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SUMMARY

We develop reduced basis approximations, rigorous a posteriori error bounds, and offline-online
computational procedures for the accurate, fast, and reliable prediction of stress intensity factors or
strain energy release rates for “Mode I” linear elastic crack problems relevant to fracture mechanics.
We demonstrate the efficiency and rigor of our numerical method in several examples. Copyright c©
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The stress intensity factor [22] is one of the most important quantities in Fracture Mechanics:
it summarizes the stress, strain, and displacement fields in the near crack tip region. Stress
intensity factors are crucial in the calculation of fatigue-induced crack growth [22] and in
the prediction of (effectively) brittle failure [1]. In many calculations, the stress intensity
factor (SIF) must be available in real–time (for example, for in-the-field Non–Destructive
Evaluation and prognosis) or repeatedly (for example, in fatigue crack growth prediction); and
most importantly, the SIF must be accurate and reliable in particular in situations related to
failure. There are two main approaches to calculation of the stress intensity factor: we can
either extract the SIF from reference handbook data (if available), or we can directly compute
the SIF numerically.
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2 D. B. P. HUYNH AND A. T. PATERA

For some problems, stress intensity factors are provided in various formats in handbooks
(e.g., [14]). The data is generated in a variety of ways based on analytical solutions,
approximate models, and pre-computed values; the results are typically presented in
interpolated form as plots and tables or empirical “fits.” Not all problems of interest can
be or have been treated, and in general the accuracy in particular of interpolated results can
not be assessed or ensured.

The alternative method is to compute the stress intensity factor numerically “ad hoc.” In
this approach, the stress intensity factor is extracted [3] from the solution field of the partial
differential equations (PDE) of linear elasticity obtained by (typically) the finite element
method [22]. The numerical methods must often be enhanced (e.g., enriched finite element
spaces [11, 12]) given the intrinsically singular origin of the SIF. This approach provides
accurate results in general, but it is very expensive — thus precluding application in the
real-time or many-query contexts.

Hence current stress intensity factor calculations are either not sufficiently accurate
(handbook extraction) or not sufficiently fast (direct numerical evaluation) for many interesting
applications; our goal is a computational procedure that provides both fast and reliable
prediction of stress intensity factors. Our approach is based on the reduced basis method
[5, 6, 7, 8, 9, 10, 17, 18, 23]. The main ingredients are (i) reduced basis approximations
[16, 17, 23] that provide rapid and uniform convergence; (ii) a posteriori error estimators
[23] that provide sharp and rigorous bounds for the error in the output (here the SIF); and
(iii) offline/online computational strategies [16, 17, 23, 24, 27] that allow rapid calculation of
both our output approximation and associated error bound.

In short, we propose an approach for stress intensity factor calculation which is guaranteed
to have the high accuracy of a “full” numerical simulation — say, by the finite element method
— but at the cost of a low-order model — (say) equivalent to the expense of graph/tabular
(handbook) extraction. The key ingredient here is the a posteriori error estimator, which allows
us to minimize the computational cost while ensuring the achievement of (effectively) finite
element accuracy.

The paper is organized as follows. In Section 2 we introduce first the standard problem
statement and then an equivalent new formulation that enables us to extract our output — the
stress intensity factor — as a “compliant” energy release rate. In Section 3 we present several
model problems/examples, numerical results for which shall be discussed and compared to
available theoretical/numerical references in the subsequent sections. In Section 4, we discuss
the extended finite element method — enriched spaces to accurately treat cracks [11, 12] —
upon which we shall build our reduced basis approximation. In Section 5 we describe our
reduced basis approximation with particular emphasis on those aspects tailored to the stress
intensity factor. In Section 6, we present the reduced basis SIF a posteriori error estimation
theory and associated computational procedures. And finally, in Section 7, we draw conclusions
and discuss future work.
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REDUCED BASIS APPROXIMATION 3

2. ABSTRACT STATEMENT

2.1. Classical Formulation

We consider a two-dimensional domain Ω ∈ R2 with boundary ∂Ω. We then introduce the
Hilbert space

X = {v ≡ (v1, v2) ∈ (H1(Ω))2|vi = 0 on Γi
D, i = 1, 2}, (1)

where Γi
D is the part of ∂Ω on which we shall impose homogeneous Dirichlet (zero displacement)

boundary conditions. Here H1(Ω) = {v ∈ L2(Ω) | ∇v ∈ (L2(Ω))2} where L2(Ω) is the space
of square-integrable functions over Ω. We equip our space with inner product and associated
norm (·, ·)X and ‖ · ‖X =

√
(·, ·)X , respectively: a typical choice for (·, ·)X is

(w, v)X =
∫

Ω

∂wi

∂xj

∂vi

∂xj
+ wivi, (2)

where summation over repeated component indices is assumed. More general inner products
and (equivalent) norms can be considered and are discussed later.

We next define our parameter set D ∈ RP , a typical point in which shall be denoted
µ ≡ (µ1, . . . , µP ). The parameter describes the “input” for the problem, such as the physical
properties or geometry of the model; in this paper P , the number of “input” parameters, will be
P = 2 or P = 3. We further assume that the domain Ω contains a crack, and (for convenience)
that µ1 is the component of the parameter P–vector (or P–tuple) µ that represents the crack
length.

We next introduce the “exact” two-dimensional plane-strain linear elasticity model
(extension to plane-stress is of course straightforward [22]). We shall denote dimensional
quantities with a superscript ;̃ conversely, no superscript ˜ implies a non–dimensional quantity.
We scale the dimensional spatial coordinates x̃ by a characteristic length D̃ to obtain
x = (x1, x2) (∈ Ω). We scale the dimensional displacement ũ by D̃σ̃0/Ẽcrack to obtain
u = (u1, u2); here σ̃0 is a characteristic (imposed farfield) stress, and Ẽcrack is the Young’s
modulus of the material in the vicinity of the crack. (We exploit linearity to eliminate the
imposed stress and nominal Young’s modulus as parameters.)

The displacement field u(µ) ∈ X satisfies the weak form

a(u(µ), v;µ) = f(v;µ), ∀ v ∈ X; (3)

here a is a parametrized bilinear form a : X×X×D → R, and f is a parametrized linear form
f : X × D → R. We assume that our bilinear form a is coercive, a(w,w;µ) ≥ α(µ)‖w‖2X ≥
α0‖w‖2X , ∀ w ∈ X, ∀ µ ∈ D, for some positive α0; continuous, a(w, v;µ) ≤ γ(µ)‖w‖X‖v‖X ≤
γ0‖w‖X‖v‖X , ∀ w, v ∈ X, ∀ µ ∈ D, for some finite γ0; and symmetric, a(w, v;µ) = a(v, w;µ),
∀ w, v ∈ X. We also assume that our linear form f is bounded. Of course, a and f represent
the standard linear elasticity weak form — particular instances of which we shall develop in
the next section.

Moreover, we further require that a(·, ·;µ) and f(·;µ) are “affine” in the parameter: these
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4 D. B. P. HUYNH AND A. T. PATERA

forms may be expressed as

a(w, v;µ) =
Qa∑
q=1

Θa
q (µ)aq(w, v), (4)

f(v;µ) =
Qf∑
q=1

Θf
q (µ)fq(v), (5)

where Θa
q (µ) : D → R,Θf

q (µ) : D → R and aq(w, v) : X×X → R, fq(v) : X → R are parameter-
dependent functions and parameter-independent continuous bilinear/linear forms, respectively.
We shall further assume that the functions Θa

q (µ) and Θq
f (µ) are smooth, Θa

q (µ) ∈ C1(D),
1 ≤ q ≤ Qa, and Θf

q (µ) ∈ C1(D), 1 ≤ q ≤ Qf , and that the aq, 1 ≤ q ≤ Qa, are symmetric.
We next define our output of interest G(µ): the energy release rate. The energy release rate

is computed by an energy approach [3]. To begin, we define the total strain energy (per unit
depth) Π(µ) for our model as

Π(µ) =
1
2
a(u(µ), u(µ);µ)− f(u(µ);µ), (6)

where u(µ) is the solution of (3) for a particular parameter µ. The energy release rate (ERR)
G(µ) is then derived from the total strain energy Π(µ) as

G(µ) = −1
2
∂

∂µ1
a(u(µ), u(µ);µ) +

∂

∂µ1
f(u(µ);µ), (7)

where we recall that µ1 is the parameter component in µ that represents the crack length.
Note the partial derivatives in (7) act only on the “explicit” µ dependence through the last
arguments of a and f .

We next invoke the affine nature of a and f , (4), (5) to obtain

G = −1
2

Qa∑
q=1

∂Θa
q (µ)
∂µ1

aq(u(µ), u(µ)) +
Qf∑
q=1

∂Θf
q (µ)
∂µ1

fq(u(µ)). (8)

We thus introduce a symmetric parametrized bilinear form b : X ×X ×D and a parametrized
linear form ` : X ×D,

b(w, v;µ) = −1
2

Qa∑
q=1

∂Θa
q (µ)
∂µ1

aq(w, v), (9)

`(v;µ) =
Qf∑
q=1

∂Θf
q (µ)
∂µ1

fq(v), (10)

in terms of which our output can be expressed as G(µ) = b(u(µ), u(µ);µ) + `(u(µ);µ). Note
the output G(µ) is the sum of a quadratic output and a “non–compliant” linear output.

Our abstract statement is then: for any µ ∈ D, find G(µ) ∈ R given by

G(µ) = b(u(µ), u(µ);µ) + `(u(µ);µ), (11)
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REDUCED BASIS APPROXIMATION 5

where the displacement field u(µ) ∈ X satisfies the equilibrium equations (3). This problem
statement focuses on the energy release rate; however we can also readily extract the stress
intensity factor (SIF) as a “derived” output.

In this paper we shall restrict our attention exclusively to “Mode I,” or open-mode, fracture
problems. It is known in fracture mechanics theory [22] that, for open-mode fracture problems,
the non–dimensional stress intensity factor K(µ) = K̃(µ)/(σ̃0

√
D̃) and energy release rate G

are directly related as

K(µ) =

√
G(µ)

1− ν2
crack

, plane strain, (12)

where νcrack is the Poisson ratio in the vicinity of the crack. (Note the Young’s modulus has
“disappeared” due to our non-dimensional scaling of the displacement.) It is often stated in
the literature [14, 22], and our numerical tests confirm, that the SIF is very insensitive to the
Poisson ratio for non-homogeneous materials. Indeed, the SIFs are often presented (e.g., in the
sources with which we compare in Section 4) without reference to any particular value of ν.

2.2. Expanded Formulation

We start by considering the following system of equations

a(u(µ), v;µ) = f(v;µ), ∀ v ∈ X, (13)

a(z(µ), v;µ) = b(u(µ), v;µ) +
1
2
`(v;µ), ∀ v ∈ X. (14)

Note that z here is essentially the adjoint associated with our quadratic-linear output [13, 15].
Now we set

U+(µ) =
1
2
(u(µ) + z(µ)), (15)

U−(µ) =
1
2
(u(µ)− z(µ)), (16)

in terms of which (13) and (14) can be written as

a(U+, v;µ) + a(U−, v;µ) = f(v;µ), ∀ v ∈ X,

a(U+, v;µ)− a(U−, v;µ) =
1
2
`(v;µ) + b(U+, v;µ) + b(U−, v;µ), ∀ v ∈ X. (17)

Subtracting and summing these two equations allow us to rewrite this system in a symmetric
fashion: ∀ V+, V− ∈ X,

−b(U+, V+;µ) + 2a(U+, V+;µ)− b(U−, V+;µ) = f(V+;µ) +
1
2
`(V+;µ),

−b(U+, V−;µ)− b(U−, V−;µ)− 2a(U−, V−;µ) = −f(V−;µ) +
1
2
`(V−;µ). (18)

We now describe this new formulation more succinctly.
We define the parametrized symmetric bilinear form A : X ×X ×D → R and parametrized

linear form F : X ×D → R as

A(W,V;µ) = −b(W+, V+;µ) + 2a(W+, V+;µ)− b(W−, V+;µ)
−b(W+, V−;µ)− b(W−, V−;µ)− 2a(W−, V−;µ),

F(V;µ) = f(V+;µ) +
1
2
`(V+;µ)− f(V−;µ) +

1
2
`(V−;µ), (19)
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6 D. B. P. HUYNH AND A. T. PATERA

where X ≡ X × X, and W ≡ (U+, U−), V ≡ (V+, V−). We equip X with inner product
and associated norm (·, ·)X and ‖ · ‖X =

√
(·, ·)X , respectively: our choice of (·, ·)X is

(W,V)X = a(W+, V+;µ) + a(W−, V−;µ),∀ W,V ∈ X ; here µ is a particular parameter value
in D. The choice of our inner product will not affect either the finite element or the reduced
basis output predictions; it will only affect the quality and efficiency of the reduced basis
a posteriori error estimator (primarily but not exclusively through the inf-sup lower bound
described briefly in Section 6.1 and in greater detail in [25]). Unfortunately, we do not have
any theory on which to base our choice of µ; in general, a choice of µ near the center of the
parameter domain typically works well.

