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Abstract

We study competition in matching markets with random heterogeneous preferences
by considering an unequal number of agents on either side. First, we show that even
the slightest imbalance yields an essentially unique stable matching. Second, we give
a tight description of stable outcomes, showing that matching markets are extremely
competitive. Each agent on the short side of the market is matched to one of his top
preferences, and each agent on the long side is either unmatched or does almost no
better than being matched to a random partner. Our results suggest that any match-
ing market is likely to have a small core, explaining why small cores are empirically

ubiquitous.
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1 Introduction

Stable matching theory has been instrumental in the study and design of numerous two
sided markets. In these markets, there are two disjoint sets of agents, where each agent has
preferences over potential matches from the other side. Examples include entry-level labor
markets, dating, and college admissions. The core of a two-sided markets is the set of stable
matchings, where a matching is stable if there are no man and woman who both prefer each
other over their assigned partners. Stability is a critical property in the design of centralized
clearing-houses® and a useful equilibrium concept for predicting outcomes in decentralized
markets.?

In this paper, we address two fundamental issues by characterizing how the core is affected
by competition. First, we address the longstanding issue of multiplicity of stable matchings.?
Previous studies have shown that the core is small only under restrictive assumptions on
market structure, suggesting that the core is generally large. In contrast, empirical findings
from a variety of markets suggest that matching markets have an essentially unique stable
matching in practice.* Second, the matching literature provides almost no direct link between
market characteristics and stable outcomes. For example, it is known that increasing the
number of agents on one side makes agents on the other side weakly better off (Crawford
(1991)), but little is known about the magnitude of this effect.

We analyze these questions by looking at randomly drawn matching markets, allowing
for competition arising from an unequal number of agents on either side. Influential work by
Pittel (1989b) and Roth and Peranson (1999) study the same model for balanced markets

and find that the core is typically large. We show that the competition resulting from even

L Stable matching models have been successfully adopted in market design contexts such as school choice
(Abdulkadiroglu et al. (2006); Abdulkadiroglu et al. (2005)) and resident matching programs (Roth and
Peranson (1999)). Roth (2002) shows that stability is important for the success of centralized clearing

houses.
2See, e.g., Hitsch et al. (2010) and Banerjee et al. (2013).
3The potential multiplicity of stable matchings is a central issue in the literature and has led to many

studies about the structure of the core (Knuth (1976)), which stable matching to implement (Schwarz and

Yenmez (2011)) and strategic behavior (Dubins and Freedman (1981); Roth (1982)).
1A unique stable matching was reported in the National Resident Matching Program (NRMP) ( Roth

and Peranson (1999)), Boston school choice (Pathak and Sénmez (2008)), online dating (Hitsch et al. (2010))

and the Indian marriage market (Banerjee et al. (2013)).



the slightest imbalance yields an essentially unique stable matching. Our results, which hold
for both small and large markets, suggests that any matching market is likely to have a small
core, thereby providing an explanation as to why small cores are empirically ubiquitous.

Our second contribution shows that the essentially unique stable outcome can be almost
fully characterized using only the distribution of preferences and the number of agents on
each side. Roughly speaking, under any stable matching, each agent on the short side of
the market is matched to one of his top preferences. Each agent on the long side is either
unmatched or does almost no better than being matched to a random partner. Thus, we
find that matching markets are extremely competitive, with even the slightest imbalance
greatly benefiting the short side. We also present simulation results showing the short side’s
advantage is robust to small changes in the model.

Formally, we consider a matching market with uniformly random and independent com-
plete preference lists with n agents on the short side (men) and n + 1 or more agents on the
long side (women). Let the rank of a matched agent to be her preference rank of the assigned
partner. We show that with high probability: (i) the core is small in that almost all agents
have the same partner in all stable matchings and all stable matchings give approximately
the same average ranking for men and women, and (ii) under any stable matching men are,
on average, matched to their log n most preferred wife, while matched women are on average
matched to their n/(logn) most preferred man. Thus, in an unbalanced market, agents on
the short side, on average, rank their partners as they would if the preferences of the long
side were not taken into account by the matching process at all.® Matched agents on the
long side, on average, rank their partners approximately the same as if they were allowed
to choose their match from a limited, randomly drawn set of only logn potential partners.
The results therefore show that even in a slightly imbalanced market, there is a very large
advantage to being on the short side. For example, in a market with 1,000 men and 1,001
women, men are matched on average to their 7th (= log 1000) most preferred woman, while
women are matched on average to their 145th (= 1000/ log 1000) most preferred man. We
further show that the benefit to the short side is amplified when the imbalance is greater.

These results imply that there is limited scope for strategic behavior in matching markets.

Suppose agents report preferences to a central mechanism, which implements a matching that

®The corresponding mechanism would be Random Serial Dictatorship (RSD), under which men choose

their partners in a random order (see e.g. Abdulkadiroglu and Sénmez (1998)).



is stable with respect to reported preferences. Demange et al. (1987) show that agents who
have unique stable partners are unable to gain from misreporting their preferences, i.e., from
manipulating the mechanism. Furthermore, agents with a unique stable partners will be
unaffected by profitable manipulations by other agents. Our results therefore show that
even under full information, only a small fraction of agents would benefit from misreporting,
and only a small fraction of agents will be affected. Thus our results may help explain
the practical success of stable matching mechanisms, and suggest that agents report their
preferences truthfully to stable matching mechanisms.

To gain some intuition for these results, it is useful to compare our setting with a com-
petitive, homogeneous buyer-seller market. In a market with 100 homogeneous sellers, who
have unit supply and a reservation value of zero, and 100 identical buyers, who have unit
demand and value the good at one, every price between zero and one gives a core allocation.
However, when there are 101 sellers, competition among sellers implies a unique clearing
price of zero, since any buyer has an “outside option” of buying from the unmatched seller
who will sell for any positive price.

Our results show a sharp phenomenon in matching markets similar to the one in the
homogenous buyer-seller market. This is surprising since we consider markets with hetero-
geneous preferences and no transfers. In particular, the direct outside option argument (used
above in the buyer-seller market) does not explain the strong effect of a single additional
woman: while the unmatched woman is willing to match with any man, she creates a useful
outside option only for a few men who rank her favorably. However, since these men must
be matched to women they each rank even higher, their spouses are made worse off and in
turn create an indirect outside option for other men. The economic intuition, which is key
in our proof, is that these “indirect outside options” ripple throughout the entire market,
creating strong outside options for all men.

Taken together, our results suggest that matching markets will generally have a small
core. We show that even with uncorrelated preferences the core is small under the slightest
imbalance. This result is important for real-world applications since precisely balanced
markets are unlikely to arise in practice. It is generally thought that correlation in preferences

reduces the size of the core,® and we present simulations supporting this. We also simulate

6See for example Roth and Peranson (1999).



markets with varying correlation structures, market sizes, and list lengths, and do not find
a setting (apart from the balanced random market) that has a large core.

Our proof requires developing some technical tools that may be of independent interest.
We build on the work of McVitie and Wilson (1971) and Immorlica and Mahdian (2005)
to construct an algorithm that progresses from the men-optimal stable matching to the
women-optimal stable matching through a series of rejection chains. These rejection chains
unveil whether a woman can be made better off without inducing some man to prefer the
unmatched woman and block the match. Immorlica and Mahdian (2005) and Kojima and
Pathak (2009) analyze rejection chains in markets where there are many unmatched agents.
When there are many unmatched agents, rejection chains are likely to be short, allowing each
chain to be analyzed independently. When the imbalance is small, understanding the ripple
effect relies on the joint analysis of how the different rejection chains are interconnected. We
modify the McVitie-Wilson algorithm to account for the interdependence between different
rejection chains. A run of the modified algorithm on random preferences can be modeled by
a tractable stochastic process, the analysis of which reveals that different chains are likely

to be highly connected.

1.1 Related literature

Most relevant to our work are Pittel (1989a) and Knuth et al. (1990), which extensively
analyze balanced random matching markets. They characterize the set of stable matchings
for a random matching market with n men and n women, showing that the men’s average
rank of wives ranges from logn to n/logn for different stable matchings and that the fraction
of agents with multiple stable partners approaches 1 as n grows large. Our results show that
the addition of a single woman makes the core collapse, leaving only the most favorable
outcomes for men.

Several papers study the size of the core to understand incentives to misreport preferences.
They analyze random matching markets where one side has short, randomly drawn preference

lists.” In this case Immorlica and Mahdian (2005) show that women cannot manipulate in

"The random, short list assumption is motivated by the limited number of interviews as well as the
NRMP restriction that allows medical students to submit a rank ordered list of up to only 30 programs

(http://www.nrmp.org/match-process/create-and-certify-rol-applicants/) and by the limited number of in-



a one-to-one marriage market, and Kojima and Pathak (2009) show that schools cannot
manipulate in many-to-one matching markets. Our results differ in two ways. First, these
papers are limited to studying manipulation and the size of the core, while we characterize
outcomes and show that competition benefits the short side of the market. Second, their
analysis relies on the specific market structure generated by short, randomly drawn preference
lists. Because preference lists are short in their setting, many schools are not ranked by any
student, and many students remain unmatched. Thus, though they assume an equal number
of seats and students, their model behaves like a highly unbalanced market.® The short list
assumption was necessary for the analysis in these papers, leading them to conclude that
the core is likely to be small only under restrictive assumptions. In contrast, our results
suggest that matching markets very generally have a small core, driven by a strong effect of
competition.

Coles and Shorrer (2012) and Lee (2011) study manipulation in asymptotically large
balanced matching markets, making different assumptions about the utility functions of
agents. Coles and Shorrer (2012) define agents’ utilities to be equal to the rank of their spouse
(varying between 0 and n), which grows linearly with the number of agents in the market.
They show that women are likely to gain substantially from manipulating men-proposing
deferred acceptance by truncating their preferences. Lee (2011) allows for correlation in
preferences but assumes that utilities are kept bounded as the market grows large. He shows
that in a large enough market, most agents cannot gain much utility from manipulating men-
proposing deferred acceptance. The difference between the two conclusions can be reconciled
as a result of the different utility parameterizations. In a balanced market, agents are likely
to have stable partners of rank ranging from logn to n/logn, and this difference in rank can
be small or large in terms of utilities.” In contrast, in the unbalanced market, agents are
likely to have a unique stable partner.

The literature on matching markets with transferable utilities provides theoretical pre-

terviews.
8In fact, their proof requires that preference lists are short enough for agents to have a significant prob-

ability of remaining unmatched. Unless being unmatched is an attractive option, it implies that agents are
not submitting long enough lists.

9Both logn/n and 1/logn converge to 0, meaning that both asymptotically give the top percentile,
although the latter converges very slowly. For example, logn/n = 1% for n ~ 600, but 1/logn = 1% for
n ~ 2.68 x 10*3,



dictions on who matches to whom based on market characteristics. For instance, related
to this paper is the phenomenon that increasing the relative number of agents of one type
(“buyers”) is well-known to benefit agents of the other type (“sellers”) (Shapley and Shubik,
1971; Becker, 1973).19 Our paper provides the first quantification of this effect in matching
markets without transfers.

Another situation in which the set of stable matchings is small is in matching markets
with highly correlated preferences. When all men have the same preferences over women,
there is a unique stable matching. Holzman and Samet (2013) generalize this observation,
showing that if the distance between any two men’s preference lists is small, the set of stable
matchings is small. Azevedo and Leshno (2012) look at large many-to-one markets with a
constant number of schools and an increasing number of students; they find these generically
converge to a unique stable matching in a continuum model. The core of these markets can
be equivalently described as the core of a one-to-one matching market between students and

seats in schools, where all seats in a school have identical preferences over students.

1.2 Organization of the paper

Section 2 presents our model and results. Section 3 provides intuition for the results, outlines
our proof and presents the new matching algorithm that is the basis for our proof. Section 4
presents simulation results, which show that the same features occur in small markets, and
checks the robustness of our results. Section 5 gives some final remarks and discusses the
limitations of our model.

Appendix A proves the correctness of our new matching algorithm. The proof of our
main results is in Appendix B. In Appendix C, we discuss how our results may be extended

to many-to-one random matching markets.

0Rao (1993); Abramitzky et al. (2009) exploit random variation in female-male balance to show that

outcomes in the marriage market favor the short side.



2 Model and results

2.1 Random matching markets

In a two-sided matching market, there is a set of men M = {1,...,n} and a set of women
W ={1,...,n+k}. Each man m has a complete strict preference list >,, over women, and
each woman w has a complete strict preference list >, over the set of men. A matching is
a mapping u from M U W to itself such that for every m € M, u(m) € WU {m}, and for
every w € W, u(w) € MU{w}, and for every m,w € MUW, p(m) = w implies u(w) = m.

A matching p is unstable if there are a man m and a woman w such that w =, u(m)
and m >, p(w). A matching is stable if it is not unstable. We say that m is stable for w
(and vice versa) if there is a stable matching in which m is matched to w. It is well-known
that the core of a matching market is the set of stable matchings.

Our focus in this paper is to characterize the stable matchings of randomly generated
matching markets. A random matching market is generated by drawing a complete prefer-
ence list for each man and each woman independently and uniformly at random. That is,
for each man m, we draw a complete ranking >, from a uniform distribution over the [W|!
possible rankings. Section 4 provides simulation results for more general distributions over
preferences, allowing for correlated preferences.

A stable matching always exists, and can be found using the Deferred Acceptance (DA)
algorithm by Gale and Shapley (1962). The men-proposing DA (MPDA) algorithm repeat-
edly selects an unassigned man m who in turn proposes to his most preferred woman who
has not yet rejected him. If m has been rejected by all women, the algorithm assigns m to be
unmatched. If a woman has more than one proposal, she rejects all but her most preferred
one, leaving the rejected men unassigned. When every man is assigned to either a woman
or being unmatched, the algorithm terminates and outputs the matching.

Gale and Shapley (1962) show that men-proposing DA finds the men-optimal stable
matching (MOSM), in which every man is matched to his most preferred stable woman.
The MOSM matches every woman to her least preferred stable man. Likewise, the women
proposing DA produces the women-optimal stable matching (WOSM) with symmetric prop-
erties.

We are interested in the size of the core, as well as how matched agents rank their



assigned partners. Denote the rank of woman w in the preference list >,, of man m by
Rank,,(w) = |w" : w' =, w|, where m’s most preferred woman has a rank of 1. Symmetrically

denote the rank of m in the preference list of w by Rank,,(m).

Definition 2.1. Given a matching p, the men’s average rank of wives is given by

RMEN (,U) |M \ E%M Rank ) )

where M is the set of men who are unmatched under p.

Similarly, the women’s average rank of husbands is given by

Z Rank,, (u(w)),

meEW\W

RWOMEN(M) |W\

where W is the set of women who are unmatched under .

