and 12 mean collision times as shown, for
Ncell = 7, 500, ‖Si‖ = 10, corresponding to ε = 17%.

for ‖Si‖ = 0; this however, is a result of the boundary condition used; specifically, for

the present map, boundary condition 4.5 was used, whereas for the stability map of

Figure 3-3, nW was assumed known.

Figure 5-6 shows a transient plot of σ2{Wi} for a typical 1D calculation (problem

of Section 5.3.1, boundary condition 4.5). We would like to highlight two interesting

features in this figure: the first is that the variance does not grow monotonically

and indeed its steady state value is substantially smaller than the peak value which

happens early on. The second feature is the slightly higher value of the variance in

the middle of the domain which is caused by the boundary conditions reducing the

variance of particles that are re-emitted into the domain. In fact, if we apply the
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Figure 5-5: Re-creation of the stability map for a 1D Couette flow of Section 3.3.2.
The trends are almost identical and show that as the average number of nearest
neighbors (||Si||) increases the simulation variance decreases. Weight variance is
normalized by the variance of a Kn = 10 flow with ‖Si‖ = 20.

weight update rule 4.6 instead of Equation 4.5, we will get a profile that has overall

higher average variance, but with a minimum in the middle of the domain because

implementation 4.6 contributes to σ2{Wi} rather than reducing it.

5.4 VRDSMC Performance Advantage

As one can expect from our description, VRDSMC is fairly simple to implement and

has a surprising small code footprint. For example, in our implementation, our total

codebase was about 1800 lines of code, only a little more than 400 of which are related

to variance reduction.
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Figure 5-6: Weight variance (σ2{Wi}) vs. time and space for a transient problem
similar to that Section 5.3.1 (with 10 cells and Ncell = 7, 500). Note the lower steady
state values of variance compared to early-time values, as well as a variance maximum
that occurs in the middle of the simulation domain.

5.4.1 VRDSMC Execution Speed & Advantage Over DSMC

As we saw in Section 3.4.2, for a given uncertainty, a much smaller number of samples

are needed in VRDSMC compared to DSMC, an advantage that quickly increases as

the signal gets smaller. Although DSMC requires many more samples than VRDSMC

for a given uncertainty, this large advantage comes at a certain speed cost that as we

will see, is quite tolerable in the vast majority of cases. VRDSMC is more expensive

because:

• Execution time scales like O(NcellLog(Ncell)) at worst, compared to O(Ncell)

for a regular DSMC simulation. This is caused by the need to find nearest
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neighbors in velocity space; this is further discussed in Appendix A.

• Once nearest neighbors are found, weights are averaged to get Ŵi. This op-

eration scales with ‖Si‖ and is probably the largest component of the extra

cost.

• Enforcement of the no-flux boundary condition requires us to keep track of

particles that interacted with the wall. This is a moderate cost and does not

change how the cost scales with Ncell.

• VRDSMC has a larger storage requirement since it requires keeping track of

{Wi} and a few other variables associated with the equilibrium simulation.

Overall, these are very marginal increases and would only cause a slowdown in

situations where the extra RAM requirements are such that DSMC fits within

the CPU’s cache while VRDSMC needs to use to the system’s main memory.

• The stabilization of VRDSMC without introducing appreciable bias requires a

larger Ncell in many simulations. This is in contrast to DSMC which typically

will require Ncell = O(100). This issue is only likely to be a limiting factor at

low Kn in flows that are not very close to equilibrium. This also may be a

limitation in multi-dimensional flows in cases where a fine mesh is required.

As a point of reference, we ran a few calculations comparing VRDSMC and DSMC

for simulations with identical parameters and listed the results in Table 5.2. Overall,

the execution penalty generally lies in the 2 − 7× range, which is quite moderate

considering the large improvement in sampling fidelity achieved by VRDSMC. Look-

ing more carefully at the table, we see that VRDSMC simulations become slower as

||Si|| is increased when holding everything else constant. The slowdown is slightly

mitigated by the fact that more stable calculations with larger ||Si|| tend to have

a lower MX which translates to faster collision routines since we need to process a

significantly smaller number of collision candidates. Finally, it is interesting to note

that the VRDSMC performance penalty is sometimes dramatically reduced in cases
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Table 5.2: Time needed to run 1000 steps of a transient simulation for a Couette flow
problem. Execution times are those on a 2.93GHz Core-2 Macbook Pro.

Kn Cells Ncell ‖Si‖ VRDSMC Time(s) DSMC Time(s) Slowdown
1.0 6 500 5 8 4 w 2
1.0 6 2500 5 36 8 4.25
1.0 50 500 5 56 19 w 3
1.0 50 2500 5 236 43 5.5
1.0 50 500 10 52 19 2.7
1.0 50 2500 10 238 43 5.5
0.1 50 2500 10 338 54 6.25

where the whole simulation fits in a CPU’s cache when we have a small number of

particles.

5.4.1.1 When does DSMC have an advantage over VRDSMC?

As one would expect, DSMC performs better than VRDSMC when we have a problem

that is not close to equilibrium. The trade-off is that VRDSMC is somewhat slower

as we saw above and its advantage over DSMC decreases as the problem moves away

from equilibrium. For example, in our implementation, steady Couette flows with

Kn<0.5 can probably be simulated using DSMC faster only when the velocity we

are interested in sampling is bigger than about Ma > 0.05. The DSMC advantage

however will immediately go away when we start looking at other “induced” moments

(e.g. ρ, T , etc.) since they are typically of much smaller magnitude than the flow

directly induced by the wall movement.

We also recall that for a sufficiently large Kn and with a specified wall number

density, no KDE is required. In such cases, VRDSMC scales likeO(Ncell) and performs

almost as fast as DSMC making it even more attractive.

To summarize, we recommend considering VRDSMC for any low-signal kinetic

flow problem with Kn > 0.1, provided we are close enough to equilibrium (Ma . 0.1).
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5.4.2 Advantage Over LVDSMC

The comparison between VRDSMC and the deviational LVDSMC method of Ho-

molle and Hadjiconstantinou [53, 51] is more complicated. This is partially because

LVDSMC has only been recently developed and some aspects of its performance and

limitations are not well characterized. Despite this, we have many reasons to believe

that a practitioner should probably consider VRDSMC before looking at LVDSMC

for the following reasons:

• As discussed elsewhere, LVDSMC is significantly more complex to implement.

