Design Laboratory Geometric Modeling Libraries
Reference Manual
Volume 9: simp and lex
Simultaneous Polynomial Intersection Library
and Lexical Library

E. C. Sherbrooke T. Maekawa C.-Y. Hu W. Cho J. Zhou
S. L. Abrams N. M. Patrikalakis

Massachusetts Institute of Technology
Department of Ocean Engineering
77 Massachusetts Avenue
Cambridge, MA 02139-4307, USA

Design Laboratory Memorandum 95-24
Issued: November 11, 1995
Revised: November 9, 2007

Copyright (©) Massachusetts Institute of Technology, 1998
All rights reserved

simp — libfsimp.a intro

1 Purpose

Simultaneous Polynomial Intersection Library.

2 Specification

#include ”simpoly.h”
libfsimp.a (or liblsimp.a)

3 Description

This library is used for solving systems of non-linear polynomial equations. The current ver-
sion can solve overconstrained, underconstrained, and balanced systems. In other words, for
m equations and n unknowns, systems where m > n (overconstrained), m = n (balanced),
and m < n (underconstrained) can be solved.

The initial implementation of the solver is described by Sherbrooke and Patrikalakis [9].
This paper develops the basic n-dimensional algorithm (in floating point and rational arith-
metic) for finding the real roots of a balanced non-linear polynomial system in the Bern-
stein basis in a n-dimensional rectangular box. Floating point arithmetic is sufficient for
well-conditioned cases, but in general it is not numerically robust for ill-conditioned cases.
Rational arithmetic solves the robustness problem; nevertheless, it is ineffective even for
moderate size problems [8]. To overcome the lack of numerical robustness in ill-conditioned
cases, Maekawa and Patrikalakis [4, 5] introduced rounded interval arithmetic (RIA) for
increased robustness without the cost of rational arithmetic. The formulation of equations
in rational arithmetic and solution in RIA is appropriate, robust and practically feasible.
Maekawa and Patrikalakis [6] applied this algorithm to very high degree multidimensional
problems (systems of degree 50 to 68 in dimensions of 1 to 4) with emphasis on manufac-
turing and fairing. Zhou, Sherbrooke, and Patrikalakis [10] apply the algorithm to distance
functions of different geometrical entities.

To improve the efficiency of the rounded interval arithmetic version, Hu [1] developed a
method to increase the efficiency of the rounded interval arithmetic operators by a factor
of 3-to—1. This method is also mentioned by Patrikalakis et al. [7]. Hu [2] and Hu et
al. [3] extended the algorithm to solve overconstrained and underconstrained systems. The
algorithm has been tested extensively for low dimensional (1 to 6) computer—aided geometric
design problems. It should also prove to be effective for higher dimensional overconstrained
problems.

The routines and the data structures presented in this manual are written in C++.

This manual describes the following five public functions:

1. consolidate() merges multiple intersecting n-dimensional root boxes into a single
bounding box, using floating point or interval arithmetic.

2. convPolyBozx() converts the coefficients of a system of power basis polynomial equa-
tions, defined in an arbitrary n-dimensional box, into the unit box, [0,1]", using
floating point or interval arithmetic.

3. lezConuv() converts a lexical representation of a system of power basis polynomial
equations into Bernstein basis polynomials, using floating point or interval arithmetic.

9/2/94 Page 1

intro

simp — libfsimp.a

4. monoToBern() converts a system of power basis polynomial equations into Bernstein
basis polynomials, using floating point or interval arithmetic.

5. sim_solve() solves systems of nonlinear polynomial equations in a [0,1]™ box, using
floating point or interval arithmetic.

References

[1] C.-Y. Hu, Robust Algorithms for Sculptured Shape Visualization, Master’s thesis, Mas-
sachusetts Institute of Technology, July 1993.

[2] C.-Y. Hu, Towards Robust Interval Solid Modeling for Curved Objects, Ph.D. thesis,
Massachusetts Institute of Technology, May 1995.