We now observe that F(U(µ);µ), U = (U+, U−), is equivalent to the energy release rate
G(µ) in the “classical” formulation:

F(U(µ);µ) = f(U+;µ) +
1
2
`(U+;µ)− f(U−;µ) +

1
2
`(U−;µ)

= f(z(µ);µ) +
1
2
`(u(µ);µ)

= a(u(µ), z(µ);µ) +
1
2
`(u(µ);µ)

= a(z(µ), u(µ);µ) +
1
2
`(u(µ);µ)

= b(u(µ), u(µ);µ) + `(u(µ);µ)
= G(µ). (20)

Here we have invoked (15)–(16), (13)–(14), symmetry, and (11).
Our abstract statement is thus: given µ ∈ D, find (the “compliant” output)

G(µ) = F(U(µ);µ), (21)

where U(µ) ∈ X satisfies

A(U(µ),V;µ) = F(V;µ), ∀ V ∈ X ; (22)

here A and F are the “big” forms defined in (19).
We note that it directly follows from the definitions of A and F that both A and F are

affine in the parameter. In particular,

A(W,V;µ) =
QA∑
q=1

ΘA
q (µ)Aq(W,V), (23)

F(V;µ) =
QF∑
q=1

ΘF
q (µ)Fq(V), (24)

where ΘA
q : D → R, ΘF

q : D → R and Aq(W,V) : X × X → R, Fq(V) : X → R are parameter-
dependent functions and parameter-independent continuous bilinear/linear forms, respectively.
Moreover, ΘA

q (µ) ∈ C1(D), 1 ≤ q ≤ QA, and ΘF
q (µ) ∈ C1(D), 1 ≤ q ≤ QF , and the Aq,

1 ≤ q ≤ QA, are symmetric.
We next introduce the inf-sup parameter and continuity parameter as

β(µ) ≡ inf
W∈X

sup
V∈X

A(W,V;µ)
‖W‖X ‖V‖X

, ∀ µ ∈ D, (25)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
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REDUCED BASIS APPROXIMATION 7

and

γ(µ) ≡ sup
W∈X

sup
V∈X

A(W,V;µ)
‖W‖X ‖V‖X

∀ µ ∈ D. (26)

We shall suppose that 0 < β0 ≤ β(µ) ≤ γ(µ) < γ0 <∞, ∀ µ ∈ D. We further assume (in fact,
this is readily proven given that f and ` are bounded) that F is a bounded linear functional.
It then follows that our problem is well posed for all µ ∈ D.

We note that the new “expanded” formulation is no longer coercive, however, our output
— the energy release rate — is now “compliant.” The former is bad news; the latter is good
news. However, the real merit of the expanded formulation is that we effectively eliminate
the nonlinearity of the output which will in term permit us to develop much simpler, more
efficient, and much sharper error bounds. It will be seen in the numerical results of Section 6
that the “expanded” formulation does indeed produce better results and in particular much
sharper error estimators than the “classical” formulation [26].

3. MODEL PROBLEMS

In this section we shall introduce several “Mode I” linear fracture examples. These examples
will serve to illustrate our methods.

3.1. The “two-layer” problem

In this example we consider a linear elasticity problem corresponding to a crack notch inside
a two-layer plate: the left (surface) material may be viewed as a coating providing thermal
protection [28]. We consider a geometry and loading, shown in Figure 1, which is symmetric
about the crack, and which thus corresponds to a Mode I configuration. In consideration of
the symmetry of the model about the centerline we treat only half of the original domain, as
indicated by the dashed area in Figure 1.

We show in Figure 2 (left) the dimensional (superscript )̃ domain Ω̃(d̃), consisting of
two layers Ω̃1 and Ω̃2 corresponding to two different materials with Young modulus Ẽ1 and
Ẽ2 (= Ẽcrack), respectively. We assume that the two materials share the same Poisson ratio
ν1 = ν2 = ν = 0.3. The two layers Ω̃1 and Ω̃2 are of width t̃ and 4t̃, respectively. The
crack is of length d̃, and the plate is of width w̃ ≡ 5t̃ and of length 2L̃ ≡ 8w̃. We impose a
(normal) traction σ̃0 at the top, Γ̃T , zero traction on the crack, Γ̃crack, zero traction on the
exposed surface, Γ̃s, symmetry (zero normal displacement and tangential stress) on the plate
centerline, Γ̃C , and homogeneous Dirichlet (zero displacement) boundary conditions on the
right side of the plate, Γ̃R.

We choose for our characteristic length scale D̃ = t̃; hence x0 = x̃/t̃, and d = d̃/t̃. Our
non–dimensional displacement u0 is related to the dimensional displacement ũ by

u0 =
ũẼ2

t̃σ̃0

. (27)

We denote our new non–dimensional domain and boundaries corresponding to Ω̃(µ̃), Ω̃1, Ω̃2,
and Γ̃crack, Γ̃C , Γ̃T , Γ̃s, Γ̃R as Ω0(µ), Ω0

1, Ω0
2, and Γ0

crack, Γ0
C , Γ0

T , Γ0
s, Γ0

R respectively. The
non–dimensional configuration Ω0(d) is shown in Figure 2 (center).

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
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Figure 1. Example 3.1: Geometry model.

We shall consider P = 2 parameters: µ1 ≡ d (the non–dimensional length of the crack) and
µ2 ≡ κ = Ẽ1/Ẽ2 (the ratio of the two Young moduli). Our parameter domain is given by
D = [2.0, 4.0]× [0.1, 10], corresponding to relatively large variations in both crack length and
material properties. We choose µ = (3.0, 5.05) in the definition of our inner product; this point
is the center point in our parameter domain. (Recall that µ will only affect the sharpness of
our reduced basis a posteriori error estimators.)

The governing equation is the partial differential equation of linear elasticity (for an isotropic
material): the displacement field u0(x0;µ) ∈ X0 satisfies∫

Ω0
1

κ
∂u0

i

∂x0
j

Cijkl
∂vk

∂x0
l

+
∫

Ω0
2

∂u0
i

∂x0
j

Cijkl
∂vk

∂x0
l

=
∫

Γ0
T

v, ∀ v ∈ X0, (28)

where Cijkl = c1δijδkl + c2(δikδjl + δilδjk) is the constitutive tensor. Here c1 and c2 are the
Lamé constants for plain strain

c1 =
ν

(1 + ν)(1− 2ν)
, c2 =

1
2(1 + ν)

; (29)

recall that ν (= 0.3, here) is the Poisson ratio. Note that X0 = {(v1, v2) ∈ (H1(Ω0))2|v2|Γ0
C

=
0, v1, v2|Γ0

R
= 0}.

In order to apply our methodology we map Ω0(d) to the parameter-independent domain
Ω ≡ Ω0(d = dref = 3.0) shown in Figure 2. The domain (Ω0

2 →) Ω2 is divided into three

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
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Ω0

2

d̃

1.0

ΓC

ΓR

Γ̃T

σ̃0

L̃

Ω̃2

Γ̃C

Γ̃R

Γ̃crack

Γ̃s Γ0

s
Γs

0.2

x̃1, ṽ1

x̃2, ṽ2

ΓT1

Ω̃1

1.0

ΩΩ̃(d̃) Ω0(d)

3.0

1.0

d

t̃

w̃ 5.0 5.0

Ω1

Γ0

crack

Ωa

2
Ωc

2

Γcrack

ΓT

Γa

T2
Γb

T2
Γc

T2

Ωb

2
Ω0b

2
Ω0a

2

Γ0

T

Γ0a

T2
Γ0b

T2
Γ0c

T2

Γ0

R

Γ0

C

Ω0c

2
Ω0

1

Figure 2. Example 3.1: Original dimensional domain (left); Non–dimensional domain (center); and
Reference domain (right).

subdomains (Ω0a
2 ,Ω0b

2 ,Ω
0c
2 →) Ωa

2 , Ωb
2, Ωc

2, with associated top boundaries Γa
T2

, Γb
T2

and Γc
T2

,
respectively. The transformation is piecewise affine: an identity for Ω1 and Ωb

2; simple dilations
(in x0

1) for Ωa
2 and Ωc

2. The reference domain shall serve all parameter values in D: we choose
the “center” dref = 3.0 to avoid excessive mesh distortion or skewed distribution; note the
choice of dref affects only the accuracy of the finite element solution (on which we build our
reduced basis approximation).

We now motivate the need for our domain decomposition: the important considerations
are (i) the need for a fixed, parameter–independent, reference domain Ω on which to define
a “common” reduced basis approximation, and (ii) the requirements imposed by the affine
parameter–dependence assumption of (4). The domain Ω0

1 (= Ω1) “isolates” the coating layer
and associated change in material property: Ω0

1 is of fixed width and independent of the
crack length variation. The three subdomains Ω0a

2 , Ω0b
2 and Ω0c

2 , each associated to a different
transformation (→ Ωa

2 ,Ω
b
2,Ω

c
2), “track” the crack: Ω0b

2 (= Ωb
2) around the crack tip is of

fixed width 2∆d = 0.2 in order to preserve affine transformations even in the presence of
enriched finite element approximations; Ω0a

2 and Ω0c
2 shrink/expand to accommodate crack

length variation and preserve a fixed total domain width.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
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The abstract statement for our classical formulation of Section 2.1 is then recovered for
X = {(v1, v2) ∈ (H1(Ω))2|v2|ΓC

= 0, v1, v2|ΓR
= 0}, a given by (4) for Θa

q and aq given in
Table I, and f given by (5) for Θf

q and fq given in Table II. As a result, we also recover QA = 8
and QF = 4 for our expanded formulation of Section 2.2.

q Θa
q (µ) aq(w, v)

1 1 c1

∫
Ω\Ωa

2

(
∂v1
∂x1

∂w2

∂x2
+
∂v2
∂x2

∂w1

∂x1

)
dΩ

+ c2

∫
Ω\Ωa

2

(
∂v1
∂x2

∂w2

∂x1
+
∂v2
∂x1

∂w1

∂x2

)
dΩ +

∫
Ωa

2

∂vi

∂xj
Cijkl

∂wk

∂xl
dΩ

2 κ

∫
Ω1

∂vi

∂xj
Cijkl

∂wk

∂xl
dΩ

3 t1x (c1 + 2c2)
∫

Ωb
2

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ωb

2

∂v1
∂x2

∂w1

∂x2
dΩ

4
1
t1x

(c1 + 2c2)
∫

Ωb
2

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ωb

2

∂v2
∂x1

∂w2

∂x1
dΩ

5 t2x (c1 + 2c2)
∫

Ωc
2

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ωc

2

∂v1
∂x2

∂w1

∂x2
dΩ

6
1
t2x

(c1 + 2c2)
∫

Ωc
2

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ωc

2

∂v2
∂x1

∂w2

∂x1
dΩ

t1x =
d− 1.0−∆d
dref − 1.0−∆d

, t2x =
5.0− d−∆d

5.0− dref −∆d
, ∆d = 0.1, dref = 3.0

Table I. Example 3.1: Parametric functions Θa
q (µ) and parameter-independent bilinear forms aq(w, v),

1 ≤ q ≤ Qa = 6.

q Θf
q (µ) fq(v)

1 1
∫
ΓT1

vdΓ +
∫
Γb

T2
vdΓ

2 t1x
∫
Γa

T2
vdΓ

3 t2x
∫
Γc

T2
vdΓ

Table II. Example 3.1: Parametric functions Θf
q (µ) and parameter-independent bilinear forms fq(v),

1 ≤ q ≤ Qf = 3.
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REDUCED BASIS APPROXIMATION 11

3.2. The center-cracked tension specimen

In this example we consider a linear elasticity problem corresponding to a plate containing an
internal center crack under tension. In consideration of the symmetry of the model about the
centerlines we treat only a quarter of the original problem, as indicated by the dashed area in
Figure 3.
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Figure 3. Example 3.2: Geometry model.