• VRDSMC is simpler to derive and can be fairly easily generalized to other

collision models.

• Our method is probably simpler to implement in the cases of multiple dimen-

sions especially for complex geometries. One major reason for this is the need to

create particles at cell boundaries of LVDSMC simulations as part of integrating

the advection operator using a different reference state in each cell. LVDSMC

can perform using only one global reference equilibrium (in which case no par-

ticle generation at cell boundaries is required) at the cost of reduced variance

reduction [66].

It is a more complex issue to compare LVDSMC with VRDSMC in terms of perfor-

mance for a number of reasons related to the fundamental differences between the

two formulations. For example, although the evaluation of the convolution term in

Equations 1.9 and 1.10 would point to the possibility of O(N2
cell) scaling, all current

experience points to a fixed evaluation cost that does not scale with the number of

particles in the cell. Another example of the complexity of comparing the two methods

is that particles in LVDSMC represent deviations from equilibrium, so it is common

for certain simulations to have a very large variation in the number of particles per

cell across the domain which is typically not the case in DSMC or VRDSMC.
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Chapter 6

Simulation Weight Update Rules

Using Conditional Probability

Arguments

In this Chapter we explore an alternative approach to deriving the weight update

rules presented in Section 3.3.1 based on conditional probability arguments. This

alternative approach is more general and allows the derivation of rules for other

collision models quickly and intuitively. In the first section below we will introduce

the general conditional probability approach and then proceed in Section 6.2 to apply

it to the hard-sphere collision model.

6.1 Weight Evolution Rules Using Conditional Prob-

abilities: Guiding Principles

The weight update rules given in previous Chapters can be derived in an intuitive

manner using conditional probability arguments. To simplify the analysis, let us start

by only looking at spatially homogeneous problems; this constraint will be relaxed

later. To proceed, let us consider two simulations that use Ncell simulation particles,

with initial velocities {ci}:

95



1. Simulation A: each simulation particle represents NEff physical particles. As

the simulation progresses, the velocity of every particle i is updated from ci

at time t = 0 to c′i at time t′ = ∆t with probability PA:ci→c′i
. In general, c′i

may or may not be identical to ci and 0 ≤ PA:ci→c′i
≤ 1 accounts for a transi-

tion probability that allows the simulation of both stochastic and deterministic

processes.

2. Simulation B: a different simulation that is performed in parallel to simulation

A using the same Ncell particles that are also initially at {ci}. However, in

contrast to Simulation A where each particle represents NEff physical particles,

here, each particle i represents WiNEff physical particles. PB:ci→c′i
is defined

in a manner identical to PA:ci→c′i
, but captures the transition probabilities for

Simulation B.

One way to proceed is to independently integrate simulations A and B by updating

all the particle velocities ci → c′i using the appropriate conditional probability in each

simulation. In the case of simulation A we will move each particle i from its initial

velocity ci to c′i with probability PA:ci→c′i
resulting in Ncell particles at {c′i}A each

representing NEff real particles. Simulation B on the other hand, will result in par-

ticles at {c′i}B at time t′ each representing WiNEff particles; since PA:ci→c′i
6=PB:ci→c′i

we will have, {c′i}A 6= {c′i}B in general.

A workable variance reduction procedure needs both simulations to stay correlated

at all times. This can be achieved by integrating both simulations in a synchronous

manner, by updating the velocities of both simulations according to the transition

probabilities of simulation A but modifying the weights W ′
i at t′ to ensure that

they are still representing Simulation B.

Given this formulation of the problem, we proceed by explicitly calculating the

number of particles in the final state in both simulations and then modifying the

weights to correctly account for the proper ratio of particles in the two simulations.

To wit, let us assume that for every particle of velocity class ci there are NEffNci

particles in simulation A at initial time t. At time t′ the expected number of actual
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particles at c′i in this simulation that were at ci will be

NEffPA:ci→c′i
Nci (6.1)

Likewise, in simulation B we will have WiNEffNci particles of class ci (recall that

{ci}A = {ci}B at t = 0) and we should have

WiNEffPB:ci→c′i
Nci (6.2)

real particles landing at c′i that came from ci to be faithful to the dynamics of simula-

tion B. Unfortunately, since we are going to update the velocities ci based on PA:ci→c′i

we will instead have

W ′
iNEff PA:ci→c′i

Nci (6.3)

real particles in simulation B, where we have allowed W ′
i yet to be undetermined. W ′

i

can be determined by combining Equation 6.2 and Equation 6.3 to yield

Wi
′ = Wi

PB:ci→ci′

PA:ci→ci′
(6.4)

In words, if we update the velocities according to Simulation A we will need to

adjust particle weights in order to properly describe simulation B. As we will show,

Equation 6.4 is the basis for all the results that can be used to derive weight update

rules to a variety of physical phenomena, such as advection, particle collisions, wall

interactions, etc., as long as the phenomenon can be cast into this form. Intuitively,

it tells us that the post-transition weight of a particle is equal to the original weight

of the particle multiplied by the ratio of the required transition probability to the

actual transition probability from ci to c′i.

In the context of the present Thesis, we need to perform an equilibrium and

non-equilibrium simulation. This is done by simply identifying the non-equilibrium

simulation with Simulation A and the equilibrium simulation with Simulation B which
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will result in the following weight update rule:

Wi
′ = Wi

Peq:ci→ci′

Pci→ci′
(6.5)

Clearly, Pci→c′i
and Peq:ci→c′i

are the transition probabilities from ci to c′i for the

equilibrium and non-equilibrium simulations, respectively. Note that the choice of

which simulation is calculated directly (using ci) and which one is calculated implicitly

(using ci and weights Wi) is arbitrary. For practical reasons we made the above choice

since we would like the primary calculation to remain the standard DSMC method

with no modifications. To actually use Equation 6.5 to find weight update rules we

will need to substitute transition probabilities appropriately, a topic we will explore

in the next section.

6.2 Hard-Sphere VRDSMC Weight Update Rules

Using Conditional Probabilities

To apply the principles of the last section to a DSMC simulation of equilibrium we

need to examine all the different simulation sub-steps individually. We will see that it

is fairly straitforward to apply Equation 6.5 to the advection sub-step and the various

boundary conditions; more effort, however, will be required to correctly simulate the

collision step, which we consider first.