We use two metrics for the size of the core. First, we measure the fraction of agents
that have multiple stable partners. Second, we adopt the difference between men’s average
rankings under MOSM and WOSM as a measure for how distinct these two extreme stable

matchings are.

2.2 Previous results

Previous literature has analyzed balanced random matching markets, which have an equal
number of men and women. We start by citing a key result on the structure of stable
matchings in balanced markets:

Theorem [Pittel (1989a)]. In a random matching market with n men and n women, the
fraction of agents that have multiple stable partners converges to 1 as n — oo. Furthermore,

Ryex(MOSM)
logn

21

?

Ryex (WOSM)

P
—1
n/logn

where % denotes convergence in probability.
This result shows that in a balanced market, the core is large under both measures as not

only do most agents have multiple stable partners, but also men’s average rankings under



the extreme stable matchings are significantly different. We next show that this does not
extend to unbalanced markets. In the next section, we show that in an unbalanced market,
the core is small under both measures. In the subsequent subsection, we further show that
an inequality in the numbers of men and women is highly favorable for the short side of the

market.

2.3 The size of the core in unbalanced markets

In our main result, we show that an unequal number of men and women leads to a small core,
even if the difference is as small as one. We show that almost all men have a unique stable
partner in a typical realization of the market, and that each side receives a similar average
rank under the MOSM and WOSM. We omit quantifications for the sake of readability and

give a more detailed version of the theorem in Appendix B.

Theorem 1. Fiz ¢ > 0. Consider a sequence of random matching markets, indexed by n,
with n men and n + k women, for arbitrary k = k(n) > 1. With high probability,"! we have
that

(i) the fraction of men and fraction of women who have multiple stable partners tend to

zero as n — 0o, and

(ii) the men’s average rank of spouses is almost the same under all stable matchings,'* as

s the women’s average rank of spouses:

Ruux (WOSM) < (1 4 &) Ruyen (MOSM)
Ruonsn(WOSM) > (1 — &) Ruonmn (MOSM) .

Theorem 1 shows that there is an essentially unique stable matching in unbalanced mar-
kets. For centralized unbalanced markets, this result implies that which side proposes in DA
would make little difference. For decentralized markets, this implies that stability gives an
almost unique prediction. In Section 2.6, we show that Theorem 1 further implies that there
is limited scope for manipulation when the market is unbalanced. In Appendix C, we sketch

how to extend our results to unbalanced many-to-one markets.

HGiven a sequence of events {£,}, we say that this sequence occurs with high probability (whp) if
lim,, 0o P(&R) = 1.
12For any stable matching y it is well known that Rygn(MOSM) < Rypn (i) < Ryen(WOSM).

10
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Figure 1: Percent of men with multiple stable partners, in random markets with 40 women
and a varying number of men. The main line indicates the average over 10,000 realizations.

The dotted lines indicate the top and bottom 2.5th percentiles.

Figures 1 and 2 illustrate the results and show that the same features hold in small
unbalanced markets. Figure 1 reports the fraction of men who have multiple stable partners
in random markets with 40 women and 20 to 60 men. Figure 2 plots the men’s average rank
of wives under MOSM and WOSM. Observe that, even in such small markets, the large core
of the balanced market (40 men and 40 women) is a knife-edge case, such that the core is
small under both measures of core size for any market that is unbalanced even slightly.

Given that the smallest imbalance leads to a small core, even when preferences are het-
erogenous and uncorrelated, we expect that general matching markets will have a small core.
Real markets are likely to have correlated preferences, but we expect correlation in prefer-
ences to reduce the size of the core. When there are multiple stable matchings there is a
subset of men who all become strictly better off when moving from one stable matching to
another. However, such a joint improvement is unlikely when preferences are correlated. In
Section 4 we use simulations to examine the effect of correlation on the size of the core, and
find that the core tends to shrink as preferences become more correlated. In addition, after

simulating various distributions, we have yet to find a distribution that yields a large core

11



outside of a balanced market. This leads us to believe that any real life matching market

will have an almost unique stable matching.
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Figure 2: Men’s average rank of wives under MOSM and WOSM in random markets with 40

women and varying number of men. The lines indicate the average over 10,000 realizations.

2.4 Characterization of stable outcomes

The following theorem characterizes the stable outcomes of unbalanced markets. Theorem
2 shows that under any stable matching, agents on the short side are matched to one of
their top choices, while agents on the long side either remain unmatched or are assigned to
a partner that is ranked not much better than a random partner. The theorem states the
result for a general imbalanced market, and we give simplified expressions for special cases of

interest in the next subsection. A more detailed version of the theorem is given in Appendix
B.

Theorem 2. Consider a sequence of random matching markets, indexed by n, with n men

and n + k women, for arbitrary k = k(n) > 1. With high probability, the following hold for

12



every stable matching pu:
Ruex(p) < (1+¢)(F) log (£*),

Ruowen (i) 2 ] [L+ (14 2) (%25 log(24)].

For comparison, consider the assignments generated by the men’s random serial dicta-
torship (RSD) mechanism. In RSD, men are ordered at random, and each man chooses
his favorite woman that has yet to be chosen, such that the mechanism completely ig-
nores women’s preferences. The men’s average rank of wives under RSD is approximately
(14 5)("T+k) log (”T”“).13 Thus, under any stable matching, men’s average rank would be
almost the same as under RSD. Women’s average rank under any stable matching is bet-
ter than getting a random husband by a factor of at most only ©(log %).14 Thus, roughly
speaking, in any stable matching, the short side “chooses” while the long side is “chosen.”

Figure 2 illustrates the advantage of the short side. It plots men’s average rank in
markets with 40 women and 20 to 60 men. When men are on the short side (there are fewer
than 40 men), they are matched to one of their top preferences on average. When men
are on the long side, they are either unmatched or rank their spouse barely better than a
random match. Figure 3 includes a plot of men’s average rank under RSD. In Section 4, we
provide simulation results indicating that Theorem 2 gives a good approximation in finite
markets. We further conduct simulations that demonstrate the advantage of the short side

when preferences are correlated.

2.5 Special cases for unbalanced matching markets

To highlight two particular cases of interest, we present the following two immediate corol-
laries. We first focus on markets with the minimal imbalance, where there is only one extra

woIinar.

Corollary 2.2. Consider a sequence of random matching markets with n men and n + 1

women. With high probability, in every stable matching, the men’s average rank of wives is

3Following an analysis very similar to the proof of Lemma B.4(i), we can show that the men’s average

rank under RSD is, with high probability, at least (1—¢) (%) log (£%) and at most (14€) (™E) log (2£%).
YFor any two functions f and g, we write f(n) = ©(g(n)) if there exist constants a < b such that

ag(n) < f(n) < bg(n) for sufficiently large n.

13



no more than 1.01logn, the women’s average rank of husbands is at least and the

_n
1.01logn’
fractions of men and women who have multiple stable partners converge to 0 as n — oo.

The next case of interest is a random matching market with a large imbalance between
the sizes of the two sides of the market. We look at k = An for fixed A, i.e., a matching

market with linearly more women than men.

Corollary 2.3. Let X\ > 0 be any positive constant. Consider a sequence of random matching
markets with |M| = n, [W| = (1 + A)n. Define the constant k = 1.01(1 + X)log(1 + 1/A).
We have that with high probability, in every stable matching, the average rank of wives is
at most k, the average rank of husbands is at least n/(1 + k), and the fractions of men and

women who have multiple stable partners converge to 0 as n — oo.

When there is a substantial imbalance in the market, the allocation is largely driven
by men’s preferences. For example, in a large market with 5% extra women, men will be
matched, on average, to their 4th most preferred woman. The average rank of women under
WOSM is only a factor (1 + k)/2 better than being assigned to a random man. Thus, the

benefit of being on the short side becomes more extreme when there is more imbalance.®

2.6 Implications for strategic behavior

In this section, we consider the implications of our results for strategic agents in matching
markets. A matching mechanism is a function that takes reported preferences of men and
women and produces a matching of men to women. A stable matching mechanism is a
matching mechanism which produces a matching that is stable with respect to reported
preferences. A matching mechanism induces a direct revelation game, in which each agent
reports a preference ranking and receives utility from being assigned to his/her assigned
partner.

A mechanism is said to be strategy-proof for men (women) if it is a dominant strategy for
every man (woman) to report preferences truthfully. The MPDA is strategy-proof for men,

but some women may benefit from misreporting their preferences. Roth (1982) shows that

15 As we would expect, k = () is monotone decreasing in A. At the extreme, we have limy_, o £(\) = 1.01,
such that when there are many women for each man, Rypy < 1.01 (meaning that men typically get their

top choice) and Rwomen > 17/2.01 (meaning that women typically get an almost random match)).

14



no stable matching mechanism is strategy-proof for both sides of the market. Demange et al.
(1987) show that the scope of strategic behavior is limited - in a stable matching mechanism,
a woman can never achieve a man she prefers over her husband in the WOSM. In particular,
a woman cannot manipulate a stable matching mechanism if she has a unique stable partner
(who is her match under both the MOSM and WOSM). In a random unbalanced matching
market, most women will have a unique stable partner and therefore cannot gain from
misreporting their preferences.

Consider the following direct revelation game induced by a stable matching mechanism.
Each man m independently draws utilities over matching with each woman w wu,,(w) ~ F.
Symmetrically, each woman w draws utilities over matching with each man m wu,(m) ~
G. We assume that F, G are continuous probability distributions with finite support [0, @].
Each agent privately learns his/her own preferences, submits a ranking to the matching
mechanism, and receives the utility of begin matched to his/her assigned partner. We say
that an agent reports truthfully if he/she submits a ranking list of spouses in the order of

his/her utility of being matched to them.

Theorem 2.4. Consider a stable matching mechanism, and let € > 0 and k > 0. There
exists ng such that for any unbalanced market with n > ng men and n + k women, it is an

e-Bayes-Nash equilibrium for all agents to report truthfully.

Note that Theorem 2.4 applies to any stable matching mechanism, regardless of the stable
matching it selects. While the theorem is stated for large n, the simulations in Section 4

show that there is little scope for manipulation even in small markets.

Proof. From Theorem 1, we know that the expected fraction of women with multiple stable
partners converges to 0 as n tends to infinity. All women are ex ante symmetric; then since
preferences are drawn independently and uniformly at random, the women are still symmetric
after we reveal the preference list of one woman. Therefore, the interim probability that a
woman has multiple stable partners, conditional on her realized preferences, is equal to the
expected fraction of woman with multiple stable partners, and thus tends to 0 as n tends
to infinity. Choosing ng such that this probability is less than ¢/u guarantees that any
woman can gain at most € by misreporting her true preferences. The argument for men is

identical. O

15



Generally, a woman w can manipulate a stable matching mechanism by reporting the
partner that the mechanism would have assigned her to be unacceptable. This forces the
mechanism to match w to a different stable partner, if one exists, or leaves her unmatched,
if she has a unique stable partner. Our analysis in Appendix B bounds the probability that
another stable partner exists, giving us the result above. We believe that by following the
analysis in Appendix B more delicately, one can produce tighter bounds on the gains from

manipulation and extend the above results to utilities with unbounded support.

3 Proof idea and algorithm

This section presents the intuition for Theorems 1 and 2. We first provide a rough calculation
to illustrate the stark advantage of the short side. Our proof follows a different and more
constructive approach, which uses a new matching algorithm to trace the structure of the

core. We present the main ideas of the proof, as well as the new matching algorithm.

3.1 Intuition for the advantage of the short side

Rough intuition for the large advantage of the short side can be gained through the Rural
Hospital Theorem (Roth, 1986). Suppose there are n+1 women. By the Rural Hospital The-
orem, the same woman w is unmatched in all stable matchings; thus, every stable matching
must also induce a stable matching for the balanced market (after dropping the unmatched
woman w). A stable matching of the balanced market without @ remains stable after we
add w if no man prefers w over his current match. Therefore, the stable matchings in the
unbalanced market are the stable matchings for the balanced market in which men’s average

rank is low enough such that no man prefers w over his match.

3.2 Sketch of the proof

We prove our results by calculating both the MOSM and WOSM through a series of pro-
posals by men, through the use of Algorithm 2. Since men receive a low average rank, the
algorithm runs quickly and provides us with a tractable stochastic process, which we analyze

to determine the average rank of men and women.
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We first calculate the MOSM using MPDA. Algorithm 2 first calculates the MOSM and
proceeds to determine for every woman whether she has a more preferred stable husband
until it finds the WOSM. The algorithm works as follows: consider a woman w who is
matched to man m in a stable matching. A stable matching that gives w a more preferred
partner must give m a less preferred partner. In order to check whether w has a better stable
husband than m, the algorithm triggers a rejection chain by rejecting m: m proposes to his
most preferred woman to whom he has not already proposed, possibly displacing another
man who proposes in a similar way. This chain, which we call a phase, can end in one of
two ways: (a) an improvement phase ends with w accepting a proposal from a man she
prefers over m, and (b) a terminal phase ends with a proposal to an unmatched woman.
An improvement phase finds a new stable matching that matches w to a stable partner she
prefers over m. A terminal phase implies that m is w’s most preferred stable partner. The
algorithm terminates when the rejection chain from each woman is a terminal phase.

Analyzing the run of the algorithm for markets of n men and (1+X)n women is simpler. In
this case, an arbitrary phase beginning with any w is likely to be terminal: the probability
that a man in the chain will propose to an unmatched woman is roughly 1%\, while the
probability that he will propose to w is of order % Thus, improvement phases are rare, and
most women will be matched to the same man under the MOSM and WOSM.

The analysis for markets of n men and n + 1 women is more involved and requires us
to use links between different rejection chains. Denote by S the set of women for whom
the algorithm has already found their best stable partners. After finding the MOSM, we
can initialize S to contain all unmatched women (by the Rural Hospital Theorem, they are
unmatched in all stable matchings). If a chain includes a sub-chain that begins and ends with
the same woman w’, we call that sub-chain an Internal Improvement Cycle (IIC). An IIC is
equivalent to a separate improvement phase for w’, which can be cut out from the original
chain. After removing all IICs, the chain of every terminal phase includes each woman only
once. Every woman in a terminal phase can be added to S, as divorcing their husbands will
result in a sub-chain that is also terminal. When a new chain reaches a woman w’ € S, the
phase must also be terminal, since reaching w’ € S implies that the new chain merges with
a previous terminal chain. The set S thus allows us to track rejection chains, and how they
merge together.

Consider starting the first phase in the algorithm, which starts with the woman w who
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received the most proposals in the MPDA algorithm. The probability that a proposal will be
to w is approximately the same as the probability it will be to the unmatched woman; both
are ~ % However, the phase is likely to be terminal because the unmatched woman accepts
all proposals, while w previously received at least log(n) proposals and will only accept a
man whom she prefers to all of them. The total length of the chain is likely to be of order
©(n), and after we exclude IICs, a chain of length ~ \/n is left. Therefore, by the end of
the first phase, S is likely to be of size ~ y/n. Thus, S grows quickly, and once S is large,
the algorithm will have almost reached the WOSM. Almost every subsequent phase will be
a terminal phase, and almost all women are already matched to their most preferred stable
husband.