We show in Figure 4 the resulting domain Ω̃(d̃, L̃). The crack is of length 2d̃, and the plate
is of width 2w̃ and of length 2L̃. We impose (normal) traction σ̃0 at the top, Γ̃T , zero traction
on the crack, Γ̃crack, zero traction on the right side of the plate, Γ̃R, and symmetry boundary
conditions on Γ̃C1 and Γ̃C2 . We consider a homogeneous isotropic material characterized by
Young’s modulus Ẽ = Ẽcrack and Poisson ratio ν = 0.3.

We choose for our characteristic length scale D̃ = w̃; hence x0 = x̃/w̃, L = L̃/w̃, and
d = d̃/w̃. Our non–dimensional displacement u0 is related to the dimensional displacement ũ
by

u0 =
ũẼ

w̃σ̃0
. (30)

We denote our new non–dimensional domain and our boundaries corresponding to Ω̃(µ̃), and
Γ̃crack, Γ̃C1 , Γ̃C2 , Γ̃T , Γ̃R as Ω0(µ), and Γ0

crack, Γ0
C1

, Γ0
C2

, Γ0
T , Γ0

R, respectively.
We shall consider P = 2 parameters: µ1 ≡ d (the non–dimensional half–length of the crack)

and µ2 ≡ L (the non–dimensional half–length of the specimen); our parameter domain is

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
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12 D. B. P. HUYNH AND A. T. PATERA

Γ̃T

Ω1 Ω2

ΓC1

Ω4 Ω5

Ω3

Ω6

ΓC2

L̃

Γ0

C1

L

ΓC2
Γ0

C2

1.4

σ̃0

1.0

Γ̃C1

Ω0

1
Ω0

2
Ω0

3

Ω0

5
Ω0

4
Ω0

6

Γ̃crack Γ0

crack
Γcrack

0.2

x̃2, ṽ2

x̃1, ṽ1

ΓT

ΓT5
ΓT4

ΓT6

Γ̃R Γ0

R
ΓR

Ω

d̃

Ω0(µ)

d 0.5

w̃

Ω̃(d̃, L̃)

1.0 1.0

Γ0

T

Figure 4. Example 3.2: Original dimensional domain (left); Non–dimensional domain (center); and
Reference domain (right).

given by D = [0.3, 0.7]× [0.4, 2.4]. We emphasize that we do not assume a very long specimen;
however, we shall show later that our parameter domain can in fact produce accurate results
for the infinite specimen case. We choose µ = (0.5, 1.4) — the center of our parameter domain
— in the definition of our inner product.

The governing equation is the partial differential equations of linear elasticity: the
displacement field u0(x;µ) ∈ X0 satisfies∫

Ω0

∂u0
i

∂x0
j

Cijkl
∂vk

∂x0
l

=
∫

Γ0
T

v, ∀ v ∈ X0, (31)

where Cijkl = c1δijδkl + c2(δikδjl + δilδjk) is the constitutive tensor. Here c1 and c2 are the
Lamé constants for plain strain

c1 =
ν

(1 + ν)(1− 2ν)
, c2 =

1
2(1 + ν)

; (32)

recall that ν = 0.3 is the Poisson ratio. Note that X0 = {(v1, v2) ∈ (H1(Ω0))2|v2|Γ0
C2

=
0, v1|Γ0

C1
= 0}.

For reasons cited in Section 3.1, we now map our domain Ω0(µ) to a fixed parameter–
independent reference domain, Ω. In particular, we apply the transformation Ω0(µ) → Ω ≡

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
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REDUCED BASIS APPROXIMATION 13

Ω0(µ = µref = (dref = 0.5, Lref = 1.4)): the mapping is piecewise-affine over 6 subdomains,
Ω0

i → Ωi, i = 1, . . . , 6 as shown in Figure 4. In addition, the boundary (Γ0
T →) ΓT is further

divided into three segments ΓT4 , ΓT5 and ΓT6 . The transformation is relatively simple: the
identity for (the invariant domain of width 2∆d = 0.2) Ω0

2; dilation in the x0
1-direction for Ω0

1

and Ω0
3 (to accommodate crack variation); dilation in the x0

2-direction for Ω0
5 (to accommodate

specimen length variation); and dilations in both the x0
1-direction and x0

2-direction for Ω0
4 and

Ω0
6 (to accommodate both crack and specimen length variation).
The abstract statement for our classical formulation is then recovered for X = {(v1, v2) ∈

(H1(Ω))2|v2|ΓC2
= 0, v1|ΓC1

= 0}, a given by (4) for Θa
q and aq given in Table III, and f given

by (5) for Θf
q and fq given in Table IV. As a result, we also recover QA = 19 and QF = 5 for

our expanded formulation of Section 2.2.

3.3. The crack-hole problem

In this example we consider a linear elasticity problem corresponding to a plate with a circular
hole from which emanate two cracks. In consideration the symmetry of the model about the
centerlines we treat only one quarter of the original problem, as indicated by the dashed area
in Figure 5.
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Figure 5. Example 3.3: Geometry model.

We show in Figure 6 the resulting domain Ω̃0(d̃, R̃, L̃). The radius of the hole is R̃, the length
of each side crack (as measured from the center of the hole) is d̃, and the plate is of width
2w̃ and of length 2L̃. We impose (normal) traction σ̃0 at the top, Γ̃T , zero traction on the

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
Prepared using nmeauth.cls



14 D. B. P. HUYNH AND A. T. PATERA

q Θa
q (µ) ae

q(w, v)

1 1 c1

∫
Ω\Ω2

(
∂v1
∂x1

∂w2

∂x2
+
∂v2
∂x2

∂w1

∂x1

)
dΩ

+ c2

∫
Ω\Ω2

(
∂v1
∂x2

∂w2

∂x1
+
∂v2
∂x1

∂w1

∂x2

)
dΩ +

∫
Ω2

∂vi

∂xj
Cijkl

∂wk

∂xl
dΩ

2 t1x (c1 + 2c2)
∫

Ω1

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω1

∂v1
∂x2

∂w1

∂x2
dΩ

3
1
t1x

(c1 + 2c2)
∫
Ω1

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω1

∂v2
∂x1

∂w2

∂x1
dΩ

4 t2x (c1 + 2c2)
∫

Ω3

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω3

∂v1
∂x2

∂w1

∂x2
dΩ

5
1
t2x

(c1 + 2c2)
∫

Ω3

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω3

∂v2
∂x1

∂w2

∂x1
dΩ

6
t1x
ty

(c1 + 2c2)
∫

Ω4

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω4

∂v1
∂x2

∂w1

∂x2
dΩ

7
ty
t1x

(c1 + 2c2)
∫

Ω4

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω4

∂v2
∂x1

∂w2

∂x1
dΩ

8
t2x
ty

(c1 + 2c2)
∫

Ω6

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω6

∂v1
∂x2

∂w1

∂x2
dΩ

9
ty
t2x

(c1 + 2c2)
∫

Ω6

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω6

∂v2
∂x1

∂w2

∂x1
dΩ

10
1
ty

(c1 + 2c2)
∫

Ω8

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω8

∂v1
∂x2

∂w1

∂x2
dΩ

11 ty (c1 + 2c2)
∫

Ω8

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω8

∂v2
∂x1

∂w2

∂x1
dΩ

t1x =
d−∆d
dref −∆d

, t2x =
1.0− d−∆d

1.0− dref −∆d
, ty =

L−∆d
Lref −∆d

,

∆d = 0.1, dref = 0.5, Lref = 1.4

Table III. Example 3.2: Parametric functions Θa
q (µ) and parameter-independent bilinear forms

aq(w, v), 1 ≤ q ≤ Qa = 11.
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REDUCED BASIS APPROXIMATION 15

q Θf
q (µ) fq(v)

1 1
∫
ΓT5

vdΓ

2 t1x
∫
Γa

T4
vdΓ

3 t2x
∫
Γc

T6
vdΓ

Table IV. Example 3.2: Parametric functions Θf
q (µ) and parameter-independent bilinear forms fq(v),

1 ≤ q ≤ Qf = 3.

hole, Γ̃hole, zero traction on the crack, Γ̃crack, zero traction on the right side of the plate, Γ̃R,
and symmetry boundary conditions on Γ̃C1 and Γ̃C2 . We consider a homogeneous isotropic
material characterized by Young’s modulus Ẽ = Ẽcrack and Poisson ratio ν = 0.3.

Ω0

8

Ω

Ω3

Ω10 Ω12

Γ2

C

Ω4

Ω11

Ω5

d

Ω0(µ)

R

Ω̃(d̃, R̃, L̃)

Γ̃C2

d̃

Γ0

C2

Ω0

3

Ω0

12

Ω2Ω0

2

Ω
0

6
Ω

0

7
Ω

0

4

1.75

σ̃0

1.0

Ω0

10

0.175

w̃

0.475

Ω0

9

Ω
0

5

LL̃
Ω

0

11

Ω8 Ω6 Ω7

Γ0

C1
Γ1

C
Γ̃C1

Γ̃crack

Ω
0

1
Ω1

Γ0

crack
Γ0

crack

Γ̃R Γ
0

R ΓR

Γ
0

hole Γ0

hole

0.060.215

Γ̃hole

x̃2, ṽ2

x̃1, ṽ1R̃

ΓT

Ω9

ΓT9
ΓT11

ΓT10
ΓT12

Γ0

T
Γ̃T

1.0 1.0

Figure 6. Example 3.3: Original dimensional domain (left); Non–dimensional domain (center) and
Reference domain (right).

We choose for our characteristic length scale D̃ = w̃; hence x0 = x̃/w̃, L = L̃/w̃, R = R̃/w̃,
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16 D. B. P. HUYNH AND A. T. PATERA

and d = d̃/w̃. Our non–dimensional displacement u0 is related to the dimensional displacement
ũ by

u0 =
ũẼ

w̃σ̃0
. (33)

We denote our new non–dimensional domain and boundaries corresponding to Ω̃(µ̃), and Γ̃hole,
Γ̃crack, Γ̃C1 , Γ̃C2 , Γ̃T , Γ̃R as Ω0(µ), and Γ0

hole, Γ0
crack, Γ0

C1
, Γ0

C2
, Γ0

T , Γ0
R, respectively.

In this example we shall consider P = 3 parameters: µ1 ≡ d (the non–dimensional
half–length of the crack), µ2 ≡ R (the non–dimensional radius of the hole), and µ3 ≡ L
(the non–dimensional length of the specimen); our parameter domain is given by D =
[0.325, 0.625]× [0.1, 0.25]× [1.5, 2.0]. We choose µ = (0.475, 0.175, 1.75) — again, the center of
our parameter domain — in the definition of our inner product.

The governing equation is the partial differential equations of linear elasticity: the
displacement field u0(x;µ) ∈ X0 satisfies∫

Ω0

∂u0
i

∂x0
j

Cijkl
∂vk

∂x0
l

=
∫

Γ0
T

v, ∀ v ∈ X0, (34)

where Cijkl = c1δijδkl + c2(δikδjl + δilδjk) is the constitutive tensor. Here c1 and c2 are the
Lamé constants for plain strain

c1 =
ν

(1 + ν)(1− 2ν)
, c2 =

1
2(1 + ν)

; (35)

recall that ν = 0.3 is the Poisson ratio. Note that X0 = {(v1, v2) ∈ (H1(Ω0))2|v2|Γ0
C1

=
0, v1|Γ0

C2
= 0}.

In order to apply our methodology we map Ω0(µ) → Ω ≡ Ω0(µ = µref = (dref =
0.475, Rref = 0.175, Lref = 1.75)): the mapping is piecewise-affine over the 12 subdomains,
Ω0

i → Ωi, i = 1, . . . , 12, as shown in Figure 6. The boundary (Γ0
T →) ΓT is further divided

into four segments ΓT9 , ΓT10 , ΓT11 , and ΓT12 . We note that Ω0
1 = Ω1 (identity mapping) is

the invariant square domain around the crack tip (of size 2∆d = 0.06); remark also that the
near-hole subdomain Ω0

8 → Ω8 is uniformly dilated in the x0
1−direction and x0

2−direction to
preserve the circular image independent of µ. The remainder of the (admittedly complicated)
details of the affine mappings, and the resulting parameter-dependent functions and parameter-
independent forms, are provided in the Appendix.