6.2.1 Collision Transition Probabilities for Hard Sphere

The collision step in DSMC [12, 22] is based on an acceptance-rejection procedure

that selects a certain number of candidate particles and then either accepts them for

scattering or rejects them without modifying their velocities (see Section 1.6). The

scattering procedure for selecting the exact post-acceptance velocities is based on

simple Newtonian mechanics that conserves mass, momentum and energy and is not

related (in the hard-sphere case) to the collision probability. In what follows we will

use the following definitions:
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Pci→c′i
≡Probability a candidate particle is accepted in the non-equilibrium simu-

lation

Pci→c′i=ci = 1 − Pci→c′i
≡Probability a candidate particle is rejected in the non-

equilibrium simulation

Peq:ci→c′i
≡ Probability a candidate particle is accepted in the equilibrium simula-

tion

Peq:ci→c′i=ci = 1 − Peq:ci→c′i
≡Probability a candidate particle is rejected in the

equilibrium simulation

Let us start by looking at the accepted transition probabilities for both simulations

and proceed in a manner that is identical to the approach for deriving DSMC directly

from kinetic theory, namely by estimating the number of collisions in a cell and then

creating an acceptance-rejection scheme that will faithfully simulate those collisions.

The number of particles of class cj “collected” in time ∆t by a single particle i of

velocity ci is

NEff crσ
∆t

2V
(6.6)

By extension, if there are NEffWi particles of class ci in a cell and NEffWj particles

of class cj in the same cell, the average number of collisions between class ci and cj

will be

N2
EffWiWjcrσ

∆t

2V

and so each simulation particle of class ci we will have

NEffWjcrσ
∆t

2V

collisions. This is because the scattering of each simulation particle representsNEffWj

actual collisions. Like DSMC, to account for the collision rates of all velocity classes,

we simply use an acceptance-rejection procedure to sample all the velocity classes by

randomly choosing collision partners in a cell. Keeping the same number of collision
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candidates as DSMC (again, referring to Section 1.6) we will need:

NEffNcell(Ncell − 1)MXσ
∆t

2V
(6.7)

candidates. We can account for the weights by modifying the definitions of acceptance

probabilities and the value of the probability normalization constant MX. The non-

equilibrium simulation will be performed correctly if we choose collision probability

Pci→c′i
= cr/MX (6.8)

while the correct simulation of equilibrium will result from choosing an equilibrium

collision probability of

Peq:ci→c′i
=
Wjcr
MX

(6.9)

To ensure that the collision probabilities stay physically meaningful we need to

slightly modify MX from being the maximum cell-based relative velocity to

MX = max
i,j∈cell

Wicr

It is noteworthy that since every scattering of computational particle i is meant

to be in place of WiNEff physical molecules, the collision probability is asymmetric

and in general when i and j are collision partners Peq:ci→c′i
6= Peq:cj→c′j

. Also, as

expected, the above formulation reduces to the standard DSMC if we take Wi = 1

for all i.

One key advantage of this formulation compared to the one given in Chapter 3

is that it can be extended to many other collision models since the above derivation

does not explicitly use any properties of the form of Boltzmann collision integral. As

such, it is easy to extend the weighted approach and the variance reduction approach

of this Thesis to other collision models like the BGK model, or other complex collision

or possibly reactive models.
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6.2.2 Final Collision Update Rules

Using the results from the last section and combining Equation 6.8, Equation 6.9

with Equation 6.5 we can explicitly find the update rules for hard-sphere VRDSMC.

For the accepted particles

Wi
′ = Wi

Peq:ci→c′i

Pci→c′i

= WiWj (6.10)

while for the rejected particles

Wi
′ = Wi

Peq:ci→c′i=ci

Pci→c′i=ci

= Wi

1− Peq:ci→c′i

1− Pci→c′i

= Wi
1−Wjcr/MX

1− cr/MX
(6.11)

Note that as a result of these relations, a collision candidate pair i and j with

Wi 6=Wj will have identical post-collision weights when accepted, but will have differ-

ent weights when rejected.

6.2.3 Advection Substep

Conditional probability arguments can be used to derive weight evolution rules for

the advection step as follows. The equilibrium and non-equilibrium transition prob-

abilities in the advection case are simply given by

P{xi,ci}→{xi+∆tci,ci} = 1

Peq:{xi,ci}→{xi+∆tci,ci} = 1

where {xi, ci} represents the state of a particle i at xi that in time ∆t moves to a

new position without changing its velocity ci. Using Equation 6.5 above, results in

W ′
i = Wi (6.12)

as could be intuitively, perhaps, expected. Note that Equations 6.10, 6.11 and 6.12

are identical to the transition rules that were discussed in Chapter 3 as would be
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required for the method to be consistent with the Boltzmann equation.

Wall Collisions We now discuss weight evolution rules for particles colliding with

walls during the advection substep. In the cases where the wall post-collision velocity

is not a function of the incoming velocity (i.e. a fully accommodating wall) the

transition probabilities become:

Pci→c′i
= fW (c′i)

and

Peq:ci→c′i
= feq:W (c′i) = feq,0 (c′i)

where fW is the boundary condition associated with the wall for the non-equilibrium

simulation and feq:W is its equilibrium counterpart that we take to be the reference

distribution function. Applying Equation 6.5 we see that our weight update rule for

wall collisions is

W ′
i = Wi

feq,0(c′i)

fW (c′i)
(6.13)

Though this relation is the most general and can be applied to almost any bound-

ary condition, it is not practical in many cases. The stability of the calculation is

substantially enhanced if the simulation domain has a point where weights are directly

evaluated from an explicitly known equilibrium and non-equilibrium distribution and

not from an implicit conditional estimate. Because of this we recommend using the

wall boundary conditions outlined in Chapter 5 and not the relation derived here.