[3] C.-Y. Hu, T. Maekawa, E. C. Sherbrooke, and N. M. Patrikalakis, “Robust Interval
Algorithm for Curve Intersections,” Computer Aided Design, February 1995 (To ap-
pear).

[4] T. Maekawa, Robust Computational Methods for Shape Interrogation, Ph.D. thesis,
Massachusetts Institute of Technology, June 1993.

[5] T. Maekawa and N. M. Patrikalakis, “Computation of singularities and intersections of
offsets of planar curves,” Computer Aided Geometric Design 10(5):407-429, October
1993.

[6] T. Maekawa and N. M. Patrikalakis, “Interrogation of differential geometry properties
for design and manufacture,” The Visual Computer 10(4):216-237, March 1994.

[7] N. M. Patrikalakis, C.-Y. Hu, T. Maekawa, and E. C. Sherbrooke, “Towards robust
geometric modellers,” in Proceedings of the 1994 NSF Design and Manufacturing
Grantees Conference, January 1994, Cambridge, Massachusetts, National Science
Foundation and Society of Manufacturing Engineers, Dearborn, Michigan, pp. 199-
200.

[8] E. C. Sherbrooke, Computation of the Solutions of Nonlinear Polynomial Systems, Mas-
ter’s thesis, Massachusetts Institute of Technology, October 1993.

[9] E. C. Sherbrooke, “Computation of the solutions of nonlinear polynomial systems,”
Computer Aided Geometric Design 10(5):379-405, October 1993.

[10] J. Zhou, E. C. Sherbrooke, and N. M. Patrikalakis, “Computation of stationary points
of distance functions,” Engineering with Computers 9(4):231-246, Winter 1993.

Datatypes

The solver library can be compiled using (finite precision) floating point arithmetic or
(bounded precision) interval arithmetic. The single source code version refers to a real
datatype, which is specified to be double or Interval on the basis of a compile-time flag.
The correct arithmetic operators (e.g. +, —, etc.) are automatically invoked by the C++
polymorphism (operator overloading) facility.

Page 2 9/2/94

simp — libfsimp.a intro

1. typedef double real;
Note: Floating point finite precision data type. This is the default type.

2. typedef Interval real;
Note: Interval bounded precision data type. To specify interval arithmetic, define the
C++ preprocessor symbol USE_INTERVAL, e.g.
g++ -DUSE_INTERVAL ...

as an option to the C+4 compiler.

7 Accuracy

The accuracy of floating point arithmetic is limited to approximately 15 significant digits.
RIA provides an explicit error bound on all arithmetic operations.

8 Further Comments

A general n-variate polynomial can be written as follows:
r s t
i, k _
Z Z e Z Qi j,.. kT Ty X, =0
i=05j=0 k=0
or, in expanded form:

0,.0

0.0 0 1 0.0 :

a0,0,...0T1 Ty =+ * Ty + A0,0,... 1T] T+ Ty + -+ Ap,0,.. tT1 Ty - Tpy+
0.1 0 0,1 1 0,1 t

1, 018+ Ty + Q0,1 AT]T - Ty F oo 01, BT - Tt

ap,1
Qrs, OTTTS = T A Aps, 1TTES -2y + oo Qs gx] Ty @), =0

This is a polynomial in n variables, 1 (with maximum degree r) to x, (with maximum
degree t).

Whenever any of the library functions require the coefficients of a polynomial, they are
specified in the sequence given by the previous equation, agp,..0 to ars,... -

9/2/94 Page 3

consolidate lex — consolidate.cc

1 Purpose

Consolidate the roots of a system of nonlinear polynomial equations.

2 Specification

#include ”consolidate.h”
void consolidate(real epsCon, real eps, real **bp, short **ordlists, int numeq, int numoar,

real **&roots, int Enumroots);

3 Description

This function collects the intersecting n-dimensional root boxes, whose size is eps™, and
merges them into a single n-dimensional bounding box. After normalizing the new merged
bounding box, sim_solve() is called, using epsCon as the tolerance, to check if the bounding
box contains the roots. If the box satisfies the tolerance, we consider it the consolidated
root box.