4. FINITE ELEMENT METHOD

In this study our focus is on the reduced basis method, but because our reduced basis
discretization is built upon, and measured (as regards accuracy) relative to, a “truth”
approximation, we must first define this “truth.” In this section we shall introduce our “truth”
approximation, which is based on a (now relatively) standard extended/enriched finite element
method.

We provide here a very brief overview of the final result. Given µ ∈ D, we define an
extended/enriched finite element approximation Uh(µ) ∈ Xh to the exact solution U(µ), where
Xh is our finite element space of dimension 2N = dim(Xh). We next choose our “truth”
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REDUCED BASIS APPROXIMATION 17

finite element approximation Uht(µ) ∈ Xht , where Xht is our finite element space of dimension
2Nt = dim(Xht); here we require that Xht is sufficiently rich that Uht(µ) is sufficiently close
to U(µ) for all µ in the parameter domain D. Then, given µ ∈ D, we find Uht

(µ) ∈ Xht
such

that Aht
(Uht

(µ),V;µ) = Fht
(V;µ),∀V ∈ Xht

; we can then evaluate the energy release rate
as Ght

(µ) = Fht
(Uht

(µ);µ). The reader already familiar with the finite element method may
choose in the first reading to proceed to Section 5 for the continued development of the reduced
basis method. However the remaining material in Section 4 below is important in justifying
and assessing the quality and relevance of the reduced basis results, and in understanding the
computational effort and savings associated with reduced basis treatment.

4.1. Extended finite element method

The characteristic property of elliptic linear PDEs, such as the linear elasticity problems of
interest here, is that the solution u(µ) is smooth if the domain boundary Γ and load/source
f(·;µ) are smooth; conversely, if the domain boundary Γ is not smooth — as in fracture-
mechanics crack problems — singularities can occur, with corresponding detriment to
convergence rates. This difficulty was of course recognized and demonstrated very early in
the development of the finite element method [2].

One way to overcome this difficulty is to effectively or actually include the relevant
singularities in the finite element space. There are two common treatments: the (i) “quarter-
point” element [4]; and (ii) the enriched finite element method [2] and recent generalizations
such as the extended finite element method [12]. In this paper we choose to pursue the latter,
which exploits the partition of unity property [11] to enrich the region around the crack tip
with appropriate asymptotic fields. It is shown that both enriched finite element method [2]
and extended finite element method [19, 20] yield optimal convergence rates of hm (in the X
norm) for elements of polynomial order m.

For simplicity of exposition, we consider here a “rectilinear” domain Ω; a “shared” Dirichlet
boundary Γ1

D = Γ2
D = ΓD such that v ∈ X satisfies v1|ΓD

= v2|ΓD
= 0; a triangulation Th that

consists (only) of rectangular elements; and (only) bilinear elemental approximation spaces.
In actual practice, we permit curved domains (e.g, for Example 3.3), “mixed” component
(e.g, symmetry) boundary conditions, triangular and quadrilateral composite triangulations,
(bi)linear and (bi)quadratic elements, and isoparametric elemental mappings [27]. We eschew
these details here given that first, these embellishments are all standard and second, these
methods are (a prerequisite for but) not the focus of this paper.

Under our assumptions of “expository convenience,” we may write

Ω =
⋃

Qh∈Th

Qh, (36)

where the Qh are our rectangular elements; h here refers to the maximum sidelength over all
Qh ∈ Th. The usual (scalar) finite element bilinear approximation subspace (of dimension J)
may then be expressed as

Yh = {v ∈ C0(Ω), v|ΓD
= 0 | vQh

∈ Q1, ∀Qh ∈ Th}, (37)

where Q1 = span{xi
1x

j
2, 0 ≤ i, j ≤ 1}. We choose the standard nodal basis, {φi}1≤i≤J : φj ∈ Yh

and φj(xv
i = (xv

1, x
v
2)i) = δij , 1 ≤ i, j ≤ J ; here the xv

i are the vertices/nodes of Th that do not
reside on ΓD.
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18 D. B. P. HUYNH AND A. T. PATERA

We next define the displacement asymptotic crack tip fields, ψk(r, θ), 1 ≤ k ≤ 4 [12]:

ψ1(r, θ) =
√
r sin

θ

2
,

ψ2(r, θ) =
√
r cos

θ

2
,

ψ3(r, θ) =
√
r sin

θ

2
sin θ ,

ψ4(r, θ) =
√
r cos

θ

2
sin θ , (38)

where (r, θ) are local polar coordinates relative to the crack tip (for a crack defined by
r > 0, θ = −π). We further introduce the index set IM ∈ {1, . . . , J} of nodes (more precisely,
the numbers of nodes) near the crack tip that shall be enriched; we show in Figure 7 our typical
choice for the enriched nodes xv

m, m ∈ IM . Our enriched (scalar) finite element approximation
subspace (of dimension Jen = J + 4M) is then given by

Y en
h = span{φj , 1 ≤ j ≤ J ;φmψ

k,∀m ∈ IM , 1 ≤ k ≤ 4}
= span{ϕj , 1 ≤ j ≤ Jen}; (39)

our basis functions ϕ are simply a relabelling of the φ· and φ·ψ·.

Figure 7. The “enriched” region around the crack tip region for Q2 elements: (?) indicates nodes
(whose indices are) in IM . Recall that we impose Neumann conditions on the crack surface.

We now define our enriched (vector) finite element approximation (of dimension N = 2Jen)
as the product space

Xh = Y en
h × Y en

h

= span{ϕjil, 1 ≤ j ≤ Jen, l = 1, 2}, (40)

where i1 = (1, 0) and i2 = (0, 1) are the unit vectors in R2.
Our Galerkin approximation to (11), (3) is then: given µ ∈ D, find

Gh(µ) = bh(uh(µ), uh(µ);µ) + `h(uh(µ);µ), (41)

where uh(µ) ∈ Xh satisfies

ah(uh(µ), v;µ) = fh(v;µ), ∀ v ∈ Xh. (42)
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REDUCED BASIS APPROXIMATION 19

Here the subscript h in bh, `h, ah, and fh refers to numerical quadrature of the integrals
that define b, `, a, and f , respectively; we exploit a Nqu ×Nqu tensor-product Gauss scheme
in each element Qh, with Nqu as large as 15 for elements which contain enriched nodes (to
accommodate the ψ).

To arrive at our discrete equations, we first write

uh(x;µ) =
2∑

l=1

Jen∑
j=1

ϕjil(uhl)j , (43)

where the (uhl)j , 1 ≤ j ≤ Jen, are the finite element nodal values (apart from the enrichment)
of the lth component of uh. We then choose v = ϕiik, 1 ≤ i ≤ Jen, k = 1, 2 to obtain

2∑
l=1

Jen∑
j=1

ah(ϕjil, ϕiik;µ)(uhl)j = fh(ϕiik;µ), 1 ≤ i ≤ Jen, k = 1, 2. (44)

We may then evaluate Gh as

Gh(µ) =
2∑

k,l=1

Jen∑
i,j=1

(uhk)ibh(ϕjil, ϕiik)(uhl)j +
2∑

l=1

Jen∑
j=1

(uhl)j`h(ϕjil). (45)

We note that the introduction of the enriched finite element space also renders the discrete
linear equations poorly conditioned, and thus a simple Gaussian elimination solver is not
guaranteed to provide good accuracy; we solve the system by the Generalized Minimum
Residual (GMRES) iterative algorithm.

We shall require the approximate solution Uh(µ) to U(µ) (of the “extended” formulation)
in order to build our reduced basis. To obtain Uh(µ), we apply the following procedure:
(i) we first solve for uh(µ) from (42); (ii) we next solve for the “adjoint” zh(µ) ∈ Xh from
ah(zh(µ), v;µ) = bh(uh(µ), v;µ)+ 1

2`h(v;µ), ∀v ∈ Xh; (iii) we then obtain our approximations
of U+h and U−h as

U+h(µ) =
1
2
(uh(µ) + zh(µ)), (46)

U−h(µ) =
1
2
(uh(µ)− zh(µ)); (47)

finally, (iv) we construct Uh(µ) = (U+h, U−h).
Our finite element approximation is thus: given µ ∈ D, find (the “compliant” output)

Gh(µ) = Fh(Uh(µ);µ), (48)

where Uh(µ) ∈ Xh satisfies

Ah(Uh(µ),V;µ) = Fh(V;µ), ∀ V ∈ Xh; (49)

here Xh ≡ Xh ×Xh, and Ah and Fh are defined as

Ah(W,V;µ) = −bh(W+, V+;µ) + 2ah(W+, V+;µ)− bh(W−, V+;µ)
−bh(W+, V−;µ)− bh(W−, V−;µ)− 2ah(W−, V−;µ),

Fh(V;µ) = fh(V+;µ) +
1
2
`h(V+;µ)− fh(V−;µ) +

1
2
`h(V−;µ). (50)

We denote by Ahq, 1 ≤ q ≤ QA, and Fhq, 1 ≤ q ≤ QF , our numerical quadratures of the
bilinear/linear forms associated with our affine parameter decompositions Aq, 1 ≤ q ≤ QA,
and Fq, 1 ≤ q ≤ QF , respectively.
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4.2. Numerical results

For Example 3.1 we shall consider convergence of the energy release rate (ERR) as a function
of refinement level. For Example 3.2 and Example 3.3 we shall directly compare our SIF
predictions to available data. We recall that we can compute the SIF Kh(µ) from (12) as
Kh(µ) =

√
Gh(µ)/(1− ν2) (in all cases for ν = 0.3).

4.2.1. Example 3.1 We illustrate the finite element convergence for Example 3.1 for the
case µ = (3.0, 1.0); this µ is simply a particular value at which we analyze the convergence
of the finite element discretization. All meshes contain only quadrilateral elements, and the
triangulation for refinement level Lr + 1 is constructed by sub-dividing all quadrilateral
elements Qh at level Lr into 4 smaller similar quadrilaterals; we show in Figure 8 the
triangulation associated with the refinement level Lr = 3. We take as our reference solution,
Uhref , a Q2 (≡ span{xi

1x
j
2, 0 ≤ i, j ≤ 2}) approximation on the (finest) Lr = 6 refinement

corresponding to N = 198,330 degrees of freedom.
We plot in Figure 9 |Fh(Uh;µ)−Fhref (Uhref ;µ)| as calculated by the compliance formula (48)

for both Q1 and Q2 elements: the convergence rate is improved relative to the classical FEM
approach as we correctly capture the singularity fields around the crack. The convergence rate
for the linear (Q1) approximation is close to order 2, and hence nearly optimal. However, the
convergence rate of the quadratic approximation (Q2) is at best only of order slightly greater
then 3 — and not the optimal 4. The sub-optimal rate may be due to the presence of only the
first singularity in the expanded space; the incorporation of more enrichment functions can
further improve the convergence rate, as shown in [20, 19]. (We believe that quadrature errors
are negligible in our convergence tests.)

Figure 8. Example 3.1: Refinement level Lr = 3.

4.2.2. Example 3.2 We next present the numerical results for Example 3.2. For the infinite
plate case (L → ∞), the theoretical stress intensity factor values are available [14]; however,
stress intensity factor values are not available for L < 2.0. In practice, it is known that the
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Figure 9. Example 3.1: Finite element convergence with refinement. Note the reference solution
corresponds to Lr = 6.

stress intensity factor for a finite plate is quite close to the theoretical result for an infinite
plate for L ≥ 2.0.

For our finite element approximation we choose Q2,P2 elements on the “triangulation”
shown in Figure 10 for a total of N = 4,490 degrees of freedom; the enriched region is the
first element ring around the crack tip. We present in Figure 11 the (non–dimensional) stress
intensity factor Kh(µ). We note that the SIF varies very significantly for the parameter range
considered — from 4.79 to 134.26. We also observe the expected effect of the length: L only
affects the stress intensity factor for L . 2. Finally, our SIF results for L = 2.4 are quite
close to the analytical solution for the infinite plate case [14]: the maximum difference between
our FEM solution and the infinite-plate results is about 0.26% (which might be attributed to
either numerical error and/or finite-plate effects).

4.2.3. Example 3.3 The SIF values for this problem are available for selected values of µ2 = R
in the form of a graph and table generated by numerical pre-solution of the elasticity PDE by
a boundary element method [14].