To calculate the average rank, we calculate the number of proposals made by men under
MPDA, using methods similar to Pittel (1989a). We use a variant of MPDA in which one
man proposes at a time, eventually also producing the MOSM, and show that the number
of proposals by men is roughly equal to the solution of the coupon collector’s problem. The
average rank of wives is calculated from the number of proposals each woman receives.

In Appendix C, we discuss how to extend our proof to many-to-one matching markets. A
many-to-one market can be decomposed to a one-to-one market where a school is represented
by several seats. By running Algorithm 2 on the decomposed market, we can find the two
extreme stable matchings. When the capacity of each school is small relative to the size of
the market, rejection chains behave similarly to how they behave in the one-to-one case, and
the same proof approach can be used. We sketch the required alterations to our proof in

Appendix C.

3.3 Matching algorithm

This section presents Algorithm 2, which calculates the WOSM from the MOSM through a
series of proposals by men. This algorithm can be used to quickly calculate the WOSM when
women are on the long side. All algorithms in this section assume that there are strictly
more women than men (that is, |[W| > |M|). For further details, refer to Appendix A.

For completeness, we first present the MPDA algorithm that outputs the MOSM.

Algorithm 1. Men-proposing deferred acceptance (MPDA)
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1. Fvery unmatched man proposes to his most preferred woman who has not already re-

jected him. If no new proposal is made, output the current matching.

2. If a women has multiple proposals, she tentatively keeps her most preferred man and

rejects the rest. Go to step 1.

We now present Algorithm 2, which calculates the WOSM. It tracks rejection chains by
using S, the set of women whose most preferred stable match has already been found. In each
phase, the rejection chain is an ordered set V' = (vq,vg,..,v;). If a proposal is accepted by a
woman in V| an improvement phase or IIC is implemented. When a proposal is accepted by
a woman in S, the phase is terminal, and all the women in V' are added to S. The algorithm
keeps track of v(w), the current number of proposals received by women w, and R(m), the
set of women who have rejected m so far. u records the current proposals, and i records the
current candidate for the women-optimal stable matching. We use the notation x <+ y for

the operation of copying the value of variable y to variable x.

Algorithm 2. MOSM to WOSM

e Input: A matching market with n men and n + k women.

e Initialization: Run the men-proposing deferred acceptance to get the men-optimal sta-
ble matching p, and set R(m) and v(w) accordingly. Set S to be the set of women
unmatched under u, barW. Index all women in W according to some order. Set w to
be the woman in W who has received the most proposals so far. Set t to be the total

number of proposals made so far.
e New phase:

1. Set ji < p. Set V = (vy) = (w).
2. Divorce: Set m < p(w) and have W reject m (add w to R(m)).

3. Proposal: Man m proposes to w, his most preferred woman has not yet rejected

him.*® Increment v(w) and proposal number t by one each.

4. w’s Decision:

16Gee footnote 26.
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(a)

(b)

(c)

(d)

of our results.

Ifw ¢V prefers p(w) tom, orif w € V and w prefers fi(w) to m, then reject
m (add w to R(m)) and return to step 3.

If wé¢ SUV and w prefers m to p(w), then w rejects her current partner.
Set m' « p(w), p(w) < m. Add w to R(m'), append w to the end of V. Set

m < m' and return to step 3.

New stable matching: Ifw € V' and w prefers m to fi(w), then we have found
a stable matching. If w = w = vy, set p(w) <— m. Select w € W\S and start
a new phase from step 1.

If w = v, for £ > 1, record her current husband as m' < p(w). Call the set
of all proposals made since and including the proposal of m’ to w an internal
improvement cycle (IIC). Update fi for the women in the loop by setting
f(v;) <= p(vj) forj =L0+1,...,J; also set fi(w) <= m and p(w) <— m. Remove
Ve, ..,V from V', set the proposer m <— m’, decrement v(w), decrement t, and

return to step 3, in which m will propose to w.

End of terminal phase: If w € S and w prefers m to u(w), then restore
i< it and add all the women in'V to S. If S = W, terminate and output [i.
Otherwise, set W to be the woman in W\S with the smallest index and begin

a new phase by returning to 1.

In Appendix A, we prove that Algorithm 2 outputs the women-optimal stable matching
(see Proposition A.2). We can calculate the difference between the sum of men’s rank of
wives under WOSM and MOSM from the algorithm. Since all terminal phases are rolled
back, this difference equals the number of proposals in improvement phases and I1ICs during

Algorithm 2.

4 Computational experiments

This section presents simulation results that complement our theoretical results. We first
present simulation results for small markets and test the asymptotic fit of our theoretical

findings. We then investigate the effects of correlation in preferences and test the robustness

Last, we present simulation results for unbalanced many-to-one matching
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4.1 Numerical results for our model

To complement our asymptotic theoretical results we conduct computational experiments
for varying market sizes. The simulation results show that our findings tend to hold for
small markets as well as large markets. Furthermore, we find that the asymptotic results
give a good approximation for small markets.

The first computational experiment illustrates the sharp effect of imbalance in small
markets. We consider markets with 40 women and a varying number of men, from 20 to
60 men. For each market size we simulate 10,000 realizations by drawing uniformly random
complete preferences independently for each agent. For each realization we compute the
MOSM and WOSM. Figure 1 (Section 2) shows the fraction of men who have multiple
stable partners (averaged across realizations with 95% confidence interval); it shows the
fraction is small in all unbalanced markets.

Figure 3 shows men’s average rank of wives!” under the MOSM and WOSM (averaged
across realizations). The results for the balanced market (40 men and 40 women) replicate
the previous analysis by Pittel (1989a) and Roth and Peranson (1999), but the figure shows
that this balanced market is not typical. In any unbalanced market, mens’ average rank
under MOSM and WOSM is similar. When there are fewer men than women (that is, less
than 40 men) men are matched to one of their top choices under any stable matching. For
comparison we also plot mens’ average rank under the Random Serial Dictatorship (RSD)
mechanism,'® and find that in an unbalanced market with fewer men, RSD gives almost the
same average rank for men as any stable matching. When there are more men than women
in the market, the average rank of matched men is not much better than that resulting from
a random assignment (note that assigning a man to a random woman leads to an average
rank of 20.5).

Tables 1 and 2 present simulation results for markets with varying size and imbalance.
Table 1 reports men’s average rank of wives under the MOSM and WOSM, showing the sharp
effect of imbalance across different market sizes. Under both WOSM and MOSM the men’s
average rank of wives is high when there are strictly fewer women (columns —10, —5, —1)

and low when there strictly fewer men (columns 1,2,3,5,10). In addition, Table 1 reports

I"Women’s average rank of husbands is symmetrically given by switching the number of men and women.
18n the RSD mechanism men are ordered at random, and each man chooses his favorite woman that has

yet to be chosen (thus RSD ignores womens’ preferences).
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Figure 3: Men’s average rank of wives under MOSM and WOSM in random markets with
40 women and a varying number of men. The main lines indicate the average over matched
mens’ average rank of wives in all 10,000 realizations. The dotted lines indicate the top and
bottom 2.5th percentile of the 10,000 realizations. The labeled RSD gives the men’s average

rank under the Random Serial Dictatorship mechanism.

theoretical estimates of the average rank based on the asymptotic results in section 2. The
estimate from our theorem is a tight asymptotic bound for men’s average rank of wives when
men are on the short side, while it is only a lower bound when men are the long side (see
Appendix D for a details). Observe that when men are on the short side of the market (the
right side of the table) our estimate gives a surprisingly good approximation for both the
MOSM and WOSM. When men are the long side (the left side of the table) our estimate is
only about 10 — 25% below the true values. Notice also that the values for the MOSM and
the WOSM are quite close to each other in all markets. Table 2 presents the percentage of
men who have multiple stable partners. This percentage is high in balanced markets but is
low for all unbalanced markets with even the slightest imbalance. We infer that imbalance
leads to a small core.

Using the matching algorithm from Section 3 we were able to run simulations of rather

large unbalanced matching markets. Table 3 provides numerical results of 1,000 draws of
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(Wl =M

-10 -5 -1 0 1 2 3 5 10

M|
100 MOSM 295 272 203 5.0 41 3.7 34 3.0 26
WOSM 30.1 282 236 203 49 41 36 32 26
EST 253 229 175 47 4.0 36 32 26
200 MOSM 53.6 48.1  35.3 5.7 48 43 41 3.7 3.1
WOSM 54.7 499 410 355 5.7 47 44 38 32
EST 457  40.8  31.5 5.3 4.7 43 3.8 3.2
500 MOSM 115.8 102.6  75.9 6.7 57 53 50 45 3.9
WOSM 118.0 106.3 86.6 76.2 6.7 57 53 4.7 4.0
EST 98.2 876 69.0 6.2 55 52 47 40
1000 MOSM 203.8 1814 136.2 74 64 6.0 57 52 4.6
WOSM 207.5 1876 155.1 1373 74 6.5 6.0 54 4.7
EST 175.2 1573 126.2 6.9 6.2 58 53 4.7
92000 MOSM 364.5 324.2 249.6 81 7.1 6.7 63 59 5.3
WOSM 370.8 3344 280.7 2491 81 71 6.6 6.1 54
EST 314.6  284.7 2323 76 69 6.5 6.0 5.3
5000 MOSM 793.1 713.5 560.0 91 81 76 73 68 6.2

WOSM 804.7 7328 6225 560.2 9.1 81 76 7.0 6.3
EST 690.5 631.1 525.2 85 78 74 69 6.2

Table 1: Men’s average rank of wives in MOSM and WOSM for different market sizes. The
numbers for each market size are averages over 1,000 realizations. A man’s most preferred
wife has rank 1, and larger rank indicates a less preferred wife. EST is the theoretical
estimate of the men’s average rank based on Theorem 2 (see Appendix D for details).

matching markets of different sizes.

4.2 Size of the core under correlated preferences

This section presents simulation results to examine the effects of correlation in preferences
on the size of the core. We simulate a large class of distributions and find a large core
only in balanced markets with small correlation in preferences. In general our simulations
suggest that the core becomes smaller as preferences become more correlated, although when
the fraction of agents with multiple stable partners is small, this relationship may not be
monotone.

We present results on preferences generated from the following random utility model,
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WM 49 5 1 0 1 2 3 5 10
m‘\

100 21 41 151 753 154 95 6.5 45 23
200 22 38 146 836 146 80 6.2 41 21
500 20 38 126 910 131 71 55 3.6 20
1000 1.9 35 123 945 122 72 51 34 20
2000 1.8 3.1 111 96.7 11.1 6.1 48 29 1.7
5000 1.5 27 101 984 102 6.0 43 28 1.5

Table 2: Percentage of men who have multiple stable partners for different market sizes. The

numbers for each market size are averages over 1,000 realizations.

W[ — M| =+1 IW| — M| =+10
M| Men’s avg rank under % Men w. mul. Men’s avg rank under % Men w. mul.
MOSM WOSM  stable partners MOSM WOSM  stable partners
10 1.98 (0.45)  2.29 (0.60) 13.84 (18.82) 1.31 (0.20)  1.33 (0.21) 1.19 (5.13)
100  4.09 (0.72)  4.89 (1.08) 15.16 (12.98)  2.55 (0.26)  2.61 (0.27) 2.30 (3.15)
1,000  6.47 (0.79)  7.44 (1.28) 11.90 (10.17)  4.59 (0.30)  4.69 (0.31) 1.95 (2.03)
10,000  8.80 (0.79)  9.80 (1.30) 9.45 ( 8.30) 6.88(0.30)  6.98 (0.32) 1.46 (1.47)
100,000 11.11 (0.83) 12.09 (1.31) 7.66 ( 6.60) 9.16 (0.31)  9.26 (0.32) 1.08 (1.02)
1,000,000 13.40 (0.80) 14.41 (1.27) 6.62 ( 6.04) 11.46 (0.30) 11.56 (0.32) 0.85 (0.80)

Table 3: Men’s average rank in different market sizes with a small imbalance. The numbers
for each market size are averages over 1,000 realizations. Standard deviation are given in

parentheses.

adapted from Hitsch et al. (2010). The utility of agent i for matching with agent j is given
by

ui(j) = Bai — v (o — 27 14)* =7 (laf —aP14)* + e, (1)

where ¢;; is an idiosyncratic term that is i.i.d. with a logistic distribution, agent i has

A 2P and |a —b|y = max(a —b,0). 7' is the vertical quality of agent i. =P

characteristics x
is the location of agent i and v*,v~ determines agent’s preferences over distance to their

spouse, where distances from above are allowed to be different from distance below.
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We draw characteristics z, 2P ~ U[0, 1] for each agent i.i.d. as well as €;; to gener-

ate utilities u;(-) which induce i’s complete preference list over spouses. We use the same
coefficients 3,71, v~ for both men and women.

When § = 4" = 4~ = 0 this model reduces to our i.i.d. preferences model. As 3 increases
(keeping v* and v~ fixed), preferences of agents on the same side become more correlated,
and as J — oo, all men will have the same preferences over women (and symmetrically, all
women will have the same preferences over men). The coefficients 4+, v~ generate correlation
between u,,(w) and u,(m). When 4* > 0,4~ > 0 both m and w will get higher utility if
|22 — xD]2 is low, generating positive cross sides correlation between wu,,(w) and w,,(m).*
When v© > 0,7~ < 0 the term |22 — 22|? will appear with opposite signs in the utility of
the matched couple, generating negative cross side correlation between u,,(w) and u,,(m).

Figure 4 presents the size of the core for different levels of imbalance and a range of
coefficient values. For each market we simulate 2,000 realizations and report the average
percent of agents with multiple stable partners.2’ We consider markets with 40 women and
either 40, 41, 45 or 60 men, 8 € [0,20] and v € [—20, 20] and allow both positive cross sides
correlation by taking v* = v~ and negative cross sides correlation by taking y© = —v~.

The plot shows that correlation tends to reduce the size of the core.?! The only markets
that have a large core are balanced markets with low levels of correlation in preferences.

We interpret these results as complementary to our theoretical results, giving additional

suggestive evidence that general preference distributions are likely to generate a small core.

4.3 Robustness of the short side advantage

We conduct simulations to test the robustness of the advantage of the short side of the
market. Theorem 2 shows that if there are strictly less men than women, and preferences

are complete and uncorrelated, men will have a large advantage: men will match to one

198ee Yariv and Lee (2014) for analysis of fully aligned random preferences.
20We also measured the size of the core using the difference/ratio between the men’s rank of wives under

MOSM and under WOSM. These measures produce very similar results and are therefore omitted.
21Tt is possible to construct specific examples such that an increase in correlation increases the size of the

core. For example, if there are 41 men and 40 women with i.i.d. preferences we can create a balanced market
(and hence a large core) by making all women rank the same man at the bottom of their list. However, in
all the simulations we ran, we did not find a natural setting, in which more correlation significantly increases

the size of the core.