Body Force Boundary Condition For the case of kinetic flows with applied fields

[12] the velocity (in addition to position) is updated in time. Specifically

ci → c′i = ci + ∆tG
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Where G is the body force acting on the particles. Directly applying the approach

of 3.3.1 will not work since:

P{xi,ci}→{xi,ci+∆tG} = 1

Peq:{xi,ci}→{xi,ci+∆tG} = 0

making W ′
i = 0 which is not helpful for what we are trying to do. An alternative

approach uses the change of reference state explained in Section 5.1.1 and is needed

in this case to properly find new weights. In detail the steps are:

1. Starting from a set of particles {ci,Wi} representing feq,0(c) = fMB(c;n0,0, T0).

2. Update velocities while keeping Weights constant. Because of this the set

{ci,Wi} will represent a Maxwell-Boltzmann distribution f ′eq,0(c) = fMB(c;n0,∆tG, T0).

3. Update Wi to account for the shift. We do this by applying the transformation

Wi → γiWi

where γi =
feq,0(c)

f ′eq,0(c)

where n0 and T 0 are the global reference number density and temperature. A similar

approach can be used to apply volumetric heating within a cell.

6.2.4 Limitations and Pointers to Stability Issues

The procedure outlined in this section is able to produce completely unbiased variance-

reduced simulations of a HS gas that are only stable at high Knudsen numbers and

fixed density. In fact, if Equation 6.13 is used to enforce the wall boundary condition,

the simulation will be numerically unstable for all values of Kn. This should come as

no surprise to the reader since these weight transition rules are identical to the ones

derived directly from the Boltzmann equation and so will only be completely stable

when KDE is used to limit the growth the variance of the weights.
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The reason for the instability is that the transition probabilities that were used

in the derivation of the weight update rules are those that give the probability of

finding a particle at c′i when time=t′ given that it had the velocity ci at time t for

the equilibrium and non-equilibrium simulations. There is no reason to expect that

the equilibrium and non-equilibrium transition probabilities from c → c′i should be

similar to each other after many steps and consequently, there is no guarantee that

‖1−Wi‖ � 1 as t→∞. Indeed, stability can be achieved when weights are estimated

based on the absolute probability of finding a particle with velocity c′i regardless of its

previous velocity. This can be achieved by using KDE since it allows us to construct

an estimate of the distributions f and feq at c′i.

6.3 Connection to the LVDSMC Scheme

In this section we discuss a brief investigation undertaken with the objective of find-

ing a connection between the weight formulation described in this Thesis and the

LVDSMC method of Homolle and Hadjiconstantinou [53]. In the course of that in-

vestigation we were able to develop a method that utilizes the convolution form of

the BE (Equations 1.9 and 1.10) within a weight formulation. Let us define M as the

inverse of W :

M =
1

W
=

f

feq

In other words we consider a simulation that samples the known equilibrium distri-

bution and relates it to the unknown non-equilibrium distribution via a likelihood

ratio1. Let us define the deviation from absolute equilibrium as

fd = f − feq,0 = (M − 1)feq,0

Using this relation and the kernel K = K1 + K2, we can write the collision integral

in the form:

1There are some parallels between this approach and [65] though they only use the linearized
version of the BE in the standard form (1.1).
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dM(c)

dt

∣∣∣∣
Collision

= −ν(c) (M(c)− 1) +
1

feq,0 (c)

ˆ
K(c, c1) (M(c1)− 1) feq,0 (c1)dc1

Approximating dM(c)/dt by M∗(c)−M(c)
∆t

, we obtain the one timestep update rule

M∗(c) = M(c)− ν(c) (M(c)− 1) ∆t+
∆t

feq,0 (c)

ˆ
K(c, c1) (M(c1)− 1) feq,0 (c1)dc1

This can be broken into a two-step sequence

M ′(c) = M(c)− ν(c) (M(c)− 1) ∆t (6.14)

M∗(c) = M ′(c) +
∆t

feq,0(c)

ˆ
K(c, c1)(M(c1)− 1)feq,0(c1)dc1 (6.15)

with the following interpretation: In the first step we stochastically take M(c) to 1

with probability ∆tν(c). In the second step we update M ′(c) to M∗(c) by evaluating

the convolution as a sum over the simulation particles using importance sampling.

Our numerical implementation of this scheme indicates that given enough sim-

ulation particles, the method is able to produce an accurate and stable simulation

for short simulation times; however, due to the high cost of implementing the convo-

lution step, the method is not very practical especially when compared to our final

version of VRDSMC. We have not explored subsampling methods (using a small and

fixed number of particles Na to evaluate the integral in Equation 6.15) which would

make the cost O(NaNcell). Clearly further investigation is required before a direct

and precise comparison can be made.
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Chapter 7

Further VRDSMC Validation and

Performance Evaluation

In this Chapter we use a demanding test problem to further explore the performance

of the VRDSMC method. Specifically, by comparing to a DSMC solution of the same

problem, we are able to obtain useful information about the convergence properties

of VRDSMC as well as the computational savings compared to DSMC.

7.1 Introduction

We study the temperature profile due to viscous dissipation in a gas sheared by two

walls moving in opposite directions (Couette flow). For low wall velocities and small

Knudsen numbers the temperature profile is parabolic with a temperature jump at

the walls due to kinetic effects [46]. The magnitude of the heating varies quadratically

with the wall speed, making this problem particularly challenging to simulate at small

Mach numbers. For example, the temperature increase is of the order of 2.55K for the

case UW = 0.15c0, Kn = 0.1 studied here, while at UW = 0.05c0 it is ∆T = 0.25K.

This makes very accurate DSMC simulations essentially impossible for UW < 0.1; as

a result, a number of our VRDMSC-DSMC comparisons are performed on a coarse

grid. We do, however, study the results of a significantly more refined VRDSMC

calculation in the last section of this chapter and compare it to a DSMC solution.
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To help us interpert the simulation results, we will start in the next section with

a qualitative discussion of the contribution of the KDE procedure to numerical error

in VRDSMC.

7.2 Sources of Error/Bias in VRDSMC
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Figure 7-1: Simple illustration of KDE applied to one-dimensional functions. The
figure in the top left shows the original functions; the figure below shows the expected
shape of the KDE reconstruction of these functions. The plots in the right column
are those of the corresponding weights for the exact function quotient and its KDE
reconstruction.

Before we proceed to discuss some of the features that characterize how accurate a

typical VRDSMC simulation is, let us start by giving a qualitative illustration of how

a KDE estimation step introduces bias in the simulation. For the sake of simplicity
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let us consider two simple one-dimensional functions f(c) and feq(c) that will be

analogs to our non-equilibrium and equilibrium distribution functions respectively.