For our finite element approximation we choose Q2,P2 elements for a total of N = 3,612
degrees of freedom; the enriched region is the first element ring around the crack tip. Note
that in this case, isoparametric mappings are necessary to accurately capture the curvature of
the boundary. For this problem, we present our results in the form of a “boundary correction
factor”

F (d,R,L) =
K(d,R,L)√

d
, (51)

and associated finite element approximation Fh(d,R,L) (for the particular case ν = 0.3); for
purposes of presentation, we fix L = 2.0. We observe in Figure 12 that our finite element results
are in good agreement with the reference results (only) available for R = 0.1 and R = 0.25.
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Figure 10. Example 3.2: Finite element mesh.
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Figure 11. Example 3.2: Stress intensity factor results.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
Prepared using nmeauth.cls



REDUCED BASIS APPROXIMATION 23

0.35
0.4

0.45
0.5

0.55
0.6

0.1

0.15

0.2

0.25

1.1

1.15

1.2

1.25

1.3

1.35

1.4

 

d
R

 

FEM
reference

F(d,R,L)

Figure 12. Example 3.3: Boundary correction factor results for L = 2.0.

4.3. Truth Approximation

4.3.1. Definition We shall build our reduced basis approximation upon, and measure
the error in our reduced basis approximation relative to, a fixed “truth” finite element
approximation Uht

∈ Xht
— a surrogate for the exact solution, U . (In fact, we can also interpret

the reduced basis development as an approximation to (any given) finite element model Uh;
however, in practice, the reduced basis approximation will only be relevant if Uh is suitably
close to U .) In general, we must anticipate that 2Nt = dim(Xht) will be very large, and we
must hence require that our reduced basis approach is mathematically and computationally
stable as N → ∞: to achieve the former we insist upon the correct (continuous-limit) norms
and dual norms; to ensure the latter, we insist that our online/deployed operation count and
storage is independent of N . We may then choose our truth approximation conservatively .

We denote our truth approximation expanded space of dimension 2Nt as Xht
= Xht

×Xht
.

We imbue Xht
with the inner product

(W,V)Xht
≡ aht(W+, V+;µ)+aht(W−, V−;µ), ∀W = (W+,W−), V = (V+, V−) ∈ Xht , (52)

and induced norm ‖W‖Xht
=

√
(W,W)Xht

. Then, given µ ∈ D, we find Uht
(µ) ∈ Xht

such
that

Aht(Uht(µ),V;µ) = Fht(V;µ), ∀ V ∈ Xht ; (53)

we can then evaluate the energy release rate as

Ght
(µ) = Fht

(Uht
(µ);µ). (54)

In practice, we construct Uht(µ) following the “triangular” procedure described at the end of
Section 4.1.
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Finally, we define the truth inf-sup and continuity “constants” as

βht
(µ) ≡ inf

W∈Xht

sup
V∈Xht

Aht
(W,V;µ)

‖W‖Xht
‖V‖Xht

, (55)

and

γht
(µ) ≡ sup

W∈Xht

sup
V∈Xht

Aht
(W,V;µ)

‖W‖Xht
‖V‖Xht

, (56)

respectively. As we shall see in Section 6.2, we in fact construct a lower bound for βht
as part of

our error estimation procedure, and hence ultimately we will numerically prove well-posedness
of (at least) the truth approximation.

4.3.2. Model problems We now briefly characterize the truth approximations for each of our
three examples.

Example 3.1 Our truth approximation space Xht
is of dimension 2Nt = 5,868. The mesh is

refined near the crack tip, and the enriched region is chosen as the first element ring around
the crack tip (IM contains M = 27 nodes). Although relatively coarse, this space gives very
good accuracy: the maximum error (in output) relative to the reference mesh introduced in
Section 4.2.1 is only 1.4%.

Example 3.2 Our truth approximation space Xht is of dimension 2Nt = 8,990. The mesh is
refined near the crack tip, and the enriched region is chosen as the first element ring around the
crack tip (IM contains M = 27 nodes). We demonstrated the accuracy of this finite element
space in Section 4.2.2; the numerical results are indistinguishable from the theoretical results
(for large L).

Example 3.3 Our truth approximation space Xht is of dimension 2Nt = 7,224. The mesh is
refined near the crack tip, and the enriched region is chosen as the first element ring around
the crack tip (IM contains M = 27 nodes). The accuracy of this finite element space is
demonstrated in Section 4.2.3; our numerical predictions are in good agreement with the
available reference results.

5. REDUCED BASIS APPROXIMATION

The reduced basis approximation was first introduced in the late 1970s [5, 6] for nonlinear
structural analysis. The method has subsequently been analyzed and developed for a much
larger class of parametrized PDEs [7, 8, 9, 10, 16, 18, 23, 24] — in particular, linear/nonlinear
elliptic/parabolic PDEs — relevant to many engineering applications. The reduced basis effects
dimension reduction by recognizing and exploiting the fact that the field variable does not only
belong to the infinite-dimensional (or very large truth) space associated with the underlying
PDE, but in fact resides on a much lower dimensional manifold induced by the parametric
dependence.

In this section we shall develop the reduced basis approximation for our expanded
formulation — a non–coercive symmetric elliptic PDE with “compliant” output. As already
indicated, the reduced basis is constructed not as an approximation to the exact solution U(µ),
but rather as an approximation to the finite element truth approximation Uht

(µ).
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5.1. Approximation

We shall denote by 2N the dimension of the reduced basis approximation space; we shall denote
by 2Nmax the upper limit on the dimension of the reduced basis space — Nmax determines
the maximum reduced basis accuracy that can be achieved. We next introduce a set of nested
samples† in parameter space,

SN = {µ1 ∈ D, . . . , µN ∈ D}, 1 ≤ N ≤ Nmax, (57)

and an associated set of nested/hierarchical Lagrangian reduced basis approximation spaces

WN = span{(Uht+(µn), 0), (0, Uht−(µn)), 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax; (58)

here Uht
(µ) = (Uht−(µ), Uht+(µ))(µ) is the solution to (53) for µ = µn. Note that WN ⊂ Xht

,
and hence our reduced basis approximation is “conforming.”

For our basis, we orthogonalize the snapshots with respect to the inner product (·, ·)Xht
in

order to preserve the good “conditioning” of the underlying PDE:

WN = span{ζm, 1 ≤ m ≤ 2N}, 1 ≤ N ≤ Nmax, (59)

where the basis functions ζn (respectively, ζn+N ) are generated from the (Uht+(µn), 0)
(respectively, (0,Uht−(µn))) by a Gram-Schmidt process with respect to the inner product
(·, ·)Xht

. Thus (for our inner product, (52))

(ζi, ζj)Xht
= δij , 1 ≤ i, j ≤ 2Nmax, (60)

where δij is the Kronecker delta.
Our reduced basis approximation UN (µ) is then obtained by a standard Galerkin projection

(for other options, see [17]): for any µ ∈ D, we find UN (µ) ∈WN such that

Aht
(UN (µ),V;µ) = Fht

(V;µ), ∀ V ∈WN ; (61)

the reduced basis approximation GN (µ) to Ght(µ) can then be evaluated as

GN (µ) = Fht
(UN (µ);µ). (62)

It is clear from the definition of WN that the reduced basis space contains “snapshots” on the
parametrically induced manifold Mht ≡ {Uht(µ) |µ ∈ D}. We can anticipate that Mht is very
low-dimensional and smooth, and hence UN (µ) → Uht(µ) (and GN (µ) → Ght(µ)) very rapidly;
we should thus realize N � Nt.

5.2. A priori theory

We define our reduced basis inf-sup parameter βN (µ) ∈ R and continuity parameter γN (µ) ∈ R
as

βN (µ) ≡ inf
WN∈WN

sup
VN∈WN

Aht(WN ,VN ;µ)
‖WN‖Xht

‖VN‖Xht

, (63)

†Details of the procedure by which we choose a good parameter set SN will be discussed in Section 5.4.
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and

γN (µ) ≡ sup
WN∈WN

sup
VN∈WN

Aht
(WN ,VN ;µ)

‖WN‖Xht
‖VN‖Xht

, (64)

respectively; we shall make the assumption that, 0 < β0,N ≤ βN (µ) ≤ γN (µ) ≤ γ0,N < ∞,
∀µ ∈ D, which in turn implies that our discrete problem is well-posed. In practice, it is difficult
to prove the condition βN (µ) ≥ β0,N > 0, ∀µ ∈ D; however we can provide numerical evidence.
We consider Example 3.1 and present in Figure 13 βht

(µ) and βN (µ) for the particular case
N = 20. It is clear that both βht

(µ) and βN (µ) are bounded away from zero; in particular, we
observe minµ∈D βht(µ) = 0.1417 and minµ∈D βN (µ) = 0.1431. We also note that in this case
βN (µ) ≥ βht(µ), ∀µ ∈ D, but this of course need not necessarily be the case due to the “inner
sup.”

We can show [27] that our reduced basis approximation UN (µ) is optimal in the Xht
-norm,

‖Uht
(µ)− UN (µ)‖Xht

≤
(

1 +
γ0,N

β0,N

)
min

WN∈WN

‖Uht(µ)−WN‖Xht
, (65)

and that our compliance output approximation converges “quadratically,”

|Ght
(µ)− GN (µ)| ≤ γ0,N

(
1 +

γ0,N

β0,N

)
min

WN∈WN

‖Uht
(µ)−WN‖2Xht

. (66)

To prove (65), we invoke (53), (61), (63), and (64) to obtain

‖UN (µ)−WN‖Xht
≤ γN (µ)
βN (µ)

‖Uht
(µ)−WN‖Xht

, ∀WN ∈WN ; (67)

the proof directly follows from the triangle inequality. To prove (66), we invoke (54), (61), the
symmetry of Aht

, (64), and optimality of UN (µ), (65).
Unfortunately, at present we have no rigorous a priori result for the best approximation

that appears in (65), (66). We can, however, demonstrate that Uht(µ) is indeed smooth in µ,
and hence rapid convergence is plausible (and, as we shall see, realized).

5.3. Offline/Online computational procedure

As we have argued, it is plausible that in order to obtain an accurate reduced basis
approximation UN (µ), the dimension of WN , 2N can be quite small. However, since the
elements of WN are still “large” in some sense (the representation of ζn is of length 2Nt),
the computational savings are not self-evident. In this section we develop an offline-online
procedure that will enable us to evaluate our approximations in real-time.

To begin, we expand our reduced basis approximation as

UN (µ) =
2N∑
j=1

UN j(µ) ζj . (68)

By choosing V = ζi, i = 1, . . . , 2N , in (61), it follows that the coefficients UN j(µ) satisfy the
2N × 2N linear algebraic system

2N∑
j=1

{ QA∑
q=1

ΘA
q (µ)Ahtq(ζj , ζi)

}
UN j(µ) =

QF∑
q=1

ΘF
q (µ)Fhtq(ζi), 1 ≤ i ≤ 2N ; (69)
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Figure 13. Example 3.1: (a) Inf-sup parameter βht(µ), and (b) Inf-sup parameter βN (µ) for the case
N = 20.

this representation is a direct result of the affine decomposition of a and f . The reduced basis
output can then be calculated as

GN (µ) =
2N∑
j=1

{ QF∑
q=1

Θq
F (µ)Fhtq(ζj)

}
UN j(µ). (70)

The offline/online computational strategy is now clear.
In the offline stage — performed once — we first solve for the ζj , 1 ≤ j ≤ 2Nmax; we

then form and store Ahtq(ζi, ζj), 1 ≤ i, j ≤ 2Nmax, 1 ≤ q ≤ QA; and finally we form and
store Fhtq(ζj), 1 ≤ j ≤ 2Nmax, 1 ≤ q ≤ QF . Note all quantities computed in this stage are
independent of the parameter µ. This stage requires, in addition to the calculation of Nmax

truth solutions Uht
, O(4QAN2

maxNt) operations and O(4QAN2
max + 4QFNmax) “permanent”

storage. Note the operation count is dominated by the formation of the Ahtq(ζi, ζj) inner
products, once the ζj have been obtained; in the former we exploit the sparsity in the finite
element stiffness matrix.

In the online stage — performed many times, for each new value of µ— we first assemble and
solve the 2N×2N linear algebraic system (69) to obtain UN j , 1 ≤ j ≤ 2N ; we next perform the
summation in (70) to obtain GN (µ). The operation count in this stage is O(4QAN2 + 2QFN)
and O(8N3) to assemble and solve the linear algebraic system, respectively, and finally
O(4QFN2) to evaluate the output. The essential point is that the complexity of the online
stage is completely independent of Nt; since N � Nt, we expect — in the online/deployed
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stage — significant computational savings relative to the classical direct approach. (Of course,
the offline effort is considerable, and hence we must be in the many-query or real-time context
to justify the reduced basis approach.)