25



60

40

20

10 -20
20 20

o]
[¢]
(o]

(a) Positive, 40 men

20 20

(c) Positive, 41 men

20 20

(e) Positive, 45 men

60
40

20

oo
- I
|

(o} -20
20 20

(g) Positive, 60 men

60

40

20

10 \/,,/’20
o

20 20

(b) Negative, 40 men

oo

<

10 -20
o

20 20

(d) Negative, 41 men

60

40

(f) Negative, 45 men

oo

60
40
20
10 -20
o

20 20

(h) Negative, 60 men

Figure 4: The percent of men with multiple stable partners for correlated preferences, generated
as per Eq. (1). In each plot the z-axis (vertical and color) gives the percentage of agents with
multiple stable partners, the x-axis is the value of the coefficient v (ranging from -20 to 20), and
the y-axis is the value of coefficient § (ranging from 0 to 20). The number of men is 40, 41, 45 or
60, as labeled for each plot. In the plots labeled ‘Positive’ we use v~ = 4", and in the plots labeled

‘Negative’ we use v~ = —y'. In all markets there are 40 women.
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of their top choices, while women will match to a husband that is not much better than
a random man. But when preferences are correlated, comparing the number of men and
women may not be meaningful. For example, if all men have the same preferences, the top
ranked woman must be matched to her top choice, regardless of the number of men and
women. We therefore used simulations to investigate the sensitivity of the advantage of the
short side to correlation in preferences.

We generate different correlation structures using the utility model from Section 4.2 and
examine how the men’s average rank varies with the imbalance. In every panel we give the
men’s average rank under different values of 8,4%, v~ for markets with 40 women and from
20 to 60 men. Each panel contains as a reference point the graph for 8 = 4T =~ =0
which replicates the strong advantage to the short side in Figure 3. We only plot the average
rank under the MOSM, as the graph for the average rank under WOSM is almost identical
(it differs only for balanced markets).

Panel 5a shows the results when taking v© = 4~ = f, and each line is labeled by
the common value for all coefficients. A higher value of v*,~~, 8 makes preferences more
correlated. The advantage of the short side gradually decreases as correlation increases,
but is still evident even when there is a sizeable correlation. Panel 5b shows results with
vt =+~ = 0 and different values of 3 as indicated. A higher value of 3 makes preferences
of agents on the same side more correlated. Similarly, we find that when  is very large
all men have almost the same preferences over women, and therefore men’s average rank is
(min(|M], [W]) +1)/2

Panel 5¢ shows results for varying values of v© = —v~, holding 8 = 0. If v* -4~ < 0
agents m, w have opposing preferences over |x2 — zP|? as one prefers a larger distance and
one prefers a smaller distance. This negative cross-side correlation increases men’s average
rank both when there are less than 40 men and when there are more than 40 men. Panel
5d shows results for varying values of ¥+ = 47, holding = 0. If v+ = 4~ both agents
prefer a close partner, generating alignment between the preferences of men and women.
As preferences become more correlated the men’s average rank increases in markets with
less than 40 men, but it decreases in markets with more than 40 men since matched men
are likely to be favorably ranked by their spouses, and therefore likely to rank their spouse
favorably.

Put together, we find that for low levels of correlation, men tend to receive a lower

27



average rank when there are fewer men. This advantage is continuously attenuated as agents’

preferences become more correlated.
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Figure 5: Men’s average rank of wives under MOSM for correlated preferences, generated as
per Eq. (1), with 40 women and varying number of men. Panel 5a plots the average rank when
v~ =~T =p. Different lines correspond to different values of 3 ranging from 0 to 100. Similarly,
panel 5b plots the average rank when v~ =~"=0 and 8 ranging from 0 to 100. Panel 5c plots the
average rank when S=0 and v~ = —v7 for 4" ranging from 0 to 100. Panel 5d plots the average
rank when =0 and v~ =~ for v ranging from 0 to 1000.

We further simulate markets in which agents find some potential matches to be unac-

ceptable. Utilities (and thus preferences) for each man m are drawn from w,,(w) ~ UJ0, 1]
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Figure 6: Men’s average rank of wives for various levels of imbalance and selectivity in random
markets with 40 women and different number of men. Each of the 16 lines indicates a different level
of selectivity for men and women, marked by color and shape. The shape indicates the percent of
men a woman finds unacceptable (on average), and the color indicates the percent of women that

a man finds unacceptable (on average).

independently, setting w to be unacceptable if u,,(w) < @™. Preferences for women were
drawn analogously with a threshold @". We considered (a™,a") € {0,.3,.5,.7}2, to allow
either 0%, 30%, 50% or 70% of potential acceptable spouses. Figure 6 plots the men’s av-
erage rank under the MOSM for markets with 40 women and from 20 to 60 men for each
(@M, u").22 The graph does not report the percent of matched agents, but we find this to
be always more than 80% of min(|M]|, [W)|). The selectivity level of men %" is indicated by

22We do not plot the men’s average rank under WOSM as it is almost identical for all unbalanced markets.
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the color of the line and the selectivity level of women @" is indicated by the shape of the
markers. Notice that only the selectivity level of agents on the long side matters, and that
the benefit of the short side is still apparent and is continuously attenuated as the long side

becomes more selective.

4.4 Many-to-one markets

We run computational experiments to investigate the effect of imbalance in many-to-one
matching markets, in which each college has relatively few seats. In our simulations, each
student has an independent uniformly random complete preference list over colleges, and each
college has responsive preferences (Roth (1985)) with an independent uniformly random
complete preference list over individual students. We find that unbalanced many to one
markets are similar to unbalanced one to one markets, and investigate how college capacity
influences the average ranks on the two sides of the market. See also Section C for a discussion
about extending our theoretical results to such markets.

Denote by S the set of students, by C the set of colleges, and by ¢ the number of seats
in each college. A market is unbalanced if the number of students differs from the total
number of seats, i.e., |S| # |C| x gq. For each market size we drew 1,000 realizations. For
each realization we compute the extreme stable matchings, i.e., the student optimal stable
matching (SOSM) and the college optimal stable matching (COSM). The students’ average
rank of their colleges (under both SOSM and COSM) is defined as before. The colleges’
average rank of students is computed by averaging the rank of student in all filled seats. We
report the average of each quantity as well as the percent of students with multiple stable
matches.

Tables 4, 5 and 6 report simulation results for markets with an overall number of seats
of ¢ x |C| = 100, 200, 500, 1000, with a varying number of seats per college (¢ = 2,5) and a
varying number of students |S| (varying from ¢|C| — 10 to ¢|C| + 10). Again, we find that
there is a big difference between the SOSM and COSM when the market is balanced, but
in unbalanced markets the SOSM and COSM give almost the same average rank to both
colleges and students. The percent of students with multiple stable matches is high when
the market is balanced, but it is low under imbalance.

If we increase ¢ while holding ¢ x |C| and |S| fixed, we find lower multiplicity, and higher
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college’s average rank especially when colleges are on the short side. Note that an increase
in ¢ effectively makes preferences (over seats) more correlated, and hence it is not surprising
that our findings here resemble the findings reported in Sections 4.2 and 4.3. The average

rank of students is not directly comparable, since the length of the students preference list

changes.
S| - 1€l q o . .

ICl xq
100 (50%2) SOSM 1.76 2.05 241 267 3.08 1041 11.98 14.36 16.30

COSM 1.79 213 2.64 3.08 10.54 12.01 1299 14.89 16.61

SOSM 212 244 284 3.06 356 17.79 2044 24.68 28.12

200 (100x2) COSM 2.16 2.53 3.08 349 179 20.61 22.27 25.62 28.71

SOSM 260 295 336 3.64 4.12 38.02 43.33 51.58 59.11

500 (250x2) COSM 2.65 3.06 3.62 4.10 38.2 4348 46.95 53.42 60.21

SOSM 298 334 376 399 454 69.09 78.01 91.75 103.75

1000 (500x2)  cogM 303 344 402 449 6852 7815 838 9464 105.21

SOSM 1.30 146 1.63 1.75 190 446 5.09 6.02 6.82

100 (20%5) " hogM 1.32 149 173 188 450 512 549 624  6.94

SOSM 1.50 166 1.84 196 214 747 851 10.19 11.60

200 (40X5)GosM 151 170 195 212 7.56 855 927 1056 1183

SOSM 1.76 193 1.12 227 245 15.65 17.75 20.98  23.86

500 (100x5) OGN 178 1.98 224 244 1565 17.84 1908 2174 2434

SOSM 1.95 212 233 246 2.67 27.67 31.42 36.79 41.61

1000 (200x5) COSM 1.97 218 246 265 2799 3143 33.78 38.03 4231

Table 4: Students’ average rank of colleges in the SOSM and COSM, for different markets. A
student’s most preferred college has rank 1, and larger rank indicates a less preferred college.

5 Discussion

Our results show that matching markets are extremely competitive. In an unbalanced match-
ing market with preferences drawn uniformly at random, the short side essentially “chooses”

while the long side is “chosen”. The effect of competition is sharp; the addition of even a

31



S|—1C| xq

C] x -10 -5 -2 -1 0 1 2 ) 10
q

SOSM 334 315 289 271 245 712 595 469 3.88

100(50x2)  cooM 329 306 268 239 7.2 601 542 450  3.79

SOSM 61.3 56.8 509 483 428 847 T7.16 5.67 4.77

200 (100%2) " cosM 604 550 474 429 85 716 650 543  4.65

SOSM 134.7 123.1 1103 103.3 924 10.00 863 7.03 597

00 (250%2)  ogM 1326 1191 1029 927 101 861 7.89 6.76  5.85

SOSM 242.3 2204 199.1 188.3 168.1 11.07 9.64 8.03 7.01

1000 (500x2) cogy 9387 213.9 1870 1694 112 9.64 892 T7T 6T

SOSM 38.1 369 348 334 315 1336 11.29 897 7.46

W0 (205) cosm 378 363 332 312 134 1134 1032 860 7.3

SOSM 72.2 681 633 605 564 16.14 13.76 11.03 9.27

200 (40x5) COSM 714 665 60.2 564 16.1 13.80 1249 10.57 9.06

SOSM 162.6 152.1 140.8 132.7 123.7 19.38 16.77 13.85 11.87

500 (100x5) COSM 160.7 1484 1339 123.7 195 16.73 1548 13.32 11.61

SOSM 300.0 278.6 256.8 244.5 229.3 22.11 19.09 16.04 13.93

1000 (200x5) COSM 296.7 2723 2447 2284 219 19.17 17.66 15.48 13.68

Table 5: Colleges’ average rank of students in the SOSM and COSM, for different markets.
A college’s most preferred student has rank 1, and larger rank indicates a less preferred
student.

single extra man to a balanced market tips the market in favor of women. Furthermore, the
core is small. Our results apply to actual mechanisms that are used in practice to implement
stable outcomes in numerous centralized matching markets.

Competition and its consequences have been at the heart of economic theory since Edge-
worth (1881), and a sharp effect of competition has been demonstrated in Bertrand models

23 We find that competition has a stark effect in

and homogeneous buyer-seller markets.
matching markets as well, despite the heterogeneity of preferences and the lack of monetary
transfers. In fact, we find that this is true in the extreme case of fully heterogeneous pref-
erences. To investigate the robustness of our findings, we examine numerous simulations of

many markets. We find that our results on the advantage of the short side also hold in small

23See the famous example left-glove right-glove by Shapley and Shubik (1969).
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Clxa —IClxq 9 5 2 -1 0 1 2 5 10

100 (50x2) 1.8 345 781 1243 70.66 14.14 8.42 3.93 2.07
200 (100%2) 1.84 335 734 114 79.84 14.09 858 3.97 225
500 (250x2) 1.69 3.39 6.89 10.45 89.04 12.75 7.93 3.66 2

1000 (500x2) 1.58 3.03 6.2 1024 93.26 11.75 7.03 3.16 1.96
100 (20x5) 1.19 195 497 6.8 5754 1383 791 392 1.75
200 (40x5) 128 26 519 712 7141 13.13 85 3.88 214
500 (100x5) 1.21 256 5.02 684 84.06 1248 7.22 3.7 2.1
1000 (200x5) 1.14 233 4.82 6.67 90.35 12.04 7v.12 34 1.79

Table 6: Percentage of students who have multiple stable matches.

markets and are robust to a small amount of correlation in preferences. Importantly, we find
the core is small in all our simulated markets (except the balanced random market), which
vary in terms of list length, market size, and degree of correlation.?*

Under more general preference distributions that allow for correlations, identifying the
“short side” may require knowing more than just the number of men and women in the
market. As an example, consider a tiered market with 40 women in two tiers and 30 men; half
of the women are “top,” while the other half are “middle.” Preferences are drawn uniformly
at random, except that every man prefers any top woman over any middle woman. It can
be shown that every stable matching in this market can be found by first selecting a stable
matching in the market that comprises the 30 men and the 20 top women, and then finding
a stable matching in the market with the remaining 10 unmatched men and the 20 middle
women. Our findings imply that the 20 top women will get to “choose” men, and the men
are either chosen by a top woman or get to choose a middle woman. Our results can be
extended by the argument above to characterize the stable matching of any (multileveled)

tiered market. For any tiered market with unbalanced tiers, the core will be small, suggesting

24Previous papers showing a small core also implicitly rely on competition, albeit under “stronger” as-
sumptions that roughly correspond to highly unbalanced markets in our model. While Kojima and Pathak
(2009) and Immorlica and Mahdian (2005) analyze a balanced matching market, they essentially create a
highly unbalanced market with women on the long side by assuming that the men can rank only a small

number of women.
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again that general matching markets are likely to have a small core.

Various markets such as residency matching and college admissions can be modeled as
many-to-one matching markets. In Appendix C, we discuss how to extend our analysis to
this setting, assuming that colleges have responsive preferences and that each college is small
relative to the size of the market. We argue that the sharp effect of competition also holds
in these markets: whenever there is even a slight difference between the number of seats and
the number of students in the market, the core is small, and the short side will “choose”.

Our results have implications for welfare in matching markets. When the imbalance is
small, say n men and n + 1 women, most agents are matched to partners they rank in their
top fractiles (note that women are matched to a man at their 1 — 1/logn-th fractile on
average). However, this interpretation is valid only asymptotically; for almost any realistic
market size, one should view the average rank of ﬁ as much worse than an average rank of
logn. When there is a large imbalance, say n men and (1 + A\)n women, women will not, on
average, match to their top percentile even asymptotically. This paper is a first step in the
analysis of welfare in matching markets; for additional insights on this topic, see subsequent

work by Yariv and Lee (2014) and Che and Tercieux (2014), who build on our results.