Specifically, let us define a parameterized PDF gα that is a Gaussian distribution of

zero mean and variance α

gα(c) = NormalDistribution (0, α) =
e−

c2

2α2

√
2πα

Let us assume our reference “equilibrium” state is one with a unit variance. i.e.

feq(c) = g1(c)

Furthermore, let our “non-equilibrium” function be given by

f(c) =

g.85(c) c > 0

g1.1(c) c < 0

(7.1)

In other words, f is a discontinuous function, as shown in Figure 7.2. The weight

function W (c) = feq(c)/f(c) is shown in the top right plot of the figure. As expected,

there is a discontinuity at c = 0.

To illustrate the KDE process, let us start by defining a normalized kernel K in

one-dimension

K(∆c) =


1
ε
|∆c
ε
| < 1

0 otherwise

⇒
ˆ
K(∆c)d c = 1

In the limit of a large number of samples, the re-constructed function f̂ will approx-

imate f by

f̂(c) =

ˆ
K(c− c′)f(c′)dc′

Similarly we have for f̂eq

f̂eq(c) =

ˆ
K(c− c′)feq(c′)dc′
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Qualitatively, the reconstructed functions f̂ and f̂eq resemble the original func-

tions, but are generally “smeared”; this is especially clear at the discontinuity location

in the original function f . In the bottom left plot in Figure 7.2 we see an example

of these reconstructed functions calculated based on a kernel with ε = 0.1. If we use

these new functions to estimate the ratio of probabilities Ŵ , we will get

Ŵ (c) =
f̂eq(c)

f̂(c)

that resembles the original W (c), but as before without the discontinuity of the origi-

nal weight function. Figure 7.2 further illustrates the distortion introduced due to the

KDE procedure. The left column of the figure shows the ratio Ŵ (c)
W (c)

for multiple values

of the parameter ε. The right column compares for each ε the original equilibrium

function with Ŵf(c). The latter is the function that is effectively sampled when we

use Ŵ instead of W to estimate equilibrium properties. Qualitatively, the distortion

in the PDF is concentrated close to the discontinuity at the origin.

7.3 VRDSMC Bias as a Function of ε

In this section we will look at two trends that emerge as we vary VRDSMC param-

eters. Because the convergence properties as well as the ability of DSMC to provide

accurate solutions of the BE have been well characterized [10, 20], the discussion be-

low will compare VRDSMC to the equivalent DSMC simulations. Furthermore, due

to the faintness of the temperature signal (an issue for DSMC) we have limited most

of these simulations to moderately high velocities (Ma number 0.1−0.15) and a very

coarse grid (1 cell per mean free path) in order to practically produce these results

in reasonable time.

We define the relative error as the error normalized by the maximum deviation

from the equilibrium value of the quantity of interest

Relative Error(R(c)) =
RV R −RDSMC

max
all cells

(‖RV R −Req‖)
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When resolving small errors it is essential to make sure that enough time has

passed so transient effects are completely negligible. For this reason, in the examples

of this chapter we have chosen to start steady state sampling after 400 collision times.

Figure 7-3 shows the relative error in four hydrodynamic quantities of interest in

this Couette flow problem. The figure clearly shows that the relative error mono-

tonically decreases with decreasing ε, for all hydrodynamic qualities of interest. All

simulations were run with ‖Si‖ = 10 which required Ncell = 30, 000 for ε ≈ 0.109

(lowest value) to Ncell = 1, 000 for ε = 0.34 (highest value).

7.4 A Well Resolved Steady State Solution of an In-

duced Heating Problem at Kn = 0.1

In this section we show that accurate solutions with error levels well below the en-

gineering 1% are possible with the proposed VRDSMC method. Figure 7.4 shows

the steady state solution of a 1D Couette flow problem run with fine discretization

and UW = 0.1 c0. Specifically, the solution in the figure was obtained using 50 cells

(giving a ∆y = 1/5λ) a timestep that is half a cell traversal time (corresponding to

∆t = 1/10 mean time between collisions) and 30, 000 particles per cell. As we saw in

the examples of the last section, the induced heating and the corresponding heat flow

and density changes are so low that they were particularly expensive to resolve. To

achieve the low noise levels in DSMC that can be seen in the figure we needed to run

multiple ensembles of the 1.5 million particle simulation for several days on a large

computing cluster. And to ensure stability of the VRDSMC simulation, the average

number of particles in KDE estimate was set to ‖Si‖ = 10 which corresponded to ker-

nel width of ε = 0.109. The parameters used to solve this problem were particularly

conservative and engineering results can probably be obtained with a significantly

smaller number of particles by relaxing the KDE radius and setting ‖Si‖ to 7 − 8.

This is particularly true for the flow velocity (ux) in which the discrepancy between

the two calculations is less than 0.04%.
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Figure 7-2: The introduction of bias in the estimates of weights is the primary cause
of error in VRDSMC simulations. In this Figure, we see that as ε → 0 the bias
introduced goes to 0. In this figure the left column shows the ratio of Ŵ/W , while
the right column shows feq vs. Ŵf .
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113



10 20 30 40 50

1.4000� 1017
1.4005� 1017
1.4010� 1017
1.4015� 1017

Ρ

10 20 30 40 50
�0.5

0.5

1.0

1.5
Relative Error ����0.477199

10 20 30 40 50

300.6
300.7
300.8
300.9
301.0
301.1

T

10 20 30 40 50

0.4

0.5

0.6

0.7
Relative Error ����0.525028

10 20 30 40 50

�30
�20
�10

10
20
30

ux

10 20 30 40 50

�0.04
�0.02

0.02
0.04
0.06

Relative Error ����0.0270709ux

10 20 30 40 50

�0.0003
�0.0002
�0.0001

0.0001
0.0002
0.0003

qy

10 20 30 40 50

�0.4
�0.3
�0.2
�0.1

0.1
0.2

Relative Error ����0.185777qy
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2
cell

traversal time.
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Chapter 8

Conclusions and Prospectus

We have developed an efficient method of simulating low-signal kinetic flows by in-

corporating variance reduction ideas within the prevalent particle simulation method

for solving the BE. The resulting VRDSMC method retains most features that make

DSMC so powerful, namely simplicity, flexibility and computational efficiency while

overcoming the major disadvantage associated with DSMC, namely, poor computa-

tional performance for low-signal flows.