5.4. Sample Construction

We now discuss the construction of the nested samples SN and the associated reduced basis
spaces WN . For a given N , we would like to find the optimal sample SN that maximizes our
reduced basis accuracy. We cannot find the best space — a very difficult problem — however
we can hope to find a good sub-optimal result. We shall assume here that we are able to
calculate a rigorous, sharp and inexpensive (in the limit of many queries) upper bound ∆G

N (µ)
for |Ght

(µ) − GN (µ)|. (The procedure to construct our error estimators will be discussed in
detail in Section 6.) We also shall need Ξtrain ⊂ D, a sample of size ntrain � 1 over the
parameter domain D.

We shall pursue a greedy algorithm [23] to find our set SN . We denote the smallest error
tolerance anticipated (in the online stage) by εtol,min. We assume that we are given a sample SN ,
and hence space WN and associated reduced basis procedure/approximation UN (µ), ∀ µ ∈ D;
in practice, we choose S1 = µ1 randomly. We then calculate

ε∗N = max
µ∈Ξtrain

∆G
N (µ),

µ∗N+1 = arg max
µ∈Ξtrain

∆G
N (µ); (71)

we next append µ∗N+1 to our sample SN to form SN+1, and hence WN+1; we now continue
this process until N = Nmax such that ε∗Nmax

≤ εtol,min. The strategy is rather heuristic, but
in practice works very well.

The crucial point of this strategy is that the error estimator ∆G
N (µ) can be computed “online-

inexpensively,” with marginal complexity independent of Nt, and hence the cost in each greedy
step does not scale as ntrainNt. This permits us to perform a very exhaustive (ntrain � 1) and
inexpensive search for the best sample SN : we compute the truth solution only for the winning
candidate, namely, at the new sample point µ∗N+1. We thus need only compute Nmax truth
solutions for our greedy process — plus an additional O(NmaxQ

A) truth “pseudo–solutions”
required by the error bounds. We shall discuss our error bound computation, and provide
quantitative timing results, in Section 6.

5.5. Numerical Results

5.5.1. Example 3.1 We now apply the reduced basis approximation to Example 3.1. We
first pursue the optimal sampling procedure described in the previous section for a random
parameter train sample Ξtrain of size ntrain = 1, 000; we obtain ε∗Nmax

= 1.8E-04 for Nmax = 25.
We observe in Figure 14 that the distribution of parameter points is denser in the region
µ2 ≤ 2.0; also there are more sample points near the boundary µ1 = 2.0. This is because of
the effect of larger values of Ẽ1 (hence larger µ2 values) on the stress intensity factor is not
significant; furthermore, the effect becomes smaller as the distant between the crack tip and
the first material layer increases (which is equivalent to large µ1 values).

We next present, in Table V, the convergence of our output GN (µ). Here, the error
EN is defined as the maximum of the relative error, |Ght(µ) − GN (µ)|/|Ght(µ)|, over a
random parameter sample Ξtest ⊂ D of size ntest = 1,089. We observe that the reduced
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Figure 14. Example 3.1: Optimal sample set SNmax .

basis approximation converges very quickly. The test parameter sample Ξtest here is
introduced only to provide an independent sample with which to quantify the quality of the
approximation/error bound. We emphasize that neither Ξtrain (for sample construction) nor
Ξtest (for presentation) are exhaustive, which in turn highlights the importance of online error
bounds in which we (efficiently) evaluate ∆G

N (µ) for any given value µ.

N EN
Online Time

GN

5 1.33E+00 3.96E-05

10 1.34E-02 8.27E-05

15 1.27E-03 1.14E-04

20 1.43E-04 1.82E-04

25 2.94E-05 2.54E-04

Table V. Example 3.1: Reduced basis convergence result and online time to evaluate GN as a function
of N ; the timing results are normalized with respect to the time to calculate the “truth” output Ght .

We also present in Table V the online reduced basis computational cost to evaluate GN (µ)
compared to the finite element cost to evaluate Ght for any given µ. The computational savings
is very high: our online evaluation is about 10,000 times faster than the conventional evaluation;
moreover, it is seen in Table V that the reduced basis solution GN (µ) and the “truth” solution
Ght

(µ) are indistinguishable for N ≥ 20. Of course this timing comparison does not include
the reduced basis offline effort and hence the results are only relevant to the many-query and
real-time contexts. (We present offline costs in Section 6.4.)

5.5.2. Example 3.2 We show in Table VI the convergence rate of the reduced basis
approximation GN (µ) for Example 3.2; the error EN is defined as the maximum of the relative
error, |Ght(µ) − GN (µ)|/|Ght(µ)|, over a random parameter test sample Ξtest ⊂ D of size
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ntest = 1,000. We observe very rapid convergence with N : we need only N = 20 to obtain
10−5 accuracy. We also present in Table VI the online reduced basis computational cost to
evaluate GN (µ) compared to the finite element cost to evaluate Ght

for any given µ. The
computational savings is very high: our online evaluation is about 10,000 times faster than the
conventional evaluation; moreover, it is seen in Table V that the reduced basis solution GN (µ)
and the “truth” solution Ght(µ) are indistinguishable for N ≥ 15.

N EN
Online Time

GN

5 1.69E-01 1.56E-05

10 4.22E-03 2.37E-05

15 5.23E-04 3.78E-05

20 8.80E-05 5.69E-05

25 1.09E-05 8.96E-05

30 1.11E-06 1.10E-04

Table VI. Example 3.2: Reduced basis convergence result and online time to evaluate GN as a function
of N ; the timing results are normalized with respect to the time to calculate the “truth” output Ght .

5.5.3. Example 3.3 The convergence rate for the reduced basis approximation GN (µ) for
Example 3.3 is shown in Table VII. The error EN is the maximum of the relative error,
|Ght(µ)−GN (µ)|/|Ght(µ)| over a random parameter test sample Ξtest ⊂ D of size ntest = 3,000.
We observe very rapid convergence with N : even for this 3-parameter (P = 3) case, we need
only N = 30 to obtain 10−4 accuracy. The computational savings is still very high (despite
the large number of terms in our affine expansion): our online evaluation is about 10,000 times
faster than the conventional evaluation; moreover, it is shown as in Table V that the reduced
basis solution GN (µ) and the “truth” solution Ght(µ) are indistinguishable for N ≥ 35.

N EN
Online Time

GN

5 1.04E-01 1.80E-05

10 6.01E-02 2.32E-05

20 9.08E-03 5.95E-05

30 2.36E-03 1.92E-04

35 9.42E-05 2.12E-04

40 4.58E-05 2.78E-04

Table VII. Example 3.3: Reduced basis convergence result and online time to evaluate GN as a function
of N ; the timing results are normalized with respect to the time to calculate the “truth” output Ght .
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6. A POSTERIORI ERROR ESTIMATION

From the last chapter we know that we can obtain GN (µ) very inexpensively: the online
computational effort is independent of Nt; and the dimension of the reduced basis space N ,
can be chosen quite small. But we do not know how small N should be chosen in order for
the reduced basis method to produce the desired accuracy for all µ ∈ D: if N is too small
our reduced basis approximation is unacceptably inaccurate — and may compromise safety
in failure-related decisions; if N is too large our reduced basis approximation is unnecessarily
expensive — and may compromise a timely response in critical situations. We thus need an
a posteriori error estimator for GN (µ): not only will the a posteriori error estimator help us
construct the reduced basis nested parameter set in the offline stage, it will also tell us how
well we are doing for any µ ∈ D in the online stage. In short, it will ensure that our reduced
basis solution is certified and reliable (at least relative to the “truth” approximation).

Our a posteriori error estimator has many ingredients: the expanded formulation for our
energy release rate output, the reduced basis approximation, the construction of a lower bound
for the inf-sup parameter, the offline/online computational strategy, the application to (greedy)
adaptivity, and the fact that we develop an error estimator for an SIF (or SIF–related) output
of interest. Our approach shares the latter with the goal-oriented a posteriori error estimation
adaptivity approaches of [29, 30, 31]. The difference, of course, is the discretization framework
— finite element in [29, 30, 31] and reduced basis in our work — which in turn changes the
adaptivity framework. (We might ask whether our expanded formulation might improve the
finite element results? Perhaps not, as the error estimators in [30, 31] are already quite sharp:
the expanded formulation is perhaps more crucial in the reduced basis context.)

In this section we shall discuss the development of a posteriori error estimators for reduced
basis approximations. We require that the estimators are inexpensive — the online (marginal)
computational complexity is independent of Nt; reliable — an upper bound of the true error;
and sharp — not overly conservative. We first briefly discuss the construction of a lower bound
for the inf-sup parameter βht

(µ); we then develop our a posteriori error estimation procedures
for our problem.

6.1. Lower Bound for the Inf-Sup Parameter

Our error bound requires an inexpensive (online) and reasonably accurate lower bound βLB(µ)
for the “truth” inf-sup stability parameter βht(µ) as defined in (25). (We emphasize that
βLB(µ) is not a lower bound for the discrete inf-sup stability parameter βN (µ) defined in (63).)
The construction of the lower bound of βLB(µ) is also decomposed into two stages: the offline
stage — performed once, with computational cost depending on Nt and usually expensive;
and the online stage — performed many times, with the computational cost independent of
Nt and very inexpensive. There are several approaches to efficiently calculate an approximate
lower bound of our parametric inf-sup parameter: the “natural norm” technique [25]; and the
recently developed Successive Constraint Linear Optimization Method [32].

Here we construct our lower bound for the inf-sup parameter by the “natural norm”
technique developed in [25]. We refer to the detailed procedure in [25, 27] and only summarize
here the offline/online stages. In the offline stage we identify a sample of K parameters in
D, VK , and we evaluate at each point µk in VK a set of singular values and eigenvalues Λk,
1 ≤ k ≤ K. We can develop a good (positive) local lower bound to βht in the neighborhood

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
Prepared using nmeauth.cls



32 D. B. P. HUYNH AND A. T. PATERA

of µk ∈ VK based on the Λk; VK is chosen to ensure that the union of these neighborhoods
cover D. (In practice, K is quite small for the technique of [25].) In the online stage, given a
new µ, we simply search amongst a few µk ∈ VK near µ for the largest local lower bound; the
complexity is independent of Nt, and typically negligible compared to calculation of the dual
norm of the residual (see Section 6.3).

6.2. Error bounds

We first define our error bound for the error in the output as

∆G
N (µ) ≡ ε2N (µ)

βLB(µ)
, (72)

where εN (µ) is the dual norm of the residual defined as

εN (µ) = sup
V∈Xht

Rht
(V;µ)

‖V‖Xht

; (73)

here

Rht
(V;µ) = Fht

(V)−Aht
(UN (µ),V;µ), ∀ V ∈ Xht

, (74)

is the residual associated with UN (µ).
We next define our the effectivity associated with our error bound for the output as

ηGN (µ) ≡
∆G

N (µ)
|Ght

(µ)− GN (µ)|
. (75)

We can now demonstrate that the output effectivity satisfies

ηGN (µ) ≥ 1, ∀ µ ∈ D; (76)

equivalently, ∆G
N (µ) is a rigorous upper bound for the error in our reduced basis output. We

cannot provide an upper bound for the effectivity: we return to this point in Section 6.4.
To start, we note that the error e(µ) = Uht(µ)− UN (µ) satisfies

Aht
(e(µ),V;µ) = Rht

(V;µ), ∀ V ∈ Xht
. (77)

We also observe from standard duality arguments that,

εN (µ) = ‖êht
(µ)‖Xht

, (78)

where êht
(µ) ∈ Xht

is given by

(êht(µ),V)Xht
= Rht(V;µ), ∀ V ∈ Xht . (79)

We then conclude from (77) and the inf-sup parameter definition that

‖e(µ)‖Xht
≤
‖êht

(µ)‖Xht

βLB(µ)
. (80)
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Finally, it directly follows from the symmetry of Aht , the definition of the “compliance” output
Ght(µ), Galerkin orthogonality, the dual norm of the residual, and (77) that

|Ght(µ)− GN (µ)| = |Fht(e(µ);µ)|
= |Aht(Uht(µ), e(µ);µ)|
= |Aht(e(µ),Uht(µ);µ)|
= |Aht(e(µ),Uht(µ)− UN (µ);µ)|
= |Aht(e(µ), e(µ);µ)|
= |Rht(e(µ);µ)|
≤ εN (µ)‖e(µ)‖Xht

≤ ε2N (µ)
βLB(µ)

, (81)

which concludes our proof.
We can further define our approximation of the (non–dimensional) stress intensity factor

KN (µ) and associated error bounds ∆K
N (µ) based on (12). We assume here that we first verify

∆G
N (µ) ≤ GN (µ): for any given µ this condition is readily confirmed (or not) online; in general,

the inequality will be satisfied for all but the smallest N . We then define

KN (µ) =
1

2
√

1− ν2

{√
GN (µ) + ∆G

N (µ) +
√
GN (µ)−∆G

N (µ)
}
, (82)

∆K
N (µ) =

1
2
√

1− ν2

{√
GN (µ) + ∆G

N (µ)−
√
GN (µ)−∆G

N (µ)
}
. (83)

It readily follows [27] that

KN (µ)−∆K
N (µ) ≤ Kht

(µ) ≤ KN (µ) + ∆K
N (µ), ∀ µ ∈ D, (84)

where Kht
(µ) =

√
Ght

(µ)/(1− ν2). These lower and in particular upper bounds for the SIF
are extremely useful in applications that require highly accurate and typically conservative
stress intensity factor evaluations such as Non–Destructive Evaluation (NDE), crack growth
prediction, or brittle failure applications [27].