For floating point arithmetic (FPA), the root is considered to be the mid-point of the
consolidated box. For rounded interval arithmetic (RIA), the consolidated n-dimensional
box is considered the interval root for each direction.

4 References

Not applicable.

5 Parameters

1. real epsCon
On entry: specifies the root tolerance for each normalized bounding box.

2. real eps
On entry: the original root tolerance, in other words, this is the tolerance specified
as an argument to the call to sim_solve() that produced the initial, non-consolidated
roots.

3. real ** bp
On entry: pointer to a two-dimensional array containing the coefficients of the poly-
nomials in the Bernstein basis.

On exit: pointer to a two-dimensional array containing the coefficients of the polyno-

mials in the power basis.

4. short ** ordlists
On entry: pointer to a two-dimensional array containing the maximum order (degree
+ 1) of each variable in each equation.

5. int numeq
On entry: the number of equations in the system.

6. int numvar
On entry: the number of variables in the system.

Page 4 8/30/95

lex — comnsolidate.cc consolidate

7. real **& roots

On entry: reference to an array of non-consolidated roots.

On exit: reference to an array of the consolidated roots.

8. int & numroots
On entry: reference to the number of non-consolidated roots.

On exit: reference to the number of consolidated roots.

6 Return Values, Error Indicators and Warnings

Not applicable.

7 Accuracy

Not applicable.

8 Further Comments
Not applicable.

8/30/95 Page 5

convPolyBox simp — convPolyBox.cc

1 Purpose

Convert polynomials expressed in power basis in an arbitrary box into the unit box [0, 1]™.

2 Specification

#include ”conv.h”
void convPolyBox(real **€bp, short **ordlists, real **intv, int numuvar, int numeq)

3 Description

This function calculates new coefficients of a system of polynomials equations, originally
defined in an arbitrary n-dimensional box, such that the polynomials are defined in the
standard unit box, [0, 1]™.

4 References

Not applicable.

5 Parameters

1. real **€ bp
On entry: reference to a two dimensional array containing the coefficients of the
power basis polynomials, defined in an arbitrary n-dimensional box. For instance,
if the array for the j-th equation is n-dimensional with degrees di,do,...,d,, then
bpljll(dn + 1)(dp—1+1)...(d2 + 1) %41 + (dp + 1) ... (d3 + 1) ¥ iz + ... + i,] indexes
i1 .02

the coefficient of zj'x%? ...zl of the j-th equation.

On exit: reference to a two dimensional array containing the coefficients of the power
basis polynomials, defined in the unit box [0, 1]™.

2. short ** ordlists
On entry: pointer to a two dimensional array containing the orders of each variable
in each equation, defined in an arbitrary n-dimensional box.

On exit: pointer to a two dimensional array containing the orders of each variable in

each equation, defined in the unit box [0, 1]™.

3. real ** intv
On entry: pointer to a two dimensional array containing the intervals for each variable
in the polynomials. The variable intervals are given in the reverse order. In other
words, for the numvar variables, intv[0][*] contains the interval for variable numvar
and intv[numuvar-1][*] contains the interval for variable 1.

4. int numeq
On entry: the number of equations.

5. int numuvar
On entry: the number of variables.

6 Return Values, Error Indicators and Warnings

Not applicable.

Page 6 1/10/95

simp — convPolyBox.cc convPolyBox

7 Accuracy
Not applicable.

8 Further Comments
Not applicable.

1/10/95 Page 7

lexConv lex — lexConv.cc

1 Purpose
Convert lexical polynomial equations into a system of polynomials expressed in the Bern-
stein basis.
2 Specification
#include "lexPP.h”
int lexConv(char* filename, real **€bp, short **&ordlists, int Enumeq, int Enumuvar);
3 Description

When the input polynomials are lexical, lexConv() can recognize the coefficients of the
polynomials and convert the power basis into Bernstein basis.

The current implementation is designed only for a balanced system.

4 References

[1] Steven V. Earhart, Lex — A Lexical Analyzer Generator Vol. 1-5 of the UNIX Pro-
grammer’s Manual. Holt, Rinehart and Winston, 1986, New York.