Our proposed method has three main ingredients: First, is the use of importance

weights for variance reduction. The second critical ingredient is the use of the Kernel

Density Estimation technique to limit the unbounded growth of the weight variance

σ2{Wi} that was causing the method to fail. In particular, the KDE allowed us to

reconstruct efficient numerical approximations of the particle distribution functions

for both the main non-equilibrium simulation as well as the auxiliary equilibrium

simulation, thus stabilizing the latter, albeit at the cost of some bias in the solution.

The final important ingredient is the use of a local Maxwell-Boltzmann reference state

for performing the collision step only. The adjustment of the reference state is not

strictly required for the successful use of the method [59], but it makes the method

much more attractive by substantially reducing the required number of particles per

cell Ncell, especially for accurate low Kn applications.

In this work we were able to validate our method by comparing our results with

DSMC solutions for a variety of 1D problems. We were able to show that VRDSMC
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is able to produce accurate results with a reasonable number of particles per cell

for a wide range of Knudsen numbers. The method is able to accurately reproduce

transient as well as steady state results for a number of different types of boundary

conditions, and to do so accurately for both the primary and secondary (induced)

hydrodynamic fields.

One important recurring theme in this work is the fundamental tradeoff between

variance and bias in the VRDSMC simulations. It appears that it is fairly straight-

forward to create a VRDSMC variant that does not introduce any bias but, unfortu-

nately, such a method will be unstable and will be only of use for studying transient

phenomena for the first few (1−4) collision times. On the other hand, in the course of

this investigation, we have studied a large number of stable variants that usually had

an unacceptable amount of induced bias. The final variant proposed here achieves a

delicate balance by creating what appears to be a stable simulation that has accept-

able bias, that can additionally be made arbitrarily close to zero as long there are

enough simulation particles in the domain. For steady-state, high resolution, low Kn

applications that require a large number of particles and thus long integration times,

Projective methods such as the one described in [55] may be useful for accelerating

convergence to steady state, especially since such acceleration schemes tend to need

a high accuracy transient solver to give accurate steady state solutions.

We tend to think of VRDSMC as a method that bridges two different approaches

of solving kinetic gas flow problems. On one end of the spectrum we have DSMC

which does not explicitly calculate the distribution function and espouses the goal

of simulating the BE without explicitly using any information about the analytical

form of the collision integral. In DSMC hydrodynamic properties are simply calcu-

lated from samples of the distribution and as such it is difficult to describe the fine

details of the shape of the distribution function. On the other end of the spectrum

we find deterministic solvers of the BE like [49, 7] which solve for the distribution

function; these approaches are particularly useful for low-signal applications but still

very expensive. VRDSMC produces estimates of the distribution function but only

for the purpose of producing variance-reduced estimators that allow us to efficiently
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measure moments of low-signal flows without resorting to a full (and very expensive)

solution of the BE.

As pointed out in the introduction, the variance reduction approach introduced

in this Thesis was inspired by work that started in the field of polymers [47]. Appli-

cation of these ideas to kinetic gas flows was particularly challenging since stochastic

particle-particle interactions are much more difficult to deal with than single particle

thermalization from a known distribution. Noise problems due to thermal fluctua-

tions is a very common limitation in many computational physics applications and

there are have been other attempts to tackle this problem [44, 37]; it is fascinating to

contemplate what other DSMC-like simulation methods this approach can be applied

to.

We have spent considerable effort in ensuring that the VRDSMC method remains

competitive with DSMC in terms of computational cost per timestep. Our best result

is a method that scales as O(NcellLog(Ncell)) in the worst case, which is close to DSMC

which is an O(Ncell) method. In this sense more room for improvement exists. The

work described in Chapter 5 has shown that using a local equilibrium distribution

results in a substantial improvement in accuracy. Further improvements can come

from performing a collision process using a local distribution which is as close to the

actual distribution as possible. Given that stability problems and the associated KDE-

induced bias are intimately linked to the low Knudsen regime, perhaps additional

improvements can be achieved by using a Chapman-Enskog distribution [19]. Care

however needs to be taken, because a Chapman-Enskog distribution is no longer

invariant under the action of the collision operator.
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Appendix A

Nearest Neighbor Routine Optimized

for VRDSMC

The application of the KDE procedure to every particle accepted for collision requires

finding the set Si of all particles that are within εc0 of particle i in velocity space.

The direct method of looping over all particles in the cell and comparing their dis-

tance would make the main VRDSMC routine O(N2
cell), which would be too slow for

practical applications. A standard method of solving the problem of finding nearest

neighbors is to use a K-Dimensional (KD) tree to sort particles in a way that allows

the retrieval of a particle’s neighbors in O(Log(Ncell)) making VRDSMC much more

practical especially for applications where Ncell is large. The first section will give

a short overview of KD Trees; while the last section of this Appendix describes the

actual procedure we used in finding neighbors in our VRDSMC implementation.

A.1 KD Trees and Finding Nearest Neighbors

A K-Dimensional tree is a standard computational geometry data structure [48, 43]

that is commonly used to sort points into a tree-like structure that allows fast retrieval

of neighboring points. Press et. al. [48] describe them as:

“The defining principles of a KD tree are
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• Boxes are successively partitioned into two daughter boxes.

• Each partition is along the axis of one coordinate.

• The coordinates are used cyclically in successive partitions.

In making the partition, the position of the “cut” is chosen to leave equal

numbers of points on the two sides (or differing by one in the case of an

odd number of points).”

We have found a number of problems when using this formulation to find nearest

neighbor particles for our KDE step. To begin with, KD Trees are somewhat com-

plicated to implement and require non-trivial algorithms to quickly sort and search

for points. More importantly, there is no simple way of re-sorting particles whose

velocities change as a result of collisions, without creating duplicate particles. In the

end we found the method of the next section to be much simpler to understand, im-

plement and debug. Most importantly, it also performs significantly faster than KD

Trees, for the sizes of particles per cell one deals with in typical DSMC/VRDSMC

calculations.