6.3. Offline/Online Computational Procedure

It remains to develop associated offline-online computational procedures for the evaluation of
∆G

N (µ) and in particular εN (µ), the dual norm of the residual. We begin from our reduced basis
approximation UN (µ) =

∑2N
n=1 UNn(µ)ζn and affine decomposition to express the residual as

Rht(V;µ) =
QF∑
q=1

ΘF
q (µ)Fhtq(V)−

QA∑
q=1

2N∑
n=1

ΘA
q (µ)UNn(µ)Ahtq(ζn,V), ∀ V ∈ Xht . (85)

It is clear from linear superposition that we can express êht
(µ) ∈ Xht

as

êht(µ) =
QF∑
q=1

ΘF
q (µ)Cq +

QA∑
q=1

2N∑
n=1

ΘA
q (µ)UNn(µ)Lqn, (86)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
Prepared using nmeauth.cls



34 D. B. P. HUYNH AND A. T. PATERA

where (Cq,V)Xht
= Fhtq(V), ∀ V ∈ Xht , 1 ≤ q ≤ QF , and (Lqn,V)Xht

= −Ahtq(ζn,V), ∀ V ∈
Xht

, 1 ≤ n ≤ 2N, 1 ≤ q ≤ QA. Note that the latter problems are simple parameter-
independent Poisson problems (albeit over a somewhat complicated enriched space); the Cq,
Lq are the truth “pseudo–solutions” to which we alluded in Section 5.4.

It thus directly follows that

‖êht(µ)‖2Xht
=

QF∑
q=1

QF∑
q′=1

ΘF
q (µ)ΘF

q′(µ)(Cq, Cq′)Xht

+2
QF∑
q=1

QA∑
q′=1

2N∑
n=1

ΘF
q (µ)ΘA

q′(µ)UNn(µ)(Cq,Lq′n)Xht

+
QA∑
q=1

QA∑
q′=1

2N∑
n=1

2N∑
n′=1

ΘA
q (µ)ΘA

q′(µ)UNn(µ)UNn′(µ)(Lqn,Lq′n′)Xht
, (87)

in terms of which we can then evaluate εN (µ) =
√
‖êht

(µ)‖2Xht
. The expression (87) is simply

a summation of products of parameter-dependent functions and parameter-independent inner
products. The offline-online decomposition is now clear.

In the offline stage, we first obtain the “pseudo–solutions” Cq, 1 ≤ q ≤ QF , and Lqn, 1 ≤ n ≤
2Nmax, 1 ≤ q ≤ QA; we then perform and store the parameter-independent inner products,
(Cq, Cq′)Xht

, 1 ≤ q, q′ ≤ QF , (Cq,Lq′n)Xht
, 1 ≤ n ≤ 2Nmax, 1 ≤ q ≤ QF , 1 ≤ q′ ≤ QA, and

(Lqn,Lq′n′)Xht
, 1 ≤ n, n′ ≤ 2Nmax, 1 ≤ q, q′ ≤ QA. This requires O(2NmaxQ

A +QF ) “truth”
pseudo–solutions and O(4N2

max(Q
A)2 + 2NmaxQ

AQF + (QF )2) “Nt inner products.”
In the online stage, given a new parameter value µ, we simply evaluate the sum (87) in terms

of ΘA
q (µ), ΘF

q (µ), and UNn(µ) and the pre-computed parameter-independent inner products.
The operation count for this stage is only O(N2(4QA)2 + 2NQAQF + (QF )2) — independent
of Nt. We do note that for our more complicated (affine) geometric mappings, QA can be
quite large: we thus expect — due to the (QA)2 scaling — that ∆G

N will be more expensive to
evaluate (online) than GN ; we confirm this in the next section.

We also note that the linear superposition (87) involves the extensive cancellation of large
terms, and hence round-off errors may “pollute” our error estimator if ‖êht

(µ)‖Xht
is too

small. The latter often obtains when the parameter µ is too near an element of the set SN . In
practice this precision issue is not a major problem in particular for compliant outputs, as it
usually arises only when ∆G

N is already much smaller than typically required in the engineering
context.

6.4. Numerical results

Example 3.1 We present in Table VIII the error bounds and effectivities for Example 3.1
as a function of N . The error bound reported, EN , is the maximum of the relative error
bound, ∆G

N (µ)/|Ght
(µ)|, over the same test sample Ξtest of Section 5.5. We denote by ηGN the

average of the effectivity, ηGN (µ), over Ξtest. (Note that we reject from our sample Ξtest those
parameter points for which the error bound ∆G

N (µ) is smaller than machine precision, as for
these parameter points the calculation is contaminated by round-off.) We observe relatively
good effectivity: our ηGN is usually of order O(10–100); given the very rapid convergence of the
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N EN EN ηGN
Online Time

GN ∆G
N

5 1.33E+00 1.70E+01 49.93 3.96E-05 1.40E-03

10 1.34E-02 4.96E+00 69.19 8.27E-05 1.80E-03

15 1.27E-03 9.99E-02 47.29 1.14E-04 2.18E-03

20 1.43E-04 1.97E-02 60.74 1.82E-04 2.41E-03

25 2.94E-05 3.24E-03 53.42 2.54E-04 2.79E-03

Table VIII. Example 3.1: Reduced basis error bound and effectivity, and online time to evaluate GN ,
∆G

N , as a function of N ; the timing results are normalized with respect to the time to calculate the
“truth” output Ght .

reduced basis approximation, O(50) effectivities are not too worrisome — readily absorbed by
only a relatively slight increase inN . The “expanded” formulation improves our error estimator
by converting the output into linear and compliant form: our effectivity is significantly better
than the O(100–10,000) effectivities of the “classical” formulation [26, 27], in which the output
is nonlinear .

The computational savings are very high: one online evaluation for an output and the
associated error bound for N = 25 is about 40–45ms compared to approximately 6–8s for
a “truth” solution; our online evaluation (even with error estimation) is still about 140–200
times faster than conventional techniques. We also note that the timing scales as expected: the
computational time required to compute GN is smaller than, but grows faster than, the time
required to compute ∆G

N — this reflects the respective computational costs of order O(8N3)
and O(4(QA)2N2). We do not necessarily observe exactly the expected scalings with N due to
memory access and other overhead not accounted for in our complexity estimates; the correct
scalings are expected for larger N , for which the overhead is relatively less.

The total offline computation time for our reduced basis and error bounds for N = 15 —
including all 259 truth solutions and “pseudo-solutions” and all Nt inner product and greedy
searches (71) — is 287; recall that all computations times are normalized with respect to the
time to calculate one truth solution. Clearly, in this case, the offline time is dominated by the
truth (pseudo–)solutions: indeed, the time for the search (71) (per greedy cycle) is only 0.12;
the latter emphasizes the importance of the a posteriori error estimators even in the offline
stage — and in this particular case suggests that we can easily conduct a more exhaustive
search (i.e, choose ntrain larger). For our particular example, we conclude that “many queries”
— the point at which the reduced basis approach make sense — should be interpreted as
roughly 300 queries. (Of course, in the real time context, the criterion is different.)

Example 3.2 We present in Table IX the error bounds and effectivities for Example 3.2
as a function of N . The error bound reported, EN , is the maximum of the relative error
bound, ∆G

N (µ)/|Ght
(µ)| over the same test sample Ξtest of Section 5.5. We denote by ηGN the

average of the effectivity, ηGN (µ), over Ξtest. (As before, we reject from our sample Ξtest those
parameter points for which the error bound ∆G

N (µ) is smaller than machine precision, as for
these parameter points the calculation is contaminated by round-off.)

We observe relatively good effectivity: our ηGN is usually of order O(10–100). We also note
that the reduced basis error bound is rather “crude” for small N (in particular, N ≤ 10);
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N EN EN ηGN
Online Time

GN ∆G
N

5 1.69E-01 2.20E+01 60.89 1.56E-05 2.06E-03

10 4.22E-03 3.40E-01 60.75 2.37E-05 2.69E-03

15 5.23E-04 9.70E-03 33.05 3.78E-05 3.65E-03

20 8.80E-05 2.72E-03 48.79 5.69E-05 4.03E-03

25 1.09E-05 5.86E-04 44.77 8.96E-05 5.25E-03

30 1.11E-06 1.69E-04 59.87 1.10E-04 6.15E-03

Table IX. Example 3.2: Reduced basis error bound and effectivity, and online time to evaluate GN ,
∆G

N , as a function of N ; the timing results are normalized with respect to the time to calculate the
“truth” output Ght .

N EN EN ηGN
Online Time

GN ∆G
N

5 1.04E-01 1.66E+02 37.19 1.80E-05 2.12E-03

10 6.01E-02 8.72E+01 30.67 2.32E-05 2.37E-03

20 9.08E-03 4.39E-01 41.86 5.95E-05 3.96E-03

30 2.36E-03 1.31E-01 53.17 1.92E-04 5.03E-03

35 9.42E-05 3.17E-02 51.40 2.12E-04 7.10E-03

40 4.58E-05 8.86E-03 42.42 2.78E-04 7.69E-03

Table X. Example 3.3: Reduced basis error bound and effectivity, and online time to evaluate GN ,
∆G

N , as a function of N ; the timing results are normalized with respect to the time to calculate the
“truth” output Ght .

however, for larger N , ∆G
N is more representative of the true error. The computational savings

are very high: one online evaluation for an output and the associated error bound for N = 25 is
about 35–40ms compared to approximately 10–12s for a “truth” solution; our online evaluation
(even with error estimation) is about 250–300 times faster than the classical approach.

Example 3.3 We present in Table X the error bounds and effectivities for Example 3.3
as a function of N . The error bound reported, EN , is the maximum of the relative error
bound, ∆G

N (µ)/|Ght
(µ)|, over the same test sample Ξtest of Section 5.5. We denote by ηGN the

average of the effectivity, ηGN (µ), over Ξtest. (As before, we reject from our sample Ξtest those
parameter points for which the error bound ∆G

N (µ) is smaller than machine precision, as for
these parameter points the calculation is contaminated by round-off.) We observe relatively
good effectivity: our ηGN is usually of order O(10–100).

It is seen that the computational savings are still very high: one online evaluation for
an output and the associated error bound for N = 30 is about 80–100ms compared to
approximately 9–12s for a “truth” solution; our online evaluation (even with error estimation)
is still about 90–150 times faster than the classical approach. We also note from the timings
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that the cost of ∆G
N is significantly greater than the cost of GN : the reason is that QA = 40

is relatively large for this problem due to the more complicated (affine) geometric mappings
near the hole. As a result, the computational time for ∆G

N (which has dominant complexity
order O(4(QA)2N2)) is much greater than the computational time for GN (which is O(8N3))
for small N .