5 Parameters

1. char * filename
On entry: pointer to a NULL-terminated character string containing the input file-
name.

2. real **€ bp
On exit: reference to a two-dimensional array, containing the coefficients of input file
in the Bernstein basis. For instance, if the array for the j-th equation is n-dimensional
with degrees d1, da, . .., dp, then bp[j][(dn+1)(dn—1+1) ... (d2+1)xi1+(dp+1) ... (d3+

1) % iy + ...+ 14y,] indexes the coefficient of z{'2% ... x% of the j-th equation.

3. short **& ordlists
On exit: reference to a two-dimensional array containing the orders of each variable
in each equation.

4. int & numeq
On exit: reference to the number of equations.

5. int & numvar
On exit: reference the number of variables.

6 Return Values, Error Indicators and Warnings

Not applicable.

7 Accuracy

Not applicable.

Page 8 12/7/94

lex — lexConv.cc lexConv

8 Further Comments

This function is written in C++-.

The current implementation is designed only for a balanced system.

The format of the input data file is:

12/7/94

The first line of the input file is an integer indicating the number of equations.

Each equation contains two lines: the first specifies the maximum degree of each
variable and the second is the body of the equation. Thus, the equation 22+5x2—1 = 0
is represented by the lines:

21
x12 +5%x2 — 1
Variables are written as x1, x2, ..., xi, i.e. x followed by an integer.

Elevation of a variable to a power is expressed by the symbol =, for example, 22 is

written x~2.

There should not be any = sign. The right-hand side of all equations is assumed to
be equal to zero.

All coefficients are real numbers and may be written as integers, floating point num-
bers (e.g. 0.5), or rational numbers (e.g. 1/5).

There should not be any multiplication symbol “*” in the input file. For instance,
x1 * 22 should be written as x1x2.

No embedded blanks should occur between operators, coefficients, and variable names.

The last line consist of the sole word end, indicating the end of the input file.

Page 9

monoToBern lex — monoToBern.cc

1 Purpose
Convert a system of polynomial equations expressed in power basis into a system of poly-
nomials expressed in Bernstein basis.
2 Specification
#include "monoPP.h”
void monoToBern(real **bp, short **deglist, int numeq, int numvar);
3 Description

This function converts power basis polynomials into the Bernstein basis.

4 References

[1] E. C. Sherbrooke and N. M. Patrikalakis, “Computation of Solution of Nonlinear Poly-
nomial System,” Computer Aided Geometric Design 10(5):379-405, October 1993.

5 Parameters

1. real ** bp
On entry: pointer to a two-dimensional array containing the coefficients of polynomi-
als in the power basis. For instance, if the array for the j-th equation is n-dimensional
with degrees di, da, . .., dp, then bplj][(dn+1)(dn-1+1) ... (doa+1)*i1+(dn+1) ... (d3+

1) *d2 4 ... + ip] indexes the coefficient of xi'zs? ... a2l of the j-th equation.

On exit: pointer to a two-dimensional array containing the coefficients of polynomials
in the Bernstein basis.

2. short ** deglist
On entry: pointer to a two-dimensional array containing the maximum degree (not
order) of each variable in power basis.

On ezit: pointer to a two-dimensional array containing the maximum order (not
degree) of each variable in Bernstein basis.

3. int numeq
On entry: the number of equations.

4. int numvar
On entry: the number of variables.

6 Return Values, Error Indicators and Warnings
Not applicable.

7 Accuracy

Not applicable.

8 Further Comments
Not applicable.

Page 10 12/7/94

simp — wrap solver.cc sim solve

1 Purpose

Calculate solutions to a system of nonlinear polynomial equations.