References

A. Abdulkadiroglu and T. Sonmez. Random serial dictatorship and the core from random

endowments in house allocation problems. Econometrica, 66(3):689-701, 1998.

A. Abdulkadiroglu, P.A. Pathak, and A.E. Roth. The new york city high school match.
American Economic Review, pages 364-367, 2005.

A. Abdulkadiroglu, P.A. Pathak, A.E. Roth, and T. Sonnmez. Changing the boston school
choice mechanism. Working paper, 2006.

Ran Abramitzky, Adeline Delavande, and Luis Vasconcelos. Marrying up: the role of sex

ratio in assortative matching. Working paper, 2009.

E. D. Azevedo and J. D. Leshno. A supply and demand framework for two-sided matching
markets. Working paper, 2012.

34



A. Banerjee, E. Duflo, M. Ghatak, and J. Lafortune. Marry for what: caste and mate
selection in modern india. American Economic Journal: Microeconomics, 5(2):33-72,
2013.

G.S. Becker. A theory of marriage: Part i. Journal of Political Economy, pages 813-846,
1973.

Yeon-Koo Che and Olivier Tercieux. Efficiency and stability in large matching markets.

Working paper, 2014.
P. Coles and R. Shorrer. Optimal truncation in matching markets. Unpublished, 2012.

V.P. Crawford. Comparative statics in matching markets. Journal of Economic Theory,

54(1):389-400, 1991.

G. Demange, D. Gale, and M. Sotomayor. A further note on the stable matching problem.
Discrete Applied Mathematics, 16(3):217-222, 1987.

L.E. Dubins and D.A. Freedman. Machiavelli and the gale-shapley algorithm. American
Mathematical Monthly, pages 485494, 1981.

R. Durrett. Probability: theory and examples. Cambridge University Press, 2010.

F.Y. Edgeworth. Mathematical psychics: An essay on the application of mathematics to the

moral sciences. C. Keagann Paul, 1881.

D. Gale and L.L. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9-15, 1962.

G.J. Hitsch, A. Hortagsu, and D. Ariely. Matching and sorting in online dating. The
American Economic Review, pages 130-163, 2010.

R. Holzman and D. Samet. Matching of like rank and the size of the core in the marriage

problem. Unpublished, 2013.

N. Immorlica and M. Mahdian. Marriage, honesty, and stability. In Proceedings of the
Sizteenth Annual ACM-SIAM Symposium on Discrete algorithms, pages 53-62, 2005.

35



D. E. Knuth, R. Motwani, and B. Pittel. Stable husbands. Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, 1:1-14, 1990.

D.E. Knuth. Marriages Stables et leurs relations avec d’autres problemes combinatoires. Les

Presses de I'Universite de Montreal, 1976.

F. Kojima and P. A. Pathak. Incentives and stability in large two-sided matching markets.
American Economic Review, 99:608-627, 2009.

S. Lee. Incentive compatibility of large centralized matching markets. Working paper, 2011.

D.G. McVitie and L.B. Wilson. The stable marriage problem. Communications of the ACM,
14(7):486-490, 1971.

P.A. Pathak and T. Sonmez. Leveling the playing field: Sincere and sophisticated players in
the boston mechanism. The American Economic Review, 98(4):1636-1652, 2008.

B. Pittel. The average number of stable matchings. SIAM Journal on Discrete Mathematics,
2(4):530-549, 1989a.

B. Pittel. On likely solutions of a stable matching problem. In Proceedings of the 3rd ACM
Symposium on Discrete Algorithms, pages 10-15, 1989b.

V. Rao. The rising price of husbands: A hedonic analysis of dowry increases in rural India.

Journal of Political Economy, 101:666-677, 1993.

A. E. Roth. The economics of matching: stability and incentives. Mathematics of Operations

Research, 7:617-628, 1982.

A. E. Roth and E. Peranson. The redesign of the matching market for American physicians:
Some engineering aspects of economic design. American Economic Review, 89:748-780,

1999.

A.E. Roth. The college admissions problem is not equivalent to the marriage problem.

Journal of Economic Theory, 36(2):277-288, 1985.

A.E. Roth. On the allocation of residents to rural hospitals: a general property of two-sided
matching markets. Fconometrica, pages 425-427, 1986.

36



A.E. Roth. The Economist as Engineer: Game Theory, Experimentation, and Computation

as Tools for Design Economics. Econometrica, 70:1341==1378, 2002.

A.E. Roth and M. Sotomayor. The college admissions problem revisited. Econometrica, 57

(3):559-570, 1989.

M. Schwarz and M.B. Yenmez. Median stable matching for markets with wages. Journal of

Economic Theory, 146(2):619-637, 2011.

L.S. Shapley and M. Shubik. Pure competition, coalitional power, and fair division. Inter-

national Economic Review, 10(3):337-362, 19609.

L.S. Shapley and M. Shubik. The assignment game i: The core. International Journal of
Game Theory, 1(1):111-130, 1971.

L. Yariv and S. Lee. On the Efficiency of Stable Matchings in Large Markets . Working
paper, 2014.

A Matching algorithm

The goal of this section is to present Algorithm 2 which is the basis of our analysis. This
algorithm allows us to calculate the WOSM by a process of successive proposals by men. It
first finds the men optimal stable matching using the men-proposing DA algorithm (Algo-
rithm 1 or MPDA), and then progresses to the women optimal stable matching through a
series of divorces of matched women followed by men proposals. At the end of this section
we show how the run of the algorithm on a random matching market is equivalent to a ran-
domized algorithm. In Appendix B we analyze the randomized algorithm to prove Theorem
1. Throughout our analysis and this section we assume that there are strictly more women
than men, that is [W| > |M|.

Before presenting Algorithm 2 we first give a simplified version. The following algorithm
(adapted from McVitie and Wilson (1971) and Immorlica and Mahdian (2005)) produces the
WOSM from the MOSM by finding each woman’s most preferred stable match. It maintains

a set S of women whose most preferred stable match has been found. Denote the set of
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women who are unmatched under the MOSM by W.? We start with S = W, as by the
rural hospital theorem these women are unmatched under any stable matching.

We use the notation x < y for the operation of copying the value of variable y to variable
x. We do not explicitly declare variables. Instead we think of variables as being declared

implicitly when they are first assigned a value in the algorithm.
Algorithm 3. MOSM to WOSM (simplified)
e Input: A matching market with n men and n + k women.

e Initialization: Run the men-proposing deferred acceptance to get the men-optimal stable
matching . Set S = W to be the set of women unmatched under . Select any
w e W\S.

e New phase:

1. Set i < p.
2. Divorce: Set m <— u(w) and have W reject m.

3. Proposal: Man m proposes to his most preferred woman w to whom he has not

yet proposed.?®
4. w’s Decision:

(a) If w # W prefers her current match p(w) to m, or if w = w and she prefers
f(w) to m, she rejects m. Go to step 3.

(b) Ifw ¢ {w}yUW, and w prefers m to u(w), then w rejects her current partner
and accepts m (More precisely, we use a temporary variable m’ as follows:

m’ < p(w), p(w) <= m and m < m’). Go to step 3.

(c) New stable matching: If w = @ and w prefers m to all her previous proposals,
w accepts m and a new stable matching is found. Select w € W\S and start

a new phase from step 1.

14 . A
Z5Since there are more women than men W # ¢.
26Since there are more women than men, such a woman always exists. To account for a man who prefers

to be unmatched, add the “empty woman” ¢ € W to represent being unmatched. A man who chooses to be
unmatched over any woman he has yet to propose simply chooses w = ¢ € W, and the algorithm continues
directly to step 4(d).
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(d) End of terminal phase: Ifw € W, restore ju < [i, erase rejections accordingly,
and add w to S. Select w € W\S if the set is not empty, otherwise terminate
and output . Start a new phase from step 1.

It will be convenient to use the following terminology. A phase is a sequence of proposals
made by the algorithm between visits to step 1. An improvement phase is a phase that
terminates in step 4(c) (a new stable matching is found). A terminal phase is a phase that
terminates in step 4(d) (there is no better stable husband for w ). We refer to the sequence
of women who reject their husbands in a phase as the rejection chain.

In each phase the algorithm tries to find a more preferred husband for w, which requires
divorcing m = fi(w) and assigning him to another woman. In improvement phases the
algorithm finds a more preferred stable husband for @w. In terminal phases the algorithm
finds that @w cannot be assigned a man she prefers over m without creating a blocking pair,

and therefore m is w’s most preferred stable parter.
Proposition A.1. Algorithm 3 outputs the women optimal stable matching.

Proof. The algorithm terminates as each man can make only a finite number of proposals,
and there is at most one terminal phase (that is rolled back) per woman. Consider a phase
which begins with a stable fi. Immorlica and Mahdian (2005) show that if the phase ends
in step 4(c), the matching i at the end of the phase is stable as well. By induction, every
fi is a stable matching. Immorlica and Mahdian (2005) also show that if a phase ends in
step 4(d) then fi(w) is w’s most preferred stable man. Any subsequent matching /i is a
stable matching in which w is weakly better off, and therefore i also matches w to her most
preferred stable man. Finally, any woman in W is unmatched under the WOSM by the rural
hospital theorem (Roth (1986)). Thus the algorithm terminates with i being the WOSM

which matches all women to their most preferred stable husband. O

We follow to refine the algorithm. Since proposals made during terminal phases are rolled
back, we can end a phase (and roll back to fi) as soon as we learn that the phase is a terminal
phase. During the run of Algorithm 3 each woman in S is matched to her most preferred
stable husband. Therefore we can terminate the phase (and roll back) if a woman in S
accepts a proposal, as this can only happen in terminal phases. Furthermore, suppose that

in a terminal phase the rejection chain includes each woman at most once. We show that
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every woman in the rejection chain is matched under ji to her most preferred stable husband,
and can therefore be added to S. When the rejection chain includes a woman more than
once there are improvement cycles in the chain. We can identify these improvement cycles
and implement them as an Internal Improvement Cycle (IIC). Specifically, whenever
a woman in the chain receives a new proposal we check if she prefers the proposing man
over her best stable partner we found so far. If she prefers the proposing man, the part
of the rejection chain between this proposal and her best stable partner so far forms an
improvement cycle. We implement the IIC by recording the stable matching we found in g
and removing the cycle from the rejection chain. By removing these cycles from the rejection
chain we are left a rejection chain that includes each woman at most once, and can be added
to S when the phase is terminal. See Algorithm 2 step 4(c) below for a precise definition of
I1Cs.

Applying these modifications to Algorithm 3 gives us Algorithm 2. It keeps track of the
women in the current rejection chain as an ordered set V' = (vy,vs,..,v;), and adds all of
them to S if the phase is terminal. It also ends a phase as terminal when a woman in S
accepts a proposal. The algorithm keeps track of v(w) - the current number of proposals
received by women w, and R(m) - the set of women who rejected m so far. p keeps track of

the current proposals and /i records the women-optimal stable matching we found so far.

Algorithm 2. MOSM to WOSM

e Input: A matching market with n men and n + k women.

o Initialization: Run the men-proposing deferred acceptance to get the men-optimal stable
matching p and set R(m) and v(w) accordingly. Set S = W to be the set of women
unmatched under p. Index all women in W according to some order. Set w to be the
woman in W\S who received maximum number of proposals so far. Set t to be the

total number of proposals made so far.
e New phase:

1. Set fi < p. Set V = (v1) = (w).

2. Divorce: Set m <— pu(w) and have W reject m (add w to R(m)).
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3. Proposal: Man m proposes to w, his most preferred woman who hasn’t rejected

him yet.>” Increment v(w) and proposal number t by one each.
4. w’s Decision:

(a) Ifw ¢ V prefers p(w) tom, orifw € V and w prefers ji(w) to m, then reject
m (add w to R(m)) and return to step 3.

(b) If w ¢ SUV and w prefers m to p(w) then w rejects her current partner.
Do m/ + p(w), p(w) < m. Add w to R(m'), append w to the end of V. Set

m < m' and return to step 3.

(c) New stable matching: If w € V' and w prefers m to fi(w) then we found a
stable matching. If w = w = vy do p(w) <— m. Select w € W\S and start a
new phase from step 1.

If w = v, for £ > 1, record her current husband m’' < p(w). Call all proposals
made since, and including, m’' proposed w an internal improvement cycle
(IIC). Update i for the women in the loop by setting fi(v;) < p(v;) for
j=L0+1,..,J and set fi(w) < m and p(w) < m. Remove vy, ..,v; from V,
set the proposer m <— m’, decrement v(w), decrement t, and return to step 3

wn which m will apply to w.

(d) End of terminal phase: Ifw € S and w prefers m to u(w) then restore pu < fi
and add all the women in V to S. If S = W, terminate and output [i.
Otherwise, set W to be the woman with smallest index in W\S and begin a

new phase by returning to 1.

In step 4(c) we found a new stable matching. If the rejection chain cycles back to the
original woman, we have an improvement phase. If the rejection chain cycles back to a woman
wy in the middle of the chain we implement the IIC (Implementing the IIC is equivalent to
an improvement phase that begins with w,). Update the best stable matching f for all
the women in the cycle, and make it the current assignment. Then take m’ and make him
propose again to wy, as we changed p(wg). Decrement ¢ and v(wy) in order not to count this

proposal twice.

Proposition A.2. Algorithm 2 outputs the women optimal stable matching.

27See footnote 26.

41



Proof. Consider the run of Algorithm 2 for a given sequence of selections of w. We will
find an sequence of selections that such that Algorithm 2 gives the same output, and on
this sequence Algorithm 2 is equivalent to Algorithm 3. Since Algorithm 3 outputs the
WOSM for every sequence this will prove that Algorithm 2 finds the WOSM as well. After
the initialization step both algorithms are in an identical state. To produce the required
sequence of selections of w we follow both algorithms in parallel, noting that Algorithm 2
skips some of the phases that Algorithm 3 performs. We start from the given sequence of
selections, and modify it so that the two algorithms will hold identical pu, t at the end of
every phase.

Both algorithms perform the same actions when Algorithm 3 performs steps 4(a), 4(b)
and step 4(c) when w = . Assume that the algorithms are identical up to proposal t — 1
and suppose that in proposal ¢ Algorithm 2 performs step 4(c) with w # w, that is, we found
an IIC with w = v,. We change the sequence of selections of w so that v, is chosen to be
w just before the current phase. That makes the previous phase an improvement phase for
w = vy in which the cycle of the IIC is implemented. At the end of the (updated) previous
phase both algorithms are identical. In the the current phase both algorithms will continue
to be identical until woman v, receives a proposal, which will happen in step t. In that step
the two algorithms will also be identical since v, ¢ V U S at that time. Thus under the
revised ordering the two algorithms are identical up to step ¢.