7. CONCLUSIONS AND FUTURE WORKS

We conclude that, for all our Example model problems, our approach provides stress intensity
factors at certified accuracy (relative to the “truth” finite element approximation) of 0.1% or
0.01% at less than (1/100)th the online cost of conventional numerical techniques. The savings
would be even larger for problems with more complex geometry and solution structures, and
in particular in three space dimensions with correspondingly larger Nt. We emphasize that the
stress intensity factor/energy release rate is obtained very inexpensively but also reliably —
thanks to the rigorous and relatively sharp a posteriori error bounds.

In some sense, our method is very similar to a numerically based handbook approach. The
important difference is that our “interpolation formula” — the reduced basis prediction — is
extremely accurate for all µ ∈ D, and furthermore is endowed with a rigorous certificate of
fidelity — our a posteriori error bound.

Many applications in fracture mechanics which require either real-time computation (for
example, Non–Destructive Evaluation or failure prediction) or many-query computation
(fatigue crack growth prediction, say) of the stress intensity factor/energy release rate can
benefit from our approach [27]. We emphasize that the method is not useful if there is no
real–time imperative and if only one (or a few) SIF evaluations are needed, due to the high
computational cost of the offline stage. Typically, the break–even point (see Section 6.4) is
O(100− 1000) input-output evaluations.

There are still many aspects of this work which require further investigation. First, the
method is not very efficient for the treatment of many parameters. As P (the number of
independent parameters) increases we anticipate that the reduced basis approximation will
still converge quickly, however the offline computational cost for the inf-sup lower bound may
grow exponentially (with P ). The Successive Constraint Linear Optimization Method [32] can
reduce the offline (and online) effort, however for large P the problem remains very challenging.

Second, problem set–up remains cumbersome. In this work, we exploit piecewise affine
transformations; this is a good but very complicated tool that is not always practicable with
very complex geometry or non–homogeneous material distribution. These mapping issues
perhaps can be partially overcome by the “empirical interpolation” approach [21], or by
introduction of domain decomposition ideas such as those proposed in [33].

The third and final aspect is the possible application of the method to more general crack
problems, in particular “mixed-mode” situations. It should not be difficult to extend our
methodology for “pure” Mode I cracks to the case of “pure” Mode II cracks. However,
the general mixed–mode problem is much more difficult. It may be possible to first apply
either the displacement decomposition approach or the J–integral approach [34] to reduce the
requisite Mode I and Mode II Stress Intensity Factors to corresponding (continuous) quadratic
outputs; the latter could then be treated by the expanded formulation — and associated
reduced basis approximations and a posteriori error estimators — introduced in our current
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paper. Nevertheless, in the mixed–mode case, calculation of both the SIFs and (ultimately)
the subsequent crack/geometry evolution pose significant mathematical and computational
challenges.
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19. E. Béchet, H. Minnebo, N. Moës, B. Burgardt. Improved implementation and robustness study of the X-
FEM for stress analysis around cracks. International Journal for Numerical Methods in Engineering 2005;
64(8):1033–1056.

20. P. Laborde, J. Pommier, Y. Renard, M. Salaün. High-order extended finite element method for cracked
domains. International Journal for Numerical Methods in Engineering 2005; 64:354–381.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–6
Prepared using nmeauth.cls



REDUCED BASIS APPROXIMATION 39

21. M. Barrault, N. C. Nguyen, Y. Maday, A. T. Patera. An ’empirical interpolation’ method: application to
efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 2004;
339(9):667–672.

22. T. L. Anderson. Fracture Mechanics: Fundamentals and Applications (3rd edn), CRC, 2004.
23. N. C. Nguyen, K. Veroy, A. T. Patera. Certified Real-Time Solution of Parametrized Partial Differential

Equations. Handbook of Materials Modeling, pp. 1523–1558, Springer: 2005.
24. M. A. Grepl, A. T. Patera. A posteriori error bounds for reduced-basis approximations of parametrized

parabolic partial differential equations. M2AN. Mathematical Modelling and Numerical Analysis, 2005;
39(1):157–181.

25. S. Sen, K. Veroy, D. B. P. Huynh, S. Deparis, N. C. Nguyen, A. T. Patera. Natural Norm A Posteriori Error
Estimators for Reduced Basis Approximations. Journal of Computational Physics 2006; 217(1):37–62.

26. D. B. P. Huynh, J. Peraire, A. T. Patera and G. R. Liu. Real-Time Reliable Prediction of Linear-Elastic
Mode-I Stress Intensity Factors for Failure Analysis. SMA Symposium, 2006.

27. D. B. P. Huynh. Reduced-Basis Approximation and Application to Fracture and Inverse Problems. Ph.D
Thesis, National University of Singapore, 2007.

28. D. Clarke and A. Evans. Private communication, 2005.
29. L. Gallimard and J. Panetier. Error estimation of stress intensity factors for mixed-mode cracks.

International Journal for Numerical Methods in Engineering 2006; 68(3):299–316.
30. M. Ruter and E.Stein. Goal-oriented a posteriori error in linear elastic fracture mechanics. Computer

methods in applied mechanics and engineering 2006; 195:251–278.
31. Z. C. Xuan, N. Parés and J. Peraire. Computing upper and lower bounds for the J-integral in two-

dimensional linear elasticity. Computer methods in applied mechanics and engineering 2006; 195:430–443.
32. D. B. P. Huynh, G. Rozza, S. Sen, A. T. Patera. A Successive Constraint Linear Optimization Method for

Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constraints. Comptes Rendus Mathematique
2006, submitted.

33. Y. Maday and E. Rønquist. The Reduced Basis Element Method: Application to a Thermal Fin Problem.
SIAM Journal of Scientific Computing 2004; 26(1):240–258.

34. A. R. Ingraffea and P. A. Wawrzynek. Finite Element Methods for Linear Elastic Fracture Mechanics.
Comprehensive Structural Integrity. Elsevier Science Ltd., Oxford, England: 2003

APPENDIX

The mapping of Example 3.3

Here we describe our affine transformations for the Example 3.3. Here Ω0(µ) → Ω ≡ Ω0(µ = µref = (dref =
0.475, Rref = 0.175, Lref = 1.75)). The transformation is piecewise affine: the identity for (the squared
invariant domain of size 2∆d) Ω2; dilation in the x0

1-direction for Ω1 and Ω3; dilation in the x0
2-direction

for Ω6, Ω11; dilations in both x0
1-direction and x0

2-direction for Ω5, Ω7, Ω8, Ω9, Ω10, Ω12; and dilations in

both the x0
1-direction and x0

2-direction and shear in the x0
2-direction for Ω4. The domain Ω8 is subjected to

dilations in both the x0
1-direction and the x0

2-direction, but with the same scaling factor; the isoparametric
transformations of elements around the hole thus still remain affine. The abstract statement for our classical
formulation is then recovered for Qa = 24, Qf = 4, as listed in Table XI and Table XII. As a result, we
also recover QA = 40 and QF = 6 for our expanded formulation of Section 2.2.
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q Θa
q (µ) ae

q(w, v)

1 1 c1

∫
Ω\{Ω2

⋂
Ω8}

(
∂v1
∂x1

∂w2

∂x2
+
∂v2
∂x2

∂w1

∂x1

)
dΩ +

∫
Ω2

∂vi

∂xj
Cijkl

∂wk

∂xl
dΩ

+ c2

∫
Ω\{Ω2

⋂
Ω8}

(
∂v1
∂x2

∂w2

∂x1
+
∂v2
∂x1

∂w1

∂x2

)
dΩ +

∫
Ω8

∂vi

∂xj
Cijkl

∂wk

∂xl
dΩ

2
1
t1y

(c1 + 2c2)
∫

Ω6

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω6

∂v1
∂x2

∂w1

∂x2
dΩ

3 t1y (c1 + 2c2)
∫
Ω6

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω6

∂v2
∂x1

∂w2

∂x1
dΩ

4
1
t2y

(c1 + 2c2)
∫

Ω11

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω11

∂v1
∂x2

∂w1

∂x2
dΩ

5 t2y (c1 + 2c2)
∫

Ω11

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω11

∂v2
∂x1

∂w2

∂x1
dΩ

6
t0xy

t2y
(c1 + 2c2)

∫
Ω9

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω9

∂v1
∂x2

∂w1

∂x2
dΩ

7
t2y
t0xy

(c1 + 2c2)
∫

Ω9

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω9

∂v2
∂x1

∂w2

∂x1
dΩ

8 t1x (c1 + 2c2)
∫

Ω1

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω1

∂v1
∂x2

∂w1

∂x2
dΩ

9
1
t1x

(c1 + 2c2)
∫

Ω1

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω1

∂v2
∂x1

∂w2

∂x1
dΩ

10
t1x
t1y

(c1 + 2c2)
∫

Ω5

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω5

∂v1
∂x2

∂w1

∂x2
dΩ

11
t1y
t11

(c1 + 2c2)
∫

Ω5

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω5

∂v2
∂x1

∂w2

∂x1
dΩ

12
t1x
t2y

(c1 + 2c2)
∫

Ω10

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω10

∂v1
∂x2

∂w1

∂x2
dΩ

13
t2y
t1x

(c1 + 2c2)
∫

Ω10

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω10

∂v2
∂x1

∂w2

∂x1
dΩ

14 t2x (c1 + 2c2)
∫

Ω3

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω3

∂v1
∂x2

∂w1

∂x2
dΩ
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15
1
t2x

(c1 + 2c2)
∫
Ω3

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω3

∂v2
∂x1

∂w2

∂x1
dΩ

16
t2x
t1y

(c1 + 2c2)
∫

Ω7

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω7

∂v1
∂x2

∂w1

∂x2
dΩ

17
t1y
t2x

(c1 + 2c2)
∫

Ω7

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω7

∂v2
∂x1

∂w2

∂x1
dΩ

18
t2x
t2y

(c1 + 2c2)
∫

Ω12

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω12

∂v1
∂x2

∂w1

∂x2
dΩ

19
t2y
t2x

(c1 + 2c2)
∫

Ω12

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω12

∂v2
∂x1

∂w2

∂x1
dΩ

20
t2x
t0xy

(c1 + 2c2)
∫

Ω4

∂v2
∂x2

∂w2

∂x2
dΩ + c2

∫
Ω4

∂v1
∂x2

∂w1

∂x2
dΩ

21
t0xy

t2x
(c1 + 2c2)

∫
Ω4

∂v1
∂x1

∂w1

∂x1
dΩ + c2

∫
Ω4

∂v2
∂x1

∂w2

∂x1
dΩ

22
tz
t0xy

− (c1 + 2c2)
( ∫

Ω4

∂v2
∂x1

∂w2

∂x2
dΩ +

∫
Ω4

∂v2
∂x2

∂w2

∂x1
dΩ

)
− c2

( ∫
Ω4

∂v1
∂x1

∂w1

∂x2
dΩ +

∫
Ω4

∂v1
∂x2

∂w1

∂x1
dΩ

)

23
tz
t2x

− (c1 + 2c2)
( ∫

Ω4

∂v1
∂x1

∂w2

∂x1
dΩ +

∫
Ω4

∂v2
∂x1

∂w1

∂x1
dΩ

)

24
(tz)2

t2xt
0
xy

(c1 + 2c2)
∫

Ω4

∂v2
∂x1

∂w2

∂x1
dΩ + c2

∫
Ω4

∂v1
∂x1

∂w1

∂x1
dΩ

t0xy =
R+ R

Rref
∆R

Rref + ∆R
, t1x =

1.0− d−∆d
1.0− dref −∆d

, t2x =
d−R− R

Rref
∆R−∆d

dref −Rref −∆R−∆d
, ∆d = 0.03

t1y =
R+ R

Rref
∆R−∆d

Rref + ∆R−∆d
, t2y =

L−R− R
Rref

∆R

Lref −Rref −∆R
, tz =

(1− t0xy)∆d
dref −Rref −∆d−∆R

, ∆R = 0.04

dref = 0.475, Rref = 0.175, Lref = 1.75

Table XI. Example 3.3: Parametric functions Θa
q (µ) and parameter-independent bilinear forms

aq(w, v), 1 ≤ q ≤ Qa = 24.
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q Θf
q (µ) fq(v)

1 1
∫
ΓT11

vdΓ

2 t0xy

∫
Γa

T9
vdΓ

3 t1x
∫
Γc

T10
vdΓ

4 t2x
∫
Γc

T12
vdΓ

Table XII. Example 3.3: Parametric functions Θf
q (µ) and parameter-independent bilinear forms fq(w),

1 ≤ q ≤ Qf = 4.
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