A.2 Our Nearest Neighbor Procedure

Due to the shortcomings discussed in the last section, we used a significantly simpler

scheme to find nearest neighbors that is based on dividing the velocity space into bins

of unequal size and sorting particles in them. The main advantage our procedure

enjoys compared to a simple uniform cell gridding is that we exploit the fact that

our calculation is close to equilibrium and so particle velocities are distributed in

an approximately Gaussian manner. This means that with a judicious choice of bin

boundaries we can create bins that on average contain the same number of particles,

which results in efficient use of memory as well as the fast retrieval of neighbor

particles within εc0. Moreover, this method makes it easy for particles to change

their location in velocity space without needing to create clone particles or re-sorting

the particles in the cell.
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Figure A-1: Sketch illustrating our nearest neighbor procedure in 2D. The blue points
in the figure are drawn from a normal distribution and the cells are chosen such that
on average they contain the same number of particles.

To further detail how our procedure works we will discuss a simple 2D implemen-

tation; the 3D implementation follows directly. As a guide, the reader may refer to

Figure A-1 which illustrates the basic concepts and definitions of this section.

We divide the domain into M×M cells such that each Cell(I, J) is defined as the

rectangle defined by ζI < x < ζI+1 and ψJ < y < ψJ+1 where I = 0, 1, 2.....M− 1 and

J = 0, 1, 2.....M−1. The cell sizes are variable; they are chosen such that, on average,

they contain the same number of particles. Assuming the velocity distribution is the

Gaussian g this can be achieved by using

ζI = H(I/M)
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and

ψJ = H(J/M)

where H(x) = G−1(x) is the inverse of the cumulative distribution

G(x) ≡
ˆ x

−∞
g(c)dc

This result can be obtained by considering that the requirement of, on average, equal

number of particles in each cell can be written as

g(c)dc = p(x)dx

where p(x) is a uniform distribution on [0, 1]. A particle located at (x, y) will reside

in Cell(I(x), J(y)) such that

I(x) = M bG(x)c

J(y) = M bG(y)c

where bc denotes the floor function. Using these procedures we can efficiently imple-

ment the KDE reconstruction as follow:

• Sorting: loop through theNcell particles in a cell placing particle i in Cell(I(xi), J(yi)).

This operation needs O(Ncell) operations and is performed before the start of

the collision step.

• Updating particle velocities: when a collision updates the velocity of a

particle we update the lists of both (departing and arriving) cells.

• Finding neighbors of particle i within distance ε: We start by finding all

cells that contain parts of a circle of radius ε centered at the particle i, as shown

in green in Figure A-1. We then loop through these particles to see if they are

in the neighborhood of i. Symbolically, this translates to looping through the
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Table A.1: Simple benchmarks of VRDSMC for the same simulation but with a
different number of cells in velocity space. This particular set of runs was for a
Kn = 0.1 Couette flow simulation with Ncell = 4, 500 with 30 cells in the y-direction
and ‖Si‖ = 10. The run times were calculated on a notebook with a 2.93GHz Core 2
processor with M3 cells in velocity space.

Average # of particle per cell M Execution Time(s)
3 12 54
6 10 55
10 8 56
20 7 58

set of particles {j ∈ cells(I, J); IMin < I < IMax, JMin < J < JMax} where

IMin = I(xi − ε)

IMax = I(xi + ε)

and

JMin = J(yi − ε)

JMax = J(yi + ε)

to find the set of nearest neighbors Si.

Since finding the nearest neighbors requires looping though all cells that may contain

close particles, it is advantageous to select M such that an average cell has ‖Si‖
particles in it. When this is done the cost of finding the set Si becomes close to the

average number of neighbors. Indeed, from our experiments (for example, see Table

A.1) we have found that having on average a number of particles in a cell that is less

than ‖Si‖ gives a (small) performance advantage.

123



124



Appendix B

Variance-Reduced Estimates for The

Common Hydrodynamic Variables

Like DSMC, hydrodynamic properties of interest in VRDSMC are calculated as ex-

pected values of moments of the distribution function that are sampled as the sim-

ulation evolves. The only difference between the two methods is that the variance-

reduced property estimators are slightly more complex since they require the subtrac-

tion of the sampled equilibrium properties.

B.1 Background

Recall that in a particle simulation the distribution function is approximated as

f(x, c) = NEff

N∑
i=1

δ(ci − c)δ(xi − x) (B.1)

and

feq(x, c) = NEff

N∑
i=1

Wiδ(ci − c)δ(xi − x) (B.2)

where N is the number of simulation particles in the domain and Ncell is the number

of particles in a cell.

As discussed in Section 2.2.1, integral R =
´ ´

R(c)f(x, c)dcdx can be written in
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a variance-reduced form

RVR =

ˆ ˆ
Rf(x, c)dcdx−

ˆ ˆ
R(x, c)feqdcdx +

ˆ ˆ
Rfeq(x, c)dcdx

and can be estimated using

RV R = R−Req + 〈R〉eq (B.3)

which results in reduced variance when the equilibrium property is known determin-

istically.

In the following Sections we apply this approach and definitions B.1 and B.2 to

find cell-averaged variance-reduced estimators for common hydrodynamic properties.

In this Appendix we use the symbols n, u, T, q to denote expectation values of num-

ber density, velocity, temperature and heatflux averaged over the cell. As remarked in

Section 1.3, in the main body of the Thesis we use one set of symbols, namely n,u, T

and q to denote both hydrodynamic fields and their simulation (cell-averaged) esti-

mates.

B.2 Variance-Reduced Density Estimator nVR

The approach can be readily applied to number density by starting with the definition

of the average number density over a cell of volume V as

n =

´ ´
f(x, c)dcdx

V
⇒ n =

NEffNcell

V
(B.4)

and using a similar expression for the equilibrium simulation

neq =

´ ´
feq(x, c)dcdx

V
⇒ n̄eq =

1

V
NEff

Ncell∑
i=1

Wi
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Recalling that the expected value for equilibrium is

〈n〉eq =
1

V
NEffNcell,eq

whereNcell,eq = neqV

Neff
is the number of particles expected in the equilibrium simulation,

we obtain

nVR = n− neq + 〈n〉eq ⇒ nVR =
NEff

V

(
Ncell∑
i=1

(1−Wi) +Ncell,eq

)
(B.5)

B.3 Variance-Reduced Velocity ūV R

Now proceed to treat the flow velocity, by focusing on the x-component, ux, given by

ux =

´ ´
cxf(x, c)dcdx´ ´
f(x, c)dcdx

(B.6)

The denominator can be re-written using Equation B.4 as NcellNEff =
´ ´

f(x, c)dcdx.