Assume that the algorithms are identical up to proposal t—1 and suppose that in proposal
t Algorithm 2 performs step 4(d), that is, a woman w € S accepted the proposal. First we
show that Algorithm 3 also finds a terminal phase, and thus at the end of the phase both
algorithms revert to the same fi. Since w € S we either have that w € W or that w was added
to S in a previous phase. If w € W both algorithms will declare a terminal phase and revert
to fi. Otherwise, w was added to S in some previous phase as a part of a rejection chain that
ended in a woman already in S. Recursively build a rejection chain C' = {wy, ws, ...,w,} C S
where w; = w, w, € W such that in the terminal phase in which woman w; was added to §
woman w; rejected her husband m;, triggering a series of proposals by m; that resulted in m;
making a proposal which is accepted by w, ;. At the time of proposal ¢ under Algorithm 2
we have that pi(w;) = my, since at the end of that terminal phase each woman in the rejection
chain is reverted to her match under fi, and this man must be the man she rejected during the

phase (recall that a woman appears in a rejection chain at most once). Under the induction

42



assumption this is true also under Algorithm 3.

Consider the continuation of the run of Algorithm 3. When w = w; rejects her husband
mq, he will make proposals in the same order as he did in the terminal phase in which w;
was added to S under Algorithm 2. All the women which m; prefers over wy rejected him
back then, and since throughout the algorithm, women can only improve to whom they
are matched to, they will reject him again in the current phase. Therefore, m; will end
up proposing to ws. Since at that point u(wy) = my the proposal will be accepted by ws,
making msy the new proposer. By induction, m; will make an accepted proposal to w;1,
until we reach a proposal to w, € W. At that step Algorithm 3 declares a terminal phase
and rolls back to i, at which point the phase ends with the same p, ji as Algorithm 2.

Next, any phase that is skipped by Algorithm 2 starts with a @ that is already in S.
We have shown before that when a woman in S rejects her husband the resulting rejection
chain ends in S, and therefore all such phases are terminal phases and skipping them does
not change p or fi.

To complete the proof observe that once we move a woman to be selected as w we never
change the selected order before and including her. By the end of the run we therefore found
a sequence of selections such that the two algorithms hold identical u, i at the end of every
phase, and that every phase that Algorithm 2 skips is a terminal phase. Thus when the
Algorithm 2 terminates, it outputs the same matching as Algorithm 3, which is the WOSM
by Proposition A.1. m

The following lemma shows how Algorithm 2 allows us to compare the WOSM and
MOSM.

Lemma A.3. The difference between the sum of mens’ rank of wives under WOSM and the
sum of mens’ rank of wives under MOSM is equal to the number of proposals in improvement

phases and IICs during Algorithm 2.

Proof. Note that at the end of each terminal phase (Step 4(d)) we roll back all proposals
made and return to fi, the matching from the previous phase. Therefor, we can consider
only improvement phases and I1C, in which each proposal increases the rank of the proposing

man by one. [l
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A.1 Randomized algorithm

As we are interested in the behavior of Algorithm 2 on a random matching market, we
transform the deterministic algorithm on random input into a randomized algorithm which
will be easier to analyze. The randomized, or coin flipping, version of the algorithm does not
receive preferences as input, but draws them through the process of the algorithm.?® This
is often called the principle of deferred decisions.

The algorithm reads the next woman in the preference of a man in step 3 and whether
a woman prefers a man over her current proposal in step 4. Since the algorithm ends a
phase immediately when a woman w € S accepts a proposal, no man applies twice to
the same woman during the algorithm, and therefore the algorithm never reads previously
revealed preferences. When preferences are drawn independently and uniformly at random
the distribution of both can be calculated from R(m), the set of women who rejected m, and
v(w), the number of proposals woman w received so far. In step 3 the randomized algorithm
selects the woman w uniformly at random from W\ R(m). In step 4 the probability that w
prefers m over her current match can be given directly from v(w) for w ¢ S or bounded for

w € S.% Table 7 describes the probabilities for the possible decisions of w.

Step Event Probability
4(b) | w ¢ SU{w} prefers m to u(w) l/(w1)+1
4(c) w prefers m to fi(w) V('Lizl)—i—l
4(d) w € S\W prefers m to pu(w) | at least l/(wl)+1

Table 7: Probabilities in a run of Algorithm 2 on a random matching market.

Note that the event Step 4(a) is the complement of the union of the events in Table 7.

28 The initialization step of the randomized version of Algorithm 2 calls the randomized version of Algo-

rithm 1.
29The probability that a woman w € S accepts a man m can be calculated from the number of proposals

she received during improvement phases or MPDA and the number of proposals she received during terminal
phases. Since the bound on the acceptance probability we calculate from v(w) is sufficient for our analysis

we omit the additional counters from the algorithm.
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B Proof

We will prove the following quantitative version of the main theorem:

Theorem 3. Fiz any € > 0. Consider a sequence of random matching markets, indexed by
n, with n men and n+ k women, for arbitrary 1 < k = k(n). There exists ng < oo such that

for all n > ng, with probability at least 1 — exp{ — (log n)0'4}, we have

(i) In every stable matching i:

Ryen(p2) < (1+€)((n + k) /n) log ((n + k)/k)

Rwomn(pt) > n/[1+ (1 +¢€)((n+k)/n)log (n+k)/k)] .

)92 women have multiple stable part-

(ii) Less than n/(logn)®® men, and less than n/(logn

ners.

(i1i) The men are almost as well off under the WOSM as under the MOSM:

Ryex (WOSM)

<14+(1 —0.4
Rume(MOSM) = 1+ (ogm)

(iv) The women are almost as badly off under the WOSM as under the MOSM:

>1— (1 =
Ruomm(M0SM) = 1~ ogn)

Remark 1. In our proof of Theorem 3 (ii), we actually bound the number of different stable
partners. We show that the sum over all men (or women) of the number of different stable
partners of each man is no more than n +n//logn. Thus, in addition to the bound stated
in Theorem 8 (ii), we rule out the possibility that there are a few agents who have a large

number of different stable partners.

Definition B.1. Given a sequence of events {&,}, we say that this sequence occurs with
very high probability (wvhp) if

lim 1 — P&

n—00 exp{ —(log n)0-4} =0
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Clearly, it suffices to show that (i)-(iv) in Theorem 3 hold wvhp.

To prove Theorem 3, we analyze the number of proposals in Algorithm 1 followed by
Algorithm 2, which will provide us the average rank of wives in the women optimal stable
match. We partition the run of Algorithm 2 leading to the WOSM into three parts (Parts
IT through IV below).

1. Part I is the run of DA (Algorithm 1), which by an analysis similar to that in
(Pittel (1989a)), takes no more than 3nlog(n/k) proposals wvhp.

2. Part II are the proposals in Algorithm 2 that take place before the end of
first terminal phase. We show that wvhp,

e Part II takes no more than (n/k)(logn)?*® < n(log(n/k))%* proposals.
g g

1—€)/2

e When part II ends the set S contains at least n! elements.

3. Part III are the proposals in Algorithm 2 after Part II that take place until
|S| > n%7. Thus, this part ends at the end of a terminal phase when |S|
exceeds n’" for the first time. We show that, wvhp, part III requires O(n%4")

phases, and o(n) proposals.?

4. Finally, Part IV includes the remaining proposals from the end of part
IIT until Algorithm 2 terminates or 50nlogn total proposals have occurred
(including proposals made in Parts I and II), whichever occurs earlier. Be-
cause the set S is large, most phases are terminal phases containing no I1Cs, and most
acceptances lead to eventual inclusion in S. We show that, wvhp, part IV ends with
termination of the algorithm, and that the number of proposals in improvement phases
and IICs is o(n). But the increase in sum of men’s rank of wives from the MOSM to the
WOSM is exactly the number of proposals in improvement phases and IICs, yielding
the result.

The definition of Part III based on when |S| exceeds n% is for technical reasons, with the

exponent of 0.7 being a choice for which our analysis goes through. Throughout this section,

30For any two functions f: N — R and g : N — R+ we write f = o(g) if lim,, oo % =0and f = O(g)

if there exist a constant a such that f(n) < ag(n) for sufficiently large n.
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we consider the preferences on both sides of the market as being revealed sequentially as the

algorithm proceeds, as discussed in Appendix A.1.

Lemma B.2. Consider a man m, who is proposing at step 3 of Algorithm 2. Consider
a subset of women A C W\R(m). Let v(A) = ﬁZweA v(w) be the average number of
proposals received by women in A. The man m proposes to some woman w in the current

step. Conditional on w € A and all preferences revealed so far, the probability that m is the

most preferred man who proposed w so far, is at least —y(A1)+1'

Proof. For any woman @w ¢ R(m) the probability that m is the most preferred man who

applied to w so far is W Conditional on w € A, the probability that m is the most

preferred man who applied to w so far is at least

by Jensen’s inequality. O
The following lemma will be convenient and its proof is trivial:

Lemma B.3. If all men have lists of length |W| and |[W| > | M|, then no man ever reaches
the end of his list in Algorithm 1 or Algorithm 2.

B.1 Partl

For the analysis in this section we consider the following equivalent version of deferred

acceptance:

Algorithm 4. Index the men M. Initialize Sy = ¢, W = W, v(w) = 0 Yw € W and
R(m) = ¢ Ym € M.

1. If M\S\ is empty then terminate. Else, let m be the man with the smallest index in

2. Man m proposes to his most preferred woman w whom he has not yet applied to (in-

crement v(w)). If he is at the end of his list, go to Step 1.
3. Decision of w:
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o Ifw e W, ie, w is unmatched then she accepts m. Remove w from W. Go to

Step 1.

o [f w is currently matched, she accepts the better of her current match and m and
rejects the other. Set m to be the rejected man, add w to R(m) and continue at

Step 2.

Note that the output of Algorithm 4 is the same as the output of Algorithm 1, i.e., it
is the man optimal stable match (we have just reordered the proposals). The output of
Algorithm 4 is given as an input to Algorithm 2. Again, we think of preferences as being
revealed as the algorithm proceeds, with the women only revealing preferences among the
set of men who have proposed them so far.

The next lemma establishes upper bounds on the average and maximum rank of men
over women and a lower bound on the women’s average rank over men. The upper bound
for the worst possible rank of men is due to Pittel (1989a) who obtained this bound in a

balanced market (by adding more women to the market men are only becoming better off).

Lemma B.4. Fiz any € > 0. Let pu be the men-optimal stable matching. The following hold
wvhp:

(i) the men’s average rank of wives in pu is at most (1 + €) (%) log (%£) and is at least
(1= ) (%) log (5.

(ii) max,,ca Rank,,(u(m)) < 3(logn)?,
(iii) the women’s average rank of husbands in  is at least n/[1 4 (14 €)(™£) log (“%)].

Proof. We first prove the upper bound in (i), then (ii), then the lower bound in (i), and
finally (iii).

Tracking Algorithm 4 like in Pittel (1989a), we claim that, wvhp, the sum of men’s rank
of wives is at most (1+¢€)(n+k) log((n+k)/k) for small enough € > 0. This claim immediately
implies the stated bound (i) on men’s average rank of wives. To prove the claim, we use the
fact that the number of proposals is stochastically dominated by the number of draws in the
coupon collector’s problem, when n distinct coupons must be drawn from n + k coupons.

This latter quantity is a sum of Geometric((n + k — ¢ + 1)/(n + k)) random variables for
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1=1,2,...,n. The mean is

i"—M—(nJrk)(LJrLJr + 1)
Z,:ln—i—k—i—l—l_ k+1 k+2 7 n+k

= (n+ k) (1og((n + k)/k) + O(1/k) )
— (n+ k) log((n + k)/k) (1+ O(1/(Klog((n + k)/R))) )

A short analytical exercise®! shows that 1/(klog((n+k)/k)) is monotone decreasing in k, and
is thus maximized at k = 1. It follows that 1/(klog((n+ k)/k)) < 1/log(n+1) < 1/(logn),
which establishes that the error term O(1/(klog((n + k)/k))) = O(1/logn) vanishes in the
limit. Now routine arguments (e.g., Durrett (2010)) can be used to show that, in fact, this
sum exceeds (1+¢€)(n+ k) log((n+ k)/k) with probability exp(—©(n)). This establishes the
upper bound in (i).

Intuitively, the upper bound in (ii) should hold since it holds for a balanced market (see
Pittel (1989a)), and adding more women should presumably only make the bound tighter.
We show that this is indeed the case. Our proof works as follows: we first show that for any
man m, the probability that Rank,,(1(m)) > 3(logn)? is bounded above by 1/n'2. We then
use a union bound over the men to establish (ii).

Fix a man m and consider Algorithm 4, where one additional man is processed at a time.
From McVitie and Wilson (1971), we know that the final outcome is the MOSM, and this
does not depend on the order in which the men are processed. Therefore, we can assume
that m is processed last.

Let t = 1,2,... be the index of the proposals. From the upper bound in (i) proved above,
we know that with probability 1 — exp(—©(n)), the MOSM is found before

t=T,=(14¢€)(n+k)log((n+k)/k)
< (1+e€)(nlog(l+n/k)+ ngirgo(k/n) log((n + k)/k))

<n(1+e)(log(l+n/k)+1)

<1l.nlogn,

31Define f(k) = klog((n + k)/k), where we think of n as fixed, and k € (0,00) as varying. We obtain
f'(k) =log(l+n/k) —1+1/(1 +n/k). It suffices to show that f’(k) > 0 for all & > 0. To show this, we
define g : (0,00) — R as g(z) =log(1+x) —1+1/(1 +x). Now lim, o g(x) =0 and ¢'(z) = z/(1 +x)? > 0
for all z > 0, leading to g(z) > 0 for all z > 0. Hence, f/(k) > 0 for all £k > 0, as required.
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for small enough € and large enough n. Let & be the event that this bound holds. Then we
know that

P(£%) < exp(—O(n))
We track®? Algorithm 4 until it terminates or index t exceeds 7. If the index ¢ exceeds T,
i.e., we observe éc, we declare failure and stop. Hence, we can use t < T, in what follows.
Consider the i-th proposal by man m, and suppose i < 3(logn)?. Then there are at least
n + k — 3(logn)? women that m has not yet proposed to, and these women have together
received no more than T, proposals in total so far. Using Lemma B.2, the probability of the

proposal being accepted is at least
1/(T./(n+k —3(logn)?) +1) > 1/(1.1nlogn/(n — 3(logn)*) + 1) > 1/(1.21logn)

for large enough n. If the proposal is accepted by a woman w, each subsequent proposal in
the chain is, independently, at least as likely to go to an unmatched woman as it is to go to
w. Hence, the subsequent rejection chain has a probability at least 1/2 of terminating in an
unmatched woman before there is another proposal to woman w. As such, the probability
that the i-th proposal will be the last proposal made by m is at least (1/2)-1/(1.2logn) =
1/(2.41ogn). It follows that the probability that m has to make more than 3(logn)? proposals

before the MOSM is reached or failure occurs is no more than

1 3(logn)? 1 3(logn)?2
1——) <( {_—}) < exp(=1.25logn) = 1/n}2 |
( 241logn =\ &P 241logn < exp( o8 ") /n

Combined with the probability of failure, using a union bound, the overall probability that
man m makes more than 3(logn)? proposals is bounded above by 1/n'2 +P(£¢) < 1/n'25 +
exp(—O(n)) < 1/n'2, for large enough n. Since the same bound applies to any man, we can

use a union bound to find that
P(Any man makes more than 3(logn)? proposals) < n-1/n'? = 1/n"2.