2 Specification

#include “pp_solver.h”
sim_solve(real **bp, short **ordlists, int numeq, int numvar, real eps, real ***roots, int*

numroots);

3 Description

This function uses the projected polyhedron root-finding algorithm to determine all real
roots to a system of nonlinear polynomial equations that lie within the n-dimensional box
[0,1]™. The polynomial system to be solved should be written in Bernstein form as follows:

fl(xlax27"'7xn) =0
fQ(.ZEl,,IQ,"',l'n) =0
fm($17x27"'7$n) =0

where m = n for balanced systems, m < n for underconstrained systems, and m > n for
overconstrained systems. The accuracy the roots is determined by the tolerance eps.

This function has been implemented for floating point and interval arithmetic.

4 References

[1] C.-Y. Hu, Robust Algorithms for Sculptured Shape Visualization, Master’s thesis, MIT,
Cambridge, Massachusetts, July 1993.

[2] C.-Y. Hu, Towards Robust Interval Solid Modeling for Curved Objects, Ph.D. thesis,
Massachusetts Institute of Technology, May 1995.

[3] C.-Y. Hu, T. Maekawa, E. C. Sherbrooke, and N. M. Patrikalakis, “Robust Interval
Algorithm for Curve Intersections,” Computer Aided Design, February 1995 (To ap-

pear).

[4] C.-Y. Hu, T. Maekawa, E. C. Sherbrooke, and N. M. Patrikalakis, “Robust Interval
Algorithm for Curve Intersections,” Computer Aided Design, February 1995 (To ap-
pear).

[5] T. Maekawa, Robust Computational Methods for Shape Interrogation, Ph.D. thesis,
MIT, Cambridge, Massachusetts, June 1993.

[6] T. Mackawa and N. M. Patrikalakis, “Computation of singularities and intersections of
offsets of planar curves”, Computer Aided Geometric Design 10(5):407-429, October
1993.

[7] T. Maekawa and N. M. Patrikalakis, “Interrogation of differential geometry properties
for design and manufacture”, The Visual Computer 10(4):216-237, March 1994.

12/7/94 Page 11

sim solve simp — wrap solver.cc

[8] E. C. Sherbrooke, Computation of the Solutions of Nonlinear Polynomial Systems, Mas-
ter’s Thesis, MIT, Cambridge, Massachusetts, October 1993.

[9] E. C. Sherbrooke and N. M. Patrikalakis, “Computation of Solutions of Nonlinear Poly-
nomial Systems”, Computer Aided Geometric Design 10(5):379-405, October 1993.

[10] J. Zhou, E. C. Sherbrooke, and N. M. Patrikalakis, “Computation of stationary points
of distance functions”, Engineering with Computers 9(4):231-246, Winter 1993.

5 Parameters

1. real ** bp

On entry: the coefficients of the system. For instance, if the array for the j-th equation
is n-dimensional with degrees di,ds, ..., d,, then bp[j][(dn +1)(dp—1+1)...(d2+ 1) *
i1+ (dn +1)...(d3 +1) %49 4 ... +iy,] indexes the coefficient of z%'z% ...z of the
7-th equation.

Notice that although we have used the power basis in our example, the multinomial
structure is basis-independent. We can just as easily index elements in the tensor-
product Bernstein basis as in the power basis.

2. short ** ordlists
On entry: the non-negative integers for the orders (order = degree + 1) of each
variable in each equation. For example, to access the orders of the j-th variable of
the i-th equation, use ordlistsli][j].

3. int numeq
On entry: the number of equations in the system to be solved.

4. int numvar
On entry: it specifies the number of variables in the system to be solved.

5. real eps
On entry: the tolerance which determines the accuracy of output roots.

6. real *** roots
On entry: pointer to non-initialized double pointer to real.

On exit: the output roots.
7. int * numroots

On exit: pointer to the number of roots found by the solver.

6 Return Values, Error Indicators and Warnings

The routine returns a pointer to an array of roots. If the array is empty (in other words,
roots = NULL), then no roots exist within the box [0, 1]™.

7 Accuracy

The resolution of the roots depends on the user-specified tolerances. If the tolerance is set
too tight, for example, eps = 1078, this routine may be slow for tangential roots.

Page 12 12/7/94

simp — wrap solver.cc sim solve

8 Further Comments
Not applicable.

12/7/94 Page 13