Applying Equation B.3 on the numerator gives

ux =
1

NcellNEff

(ˆ ˆ
cxf(x, c)dcdx−

ˆ ˆ
cxfeq(x, c)dcdx +

ˆ ˆ
cxfeq(x, c)dcdx

)

where ˆ ˆ
cxfeq(x, c)dcdx = V nequx,eq

which is 0 in the case when the reference equilibrium state has no mean velocity.

Finally, our variance-reduced estimator for a cell becomes

ux,V R =
1

NcellNEff

(
NEff

Ncell∑
i=1

cx,i (1−Wi) + V nequx,eq

)
(B.7)

In contrast, the estimator of ux for DSMC is

ux =

´ ´
cxf(x, c)dcdx´ ´
f(x, c)dcdx

⇒ ux =
1

Ncell

Ncell∑
i=1

cx,i
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B.4 Variance-Reduced Temperature TV R

Turning our attention to temperature we follow a similar line of arguing. The tem-

perature in a cell is defined as:

T =

m
3k

´ ´ [
(cx − ux)

2 + (cy − uy)
2 + (cx − uz)

2

]
f(x, c)dcdx

´ ´
f(x, c)dcdx

This can be rewritten as follows

T =
m

3kNcellNEff

{ˆ ˆ (
c2
x + c2

y + c2
z

)
f(x, c)dcdx

−
(
u2
x,V R + u2

y,V R + u2
z,V R

) ˆ ˆ
f(x, c)dcdx

}

giving

T =
m

3kNcellNEff

{ˆ ˆ (
c2
x + c2

y + c2
z

)
f(x, c)dcdx

−
(
u2
x,V R + u2

y,V R + u2
z,V R

)
NcellNEff

}

By B.3 above we get

T =
m

3kNcellNEff

{ˆ ˆ (
c2
x + c2

y + c2
z

)
(1−W (x, c)) f(x, c)dcdx

+
〈
c2
〉
eq
−
(
u2
x,V R + u2

y,V R + u2
z,V R

)
NcellNEff

}

where 〈c2〉eq =
´ ´

(c2
x + c2

y + c2
z)feqdcdx = 3k neqTeqV

m
. Thus, the a variance-reduced

estimator for T can be written as

TVR =
m

3k

{
3k Ncell,eqTeq

m Ncell

−
(
u2
x,V R + u2

y,V R + u2
z,V R

)
+

1

Ncell

Ncell∑
i=1

(1−Wi)
(
c2
x,i + c2

y,i + c2
z,i

)}
(B.8)
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In comparison, the non-variance-reduced estimator T is

T =
m

3k

{
1

Ncell

Ncell∑
i=1

(
c2
x,i + c2

y,i + c2
z,i

)
−
(
u2
x + u2

y + u2
z

)}
(B.9)

The astute reader will note that B.8 is an estimator of a quantity T based on an

other set of quantities (uV R) that themselves are estimated from the same dataset

which means that it may be biased. Typically, a correction is introduced to make

the estimator unbiased; no such correction is given here partially because it will only

make a substantial difference for small Ncell which is not of interest in our work. The

same holds for the other estimators introduced in this Appendix.

B.5 Variance-Reduced Heat Flux qy,V R

The cell-average heat flux in the direction y is given by

qy =
1

V

ˆ ˆ
(cy − uy)

m

2
‖c− u2‖f(x, c)dcdx

If we take uz = 0 we expand this equation to read

qy =
m

2V

ˆ ˆ (
c2
xcy + c3

y + cyc
2
z − 2cxcyux + cyu

2
x − c2

xuy

− 3c2
yuy − c2

zuy + 2cxuxuy − u2
xuy + 3cyu

2
y − u3

y

)
f(x, c)dcdx (B.10)

In other words, the integral can be written as a sum of terms of the form

ˆ ˆ
cαη c

β
ζ u

δ
ζu
χ
ηf(x, c)dcdx

where α, β, χ, δ ∈ {0, 1, 2, 3} and η, ζ ∈ {x, y, z}. The goal of producing a variance-

reduced estimator of qy is now reduced to finding expressions for these individual

terms. In the interest of brevity, we will treat here one of the terms

ˆ ˆ
c2
xcyf(x, c)dcdx
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with the understanding that other terms can be treated similarly. Using Equation

B.3 above we obtain

ˆ ˆ
c2
xcyf(x, c)dcdx =

ˆ ˆ
c2
xcyf(x, c)dcdx −

ˆ ˆ
c2
xcyfeq(x, c)dcdx

+

ˆ ˆ
c2
xcyfeq(x, c)dcdx

and this can be written as

ˆ ˆ
c2
xcy(1−W (x, c))f(x, c)dcdx +

ˆ ˆ
c2
xcyfeq(x, c)dcdx (B.11)

The first term of Equation B.11 can be evaluated using

NEff

Ncell∑
i=1

(
c2
x,icy,i(1−Wi)

)
= NEff

(
Ncell∑
i=1

c2
x,icy,i −

Ncell∑
i=1

Wic
2
x,icy,i

)
(B.12)

The second term of Equation B.11 can be evaluated by substituting the analytical

value of feq and explicitly evaluating the integral. A relation that is useful in general

is

ˆ
cαη c

β
ζ feq(x, c)dc =

1

π
((−1)α + 1)

(
1 + (−1)β

)
neq2

1
2

(α+β−4)Γ(
α + 1

2
)Γ(

β + 1

2
)

(
kTeq

m

)α+β
2

(B.13)

which in our case would imply

ˆ
c2
xcyfeq(x, c)dc = 0
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and so our variance-reduced estimator of the first term is

c2
xcyV R = NEff

(
Ncell∑
i=1

c2
x,icy,i −

Ncell∑
i=1

Wic
2
x,icy,i

)
(B.14)

We apply a similar approach to every term of B.10 to get a relation similar to

B.14. The variance reduced estimator of the heat flux will simply be the summation

of these terms.
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