We conclude that wvhp, no man makes more than 3(logn)? proposals, establishing (ii).

32 As usual, we reveal information about each preference list as it is needed (cf. Appendix A.1): for men
we reveal the next entry in the preference list just before a new proposal; for women, we reveal whether a

new proposal is the best one so far, only when the proposal is made.
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We now establish the lower bound in (i), i.e., that the sum of men’s rank of wives is
at least (1 —€)(n + k)log((n + k)/k). The proof is similar to that of the upper bound in
(i). From (ii), we have that wvhp, no man makes more than 3(logn)? proposals. It follows
that for each proposal that occurs during the search for the i-th unmatched woman, the

probability that an unmatched woman is found is at most

B n+k—i+1
L - min(3(logn)2,i — 1)
It follows that the number of proposals needed to find the ¢-th woman stochastically dom-
inates Geometric(p;), conditional on what has happened. It follows that the mean total
number of proposals is at least

n+k—3(logn)® B ) 1 1 1
; it =(n+k 3(logn))(—k+1+—k+2+...+n+k>

=(n+k)log((n+k)/k)(1+0O(1/(logn)),

where we bound the error term as above and using 3(logn)?/(n + k) = O((logn)?/n) =
O(1/(logn)). Again, routine arguments (e.g., Durrett (2010)) can be used to show that, in
fact, a sum of independent Geometric(p;) random variables for i = 1,2,...,n is less than
(1 —¢€)(n+ k)log((n+ k)/k) with probability exp(—©(n)). This establishes the lower bound
on men’s average rank of wives.

Now consider the women’s ranks of husbands. For a woman w, who has received v(w)
proposals in Part I, the rank of her husband is a random variable that depends only on v(w),

and not anything else revealed so far. We have

E[Rank, (4(w))] = %jl
Define
M=E| Y Rank,(u(w)| =(m+1) ¥ ﬁ

wEW\W wEW\W

Using Azuma’s inequality (see Durrett (2010)), we have

P/ ¥ Rakufutu)) < 2 - 8) <ep {51

_ n 2n?
weEW\W

o1



since Rank,,(u(w)) € [0,n]. Plugging in A = n** yields

P((l/n) Z Rank,, (u(w)) < % - n3/4> < exp {—ﬁ} . (2)

~ 2
weEW\W

Using Jensen’s inequality in the definition of M, we have

1
L+ (1/n) 2wenww (@)

=T (Lt e/2) (25 log (=5)

M>(n+1)n-

wvhp,

where we used (i) with € replaced by €/2, i.e., (1/n) 3, cppyp V(@) < (14€/2) (25) log (™EE)
wvhp. Using (%£) log (%%) < 1.1logn (see the bound on T in the proof of (ii)), i.e., the

n

n?/* is negligible in comparison to M, we can deduce that

2
M — ¥4 > z h
T Ut O (255 log (=) P )

for large enough n (notice that we used the €/2 slack).
Combining Egs. (2) and (3), we obtain (iii). O
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Lemma B.5. Suppose k < n%. Then, wohp, there are fewer than n®% women who each

receive less than (1/2)logn proposals.

Proof. Now consider a woman w’. For each proposal, it goes to w’ with probability at least
1/(n+k), unless the proposing man has already proposed w’. Suppose w’ receives fewer than
(logn)/2 < (2/3)(1 —2¢) log(n + k) /k proposals, where, for instance, we can define e = 0.01.
Since, wvhp, each man makes at most 3(logn)? proposals (Lemma B.4(ii)), wvhp there are
at most (3/2)(logn)? proposals by men who have already proposed w’. Using Lemma B.4(i),
wvhp, there are at least (1 —¢€)(n-+k)log((n+k)/k) proposals in total. It follows that, wvhp,
there are at least (1 —¢€)(n+k)log((n+k)/k)—(3/2)(logn)® > (1 —2¢)(n+k)log((n+k)/k)
proposals by men who have not yet proposed w’. Using Fact E.1 (i), the probability that
fewer than (2/3)(1 — 2¢) log((n + k)/k) of these proposals go to w' is

P(Binomial((1 — 2¢)(n + k) log((n + k) /k), 1/(n + k)) < (2/3)(1 — 2¢)log(n + k) /k))
< 2exp{—(1 — 2¢)log((n + k)/k)/27} < ((n+ k)/k)~/? < n=002
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for k < n%!. Tt follows that the expected number of women who receive fewer than (1/2)logn

proposals is no more than (n + k)n=0% < 2n%%. By Markov’s inequality, the number of

women who receive fewer than (1/2)logn proposals is no more than n%%, with probability
at least 1 — 2n%98 /n09 =1 — o(exp{—(logn)%*}). O
B.2 Part II

Lemma B.7 below shows that by the end of Part II, the number of proposals by each man is
“small”, the number of proposals received by each woman is “small”, and that the set S is
“large”. Since S will be large at the end of this part, Part III will terminate “quickly”. The
next lemma says that wvhp, there will not be too many proposals in Part II (this bound will

be assumed in the proof of Lemma B.7).

Lemma B.6. Part II completes in no more than "= (logn)** < (n+1)(log n)** proposals

wvhp.

Proof. For each proposal (Step 3) in Part II, the probability of Step 4(d), which will end

— k> _k_
WA\R(m)| = n+k-
0.45

Part II, is the probability that the man m proposes to an unmatched woman
Therefore the probability that the number of proposals in part I exceeds ((n+k)/k)(logn)
HLM)((”%)/]C)(IOM)MS < exp(—(logn)®15) = o(exp{—(logn)®*}), leading to
the first bound. Noticing that (n + k)/k = 1+ n/k > 1 4 n, we obtain the bound of

(n + 1)(logn)®4. O

is at most (1 —

Lemma B.7. Fiz any € > 0. At the end of Part II, the following hold wvhp:

(i) No man has applied to a lot of women:

max | R(m)| < n”. (4)

(i) The set S is large: |S| > nt=9)/2,
(11i) No woman received many proposals

max v(w) < nc. (5)
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Proof. Using Lemma B.4, we know that wvhp, there have been no more than 3nlog(n/k)
proposals and no man has proposed more than 3(logn)? women in Part I. Assume that these
two conditions hold for the rest of the proof.

We begin with (i). We say that a man m starts a run of proposals when m is rejected
by a woman at step 4(b) or is divorced from w at step 2. We say that a failure occurs if
a man starts more than (logn)? runs or if the length of any run exceeds (logn)? proposals.
We associate a failure with a particular proposal ¢, when for the first time, a man starts his
(logn)? 4 1-th run, or the proposal is the (logn)® + 1-th proposal in the current run.

Consider the number of runs of a given man m. Man m starts at most one run at step 2.
The other runs start when the proposing man m’ # m proposes to the women m is currently
matched to and m’ is accepted. At any proposal the probability that m’ proposes to any
particular woman is no more than the probability that he proposes to WW. Now if the latter
happens, Part II ends. Therefore, it follows that the number of runs man m has in part II
is stochastically dominated®? by 1+ Geometric(1/2). Hence, the probability that a man has
more than (logn)? runs is bounded by (%>(1ogn)2—1 < 1/n?, showing that man m has fewer
than (logn)? runs in Part IT with probability at least 1 —1/n2. It follows from a union bound
over all men m € M that wvhp failure due to number of runs does not occur.

Assume failure did not occur before or at the beginning of a run of man m. The number

of proposals man m accumulates until either the run ends or a failure occurs is bounded by
(logn)? - (logn)® < n/2

for sufficiently large n. In each proposal in the run before failure, man m proposes to a
uniformly random woman in W\ R(m). Since there were at most 4nlogn proposals so far,

we have that
4dnlogn

n/2
From Lemma B.2, we have that the probability of acceptance at each proposal is at least

1 > 1
v(W\R(m))+1 =— 8logn+1"

v W\R(m)) < =8logn.

Therefore the probability of man m making (logn)® proposals with-

33 A real values random variable with cumulative distribution F} is said to be stochastically dominated by

another r.v. with cumulative distribution Fy if Fy(z) < Fy(z) for all z € R.

o4



out being accepted is bounded by3*

1 (logn)3 1
8logn + 1 —nd

Thus, the run has length no more than (logn)® with probability at least 1 — 1/n3. Now the
number of runs is bounded by n?, so we conclude that wvhp failure due to number of runs

does not occur. Finally, assuming no failure,
|R(m)| < (logn)? - (logn)® < n°

establishing (i).

We now prove (ii). If k& > n(1=9)/2 the set S is already large enough at the beginning
of Part II, and there is nothing to prove. Suppose k < n{!=9)/2 Consider the evolution of
|V| during Part II. We first provide some intuition. Part II contains about n/k = w(n'/?)
proposals before it ends. We start with |V'| = 0, and |V| initially builds up without any new
stable matches found. We can estimate the size of |V| when Step 4(c) (new stable match)

occurs as follows®®

: Suppose we reach |V| ~ N. Consider the next accepted proposal.
Ignoring factors of logn, the probability that the woman who accepts is in V' is ~ |V|/n ~
N/n. Thus, for one of the next N accepted proposals to include a woman in V', we need
N -N/n ~ 1, ie, N ~+/n. Thus, when |V| reaches a size of about y/n, then an IIC forms
over the next ~ \/n proposals, reducing the size of |V|. This occurs repeatedly, with |V
converging to an ‘equilibrium’ distribution with mean of order y/n, and this distribution has
a light tail. Thus, when the phase ends, we expect |V| ~ y/n.

We now formalize this intuition. Whenever |V| < n1=9)/2 for the next proposal, the

probability that:

1+€)/2

e The proposal goes to a woman in V is less than 2/n/ . Such a proposal is necessary

to creating an IIC.

e The proposal goes to a woman in S = W, is at most 2k/(n+k) < 2k/n < 2/(n(1+9)/2),

Such a proposal would terminate the phase.

34 Again this inequality holds for large enough n. We omit the explicit mention of the condition “for large

enough n” when such inequalities appear subsequently in this section.
35This analysis is analogous to that of the birthday paradox.
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e The proposal goes to a woman in W\ (S U V), who accepts it, is at least 1/(5logn),
using the fact that there have been no more than 4nlogn proposals so far and Lemma
B.2.

Suppose we start with any |V| < n(!=9/2 for instance we have |V| = 0 at the start of the
phase, we claim that with probability at least 1 — 3k/y/n, we reach |V| = n=9)/2 (call this
an ‘escape’) before there is a proposal to S and before y/n proposals occur. We prove this
claim as follows: There is a proposal to S among the next y/n proposals with probability no
more than 2k//n. Suppose that |V| stays less than n(!=9)/2, Then there are n°/* or more
proposals to women in |V| among /n total proposals with probability no more than 9/
using Fact E.1 (ii) on Binomial(y/n, 2/n1+)/2) . Also, the probability that there are less than
n!/2=¢/% proposals accepted by women in W\(V U S) (these women are added to V) is at

/8

most 27""*"* using Fact E.1 (ii) on Binomial(y/n, 1/(5logn)), since at each proposal, such

a woman is added with probability at least (1/(5logn)). But if there are

e/4

e less than n 1/2-¢/2.

proposals to V| each such proposal reducing |V| by at most n

e no proposal to S, and

1/2—¢/8

e at least n women added to V/,

1-€)/2 Thus, the overall probability of not reaching |V| = n(1=%)/2

e/2

before there is a proposal to S and before \/n proposals occur is at most 2k/y/n + 27" +
27" < 3k/+/n. In particular, the probability of a failed escape is at most 3k/y/n.

then we must reach |V| = n!

1/2—¢/4

We now bound the number of times |V| reduces from a value larger than n(!=9/2 to a
value smaller than n!=%)/2. Suppose |V/| > n!=9)/2, The probability that a proposal goes
to S is at least k/(n + k) > k/(2n). The probability that a proposal goes to one of the
first n0=9)/2 women in |V| is at most 2n(1=9)/2/n < 2/n(+9)/2 Thus, the number of times
the latter occurs is stochastically dominated by Geometric(k/(4n'=9)/2)) — 1. Thus, the

1-2)/2 including the one at the start of

total number of escapes needed to ensure |V| > n!
the phase, is stochastically dominated by Geometric(k/(4n1=9)/2)), which exceeds n'/2=5/4/k

with probability at most

n1/2—5/4/k

(1 —k/(4n17972)) < exp(—n/*/4).
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Assuming no more than n'/2=/4 /k escapes are needed, one of these escapes fails with proba-
bility at most (n'/27¢/*/k)-(3k/y/n) = 3n~/*. Thus, the overall probability of |V| < n(1=¢)/2
when the phase ends is bounded by exp(—n®/*/4)+n~¢/* = o(exp{—(logn)°*}). Thus, wvhp,
V| > n1=2)/2 for all phases in Part II, including the terminal phase. This establishes (ii).
Finally, we establish (iii). Again we assume in our proof that Parts I and II end in no
more than 4nlogn proposals in total, and that (i) holds (if not, we abandon our attempt
to establish (iii), but this does not happen wvhp). Fix a woman w. For each proposal, the
probability that she receives the proposal is no more than 2/n, using (i). Thus, the total
number of proposals she receives is no more than Binomial(2nlogn,2/n) which is less than
nf, except with probability 27"°/(41°6m) by Chernoff bound (see Fact E.1 in Appendix E).

Union bound over the women gives us that (iii) holds wvhp. O

Lemma B.8. Wuhp, the number of accepted proposals in Part I is no more thann/(2y/logn)

and the improvement in sum of women’s ranks of husbands during Part II is no more than
n?/(2(logn)*?).

Proof. If k > n%!, then we already know that wvhp the number of proposals is no more than

n%% using Lemma B.6.

99 women each

If £ < n%' then we know from Lemma B.5, that, wvhp, fewer than n®
received fewer than logn/2 proposals in Part I. Further, from Lemma B.7, wvhp, no man has
proposed to more than n°® women in Parts I and II. It follows that for each proposal in Part
I1, it goes to a woman who has already received log n/2 or more proposals with probability at
least 1 —n~%91/2. Hence, the probability that the proposal is accepted is at most 2.5/ log n.
But the total number of proposals in Part 11, wvhp, is less than (n+1)(logn)%* from Lemma
B.6. It follows using Fact E.1 that, wvhp, fewer than 3(n + 1)/(logn)®%® < n/(10+/logn)
proposals are accepted in Part II.

We now bound the improvement in the sum of women’s ranks of husbands. Using

Markov’s inequality, there are, wvhp, at most n%9%

proposals to women who have received
fewer than logn /2 proposals so far. The maximum possible improvement in rank from these
proposals is (n + k)n%95 < 2n199 . The number of proposals accepted by women who have
received at least logn /2 proposals so far is, wvhp, at most n/(104/logn), as we showed above.

For such a proposal accepted by a woman w’ who has received v(w') > (logn)/2 previous
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proposals, the expected improvement in rank is

n—vw) n-—v)-1
viw)+1 v(w') + 2

<n/((logn)/2)* =4n/logn .

Further the improvement in rank is in the interval [1,n —1]. Thus, the total improvement in
rank is stochastically dominated by a sum of independent X;, for i =1,2,...,n/(10y/logn),
with E[X;] < 4n/logn and 1 < X; < n — 1. It follows using Azuma’s inequality (see, e.g.,
Durrett (2010)) that this sum exceeds n/(10y/Iogn) - 4n/logn 4+ n'® < n?/(2.1(logn)/?)
with probability at most
1.612
2expq — (")

2-n/(10y/logn) - n?
Thus, the total improvement in the sum of women’s ranks of husbands is, wvhp, no more
than 2n'9% + n2/(2.1(logn)*?) < n?/(2(logn)*?). O

} = exp{—n""'} = o(exp{—(logn)™"}).

B.3 Part III

Let Sip be the set S at the end of part II.

The next lemma provides upper bounds (that are achieved wvhp) on the number of
proposals each man makes and the number of proposals each woman receives throughout
Parts III and IV.

Let & be the event that until proposal ¢, no man has applied to more than n®
3

6 women in

total or to more than n3 women in Sy, and no woman has received n? or more proposals.

Let £, be the event that these same conditions hold when Part IV ends.
Lemma B.9. The event £, occurs wvhp.

Proof. By Lemma B.7, we know that at the end of Part II, no man has made more than

1-¢)/2 " and that no woman has received more than n® proposals,

n® proposals, that |Sy| > n/
wvhp. We assume that all these conditions hold.

Fix a man m. We argue that if m makes a successful proposal to a woman in Sy U \VV,
then he makes no further proposals in Algorithm 2: If m makes a successful proposal to a
woman in S, this ends the phase making the phase a terminal one, man m goes back to the
woman to whom he was matched at the beginning of the phase, and this woman becomes

a member of S. Thus, if a m makes a successful proposal to a woman in .S, he makes no
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further proposals. In particular, if m makes a successful proposal to a woman in Si\W,
then he makes no further proposals.

Suppose man m is proposing in proposal ¢t and that & holds. Then m has not yet applied
to at least 3n(!=9)/2 /4 women in Sy;. Hence the probability of applying to a woman in Sy is at
least n1=°)/2 /2. Further, since no woman has received n% or more proposals, the probability
of the proposal being accepted is at least 1/n*. Hence, the probability of the proposal going

3e-1/2 " Hence, the man makes fewer

to a woman in Sy and being accepted is at least n~
than n%%/2 proposals in Part IV, and proposes to fewer than n3 /2 additional women in Sy,

except with probability exp(—n®/2). Using a union bound over the men, wvhp, no man has

0.6 3

applied to more than n”® women in total or to more than n°¢ women in Sy until the end of

Part IV.

Fix a woman w. Each time a proposal occurs, since no man has proposed to more than
n%% women (assuming & holds), the probability of the proposal going to w is less than 2/n.
Since there are at most 50n log n proposals in total, the number of proposals received by w in
Part III is more than n® with probability less than P(Binomial(50n logn, 2/n) > nf) < 277",
using Chernoff bounds (see Fact E.1(ii) in Appendix E). Using a union bound over the

women, wvhp, no woman has received more than n® proposals until the end of Part IV.

The result follows combining the analyses in the two paragraphs above. O
We now focus on Part I1I. We show (Lemma B.10) that for every phase in Part 111, whp:
e the phase is a terminal phase, and

e that V] at the end of the phase is at least n%%.

For each such phase, |S| increases by at least n%%.

In addition, we show that phases are
short, with the expected length of a phase being O(n'/?*3¢). We infer that, wvhp, we reach
|S| > n%7, ie., the end of Part III, in o(n%4") phases, containing o(n) proposals. Lemma

B.11 below formalizes this.

Lemma B.10. Assume |Sy| > n1-e)/2, cf. Lemma B.7. Consider a phase during Part III.
Suppose 1(&;) = 1 at the start of the phase. Then, whp, either 1(E:) = 0 at the end of the

phase, or we have:

o The phase is a terminal phase.
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e At the end of the phase is at least |V| > n%2.

Proof. Assume I(&;) = 1 throughout the phase (otherwise there is nothing to prove). Since
we are considering a phase during Part III, we know that |S| < n®7. Also, |S| > |Su| >
n(1=¢)/2 by assumption. For each proposal, there is a probability of at least |S|n=%/(2n) >
n~1/273¢ and at most 2|S|/n < 2n~%3, that the proposal is to a woman in S and is accepted.
It follows that, whp, the phase is a terminal phase, and the number of proposals in the phase
is in [n%28, n052]. Tt is easy to see that with probability at least (1 —2n%28/n)""* =1 —0o(1),
all of the first n%2 proposals in the phase are to distinct women, meaning that there are
no IICs. For each proposal, the probability of acceptance is at least 1/(1 + n?), since no

0-25 accepted proposals among

woman has received n% proposals, so whp, there are at least n
the first n%?® proposals, using Fact E.1 (ii) on Binomial(n®2®,1/(1 + n%*)). Now, consider
the first n%2° women in V. These women receive no further proposals during the phase with
a probability at least (1 —2n%25 /n)

at the end of the phase, establishing |V| > n%2?5 at the end of the phase as needed. O

n* — 1 —o(1). Hence, whp, these women are part of V

Lemma B.11. Wuvhp, Part III contains less than n® proposals.

Proof. We first show that the next n%47 phases after the end of Part II complete in fewer than

n%9 proposals. Since, wvhp, |Sy| > n(1=9)/2 if I(£,) = 1 then for proposal ¢ the probability

of ending the phase (due to acceptance by a woman in S) is at least n~1/273¢. Tt follows that

0.47

either I(£,) = 0 or wvhp, the next n”*" phases after the end of Part IT complete in no more

0.474+1/24+4¢ S n0.99 0.97+4€’n71/273€) >

than n proposals, using Fact E.1 (ii) on P(Binomial(n

H0'47).

Now we show that wvhp, Part III contains fewer than n%47 phases. Suppose this is not

0.45 0.25

the case, then, by our definition of Part 111, at most n”** of these phases increase |S| by n

or more. But using Lemma B.10, either I(€,) = 0, or this occurs with probability at most
P(Binomial(n®*",1 — ¢) < n®%) < P(Binomial(n"*",1/2) < n’*7/4) < 2exp(—n"*"/24),

using Fact E.1 (i). In other words, either I(€,) = 0 or, wvhp, Part III contains fewer than

n%4” phases.

But Lemma B.9 tells us that I[(£,) = 1 wvhp. Combining the above, we deduce that

0.47 0.99

wvhp, Part III contains fewer than n”*" phases and fewer than n”””’ proposals. O
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B.4 Part IV

Lemma B.12. Suppose we are at Step 3 (time t) of Algorithm 2 during Part IV, we have
I(&) = 1, and man m is proposing. Then, for large enough n, the probability that:

(i) Man m proposes to S and is accepted is at least n= 3L

(ii) Man m proposes to W\(R(m) U W) and is accepted is at least 0.9n/t.

Proof. Note that |S| > n®"  whereas by definition of & the man has proposed to no more

0.6

than n%® women and no woman has received more than n? proposals. (i) follows from

Lemma B.2.

6 women so far, we know that

Proof of (ii): Since m has not applied to more than n
IW\(R(m)Uw)| > 0.95n. Also, the total number of proposals so far is ¢t — 1. Using Lemma
B.2, the probability of applying to W\(R(m) U @) and being accepted is at least

1 S 0.9n
14+ (t—1)/(095n) — ¢

for large enough n, using ¢t > n since Part I itself requires at least n proposals. O
Lemma B.13. Wuvhp, Part IV ends due to termination of the algorithm.

Proof. Suppose Part IV does not end with termination (if not we are done) and that &
occurs (Lemma B.9 guarantees this wvhp). Reveal each proposal sequentially.

For t < 40nlogn, call proposal t a ‘seemingly-good’ proposal when acceptance by w' €
W\ (R(m) Uw) occurs. Denote the set of seemingly good proposals by A. We use Lemma
B.12. For each proposal ¢, there is a probability at least 0.9n/t of it being a seemingly-good
proposal, conditioned on the history so far. Define independent X; ~ Bernoulli(0.9n/t) for
t =tg,tg+ 1...,40nlogn, where t; is the first proposal in Part III. Then we can set up a
coupling so that proposal t € A whenever X; = 1. Now

40nlogn
> 1/t >(0.99)In(10) > 227,
t=4nlogn
40nlogn
= > E[X|] > 2n
t=4nlogn
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Using Fact E.1, we deduce that
40n logn

> X >Tn/4

t=4nlogn
wvhp, implying

40nlogn

A= > X, >Tn/4 (6)

t=to
wvhp, since we know that ¢y < 4nlogn wvhp using Lemmas B.4 and B.6.

We call a seemingly-good proposal t < 40nlogn a ‘good’ proposal if the following condi-

tions are satisfied:

e During the current phase, there is no proposal to a woman in V. In particular, there

are no I1Cs.
e The phase is a terminal phase that ends during Part IV.

We denote the set of good proposals by G C A. We now argue that
S| > 191, (7)

where Sy is the set S at the end of Part IV. If w’ ¢ (S U w), then w' becomes part of S
at the end of the phase if the proposal is a good proposal. For each terminal phase, there
is exactly one good proposal to a woman in S U w, which we think of as accounting for w,
which also becomes a part of S. Thus, for every good proposal, one woman joins S during
Part IV, establishing Eq. (7).

Now consider any phase in Part IV that starts before the 40n log n-th proposal. Call such
0.32

proposals

with probability at most (1 — n=031)""" < exp(—n®') < 1/n2. But the total number of

a phase an early phase. Using Lemma B.12, the phase contains more than n

early phases is no more than 40nlogn. It follows that using a union bound that, wvhp, there

0.32

is no early phase that contains more n”°“ proposals.

Now, the probability of a phase containing fewer than n%3? proposals, and containing a
proposal to a woman in V' is at most n®3% . 2n%32 /n < n=93% gince |V| < n%3% throughout

such a phase. Further, there are at most 40nlogn < n'%! early phases. It follows, using Fact

1.01’ n—0A35)

E.1 (ii) on Binomial(n , that the number of early phases containing a proposal to a

0.67 ,,,0.32 _

woman in V is, wvhp, no more than n%%7. It follows that, wvhp, no more than n%57-n
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n%% proposals occur in early phases containing a proposal to V. But all proposals in A\G

must occur in such phases. We deduce that, wvhp,
[ANG| < n**. (8)

Combining Eqs. (6) and (8), we deduce that |G| > 3n/2 > |W| wvhp. Plugging in
Eq. (7), we obtain |Sy| > |[W| at the end of Part IV wvhp, which we interpret®® as “With
wvhp, our assumption that Part IV does not end with termination was incorrect. In other

words, Part IV ends with termination wvhp”. O]

Lemma B.14. The number of proposals in improvement phases and in IICs in Part IV is

0.99

no more than n”>’ wvhp.

Proof. In the proof of Lemma B.13, we in fact showed that whp in Part IV, the number of
proposals in phases that include a proposal to a woman in V' is no more than n%%. (Actually,
we showed this bound for ‘early’ phases, and also showed that wvhp, the algorithm terminates
with an early phase, so that all phases in Part IV are early phases). But improvement phases

and phases containing IICs must include a proposal to a woman in V. The result follows. []
We now establish two claims that follow from elementary calculus.
Claim B.15. For large enough n and any k > 1 we have klog(1+n/k) > (logn)/2.

Proof. We divide possible values of k into three ranges, and establish the bound for each
range.

First, suppose k£ < 10logn. Then log(1l + n/(10logn)) > log\/n > logn/2 for large
enough n. It follows that klog(1 + n/k) > logn/2 since k > 1.

Next, suppose k € (101logn, 10n|. Now log(1+mn/k) > log(1+n/(10n)) = log1.1 > 0.09.
The bound follows by multiplying with & > 10 logn.

Finally, consider k > 10n. Now, n/k < 1/10 leading to log(1+n/k) > n/k — (n/k)?/2 >
0.95n/k. It follows that klog(1l+n/k) > 0.95n > logn/2 for large enough n. O

Claim B.16. For anyn > 1 and any k > 1, we have (1+1/n)log(1+n) > (1+k/n)log(1+
n/k) > 1.

36Recall our initial assumption that Part IV does not end with termination. Finding that |S| > n under

this assumption simply means that Part IV did, in fact, end with termination.

63



Proof. Consider f : (0,00) — R defined by f(z) = (1 + 1/z)log(1 + ). Then

xr —log(l + z)

f'(x)

>0 V>0,
using log(1 + ) < x for all z > 0. It follows that for any = > 0, we have

F(z) = lim f(x) = 1,

— z—0

using lim, g log(1+x)/x = 1. The lower bound in the claim follows by plugging in x = n/k.
The upper bound follows by plugging in k = 1, since this maximizes n/k for fixed n. O]

Finally, using these lemmas and claims we give the proof of Theorem 3.

Proof of Theorem 3. Using Lemma A.3, we can calculate the sum of men’s rank of wives by
summing up the rank under the MOSM and the number of proposals made during improve-
ment phases and IICs during the run of Algorithm 2. By Lemma B.6, B.11 and Lemma
B.14, the total number of proposals that occur in improvement phases and IICs (in Parts
I1-1V) of Algorithm 2 is, wvhp, no more than (1 4+ n/k)(log(n))%* + 2n%%. Using Lemma
A.3, we get that

Sum of men’s ranks of wives(WOSM) — Sum of men’s ranks of wives(MOSM)

< (1+ n/k)(log(n))*** 4 2n*% (9)
But

Sum of men’s ranks of wives(MOSM)
> 0.99(n + k) log((n + k) /k)
> max(0.49(1 + n/k) logn,0.99n) (10)

wvhp, from Lemma B.4 (i), along with Claims B.15 and B.16. We deduce from Egs. (9) and
(10) that

< (logn)~%%%/0.49 + 2n=9°1/0.99 < (logn)~ %4
R (IOSM) < (logn) %/ /099 < (logn)

wvhp, immediately implying Theorem 3 (iii).
The only agents whose partner changes in going from the MOSM to the WOSM are the

ones who make or receive accepted proposals during improvement phases and II1Cs. But this
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number on each side of the market is, wvhp, no more than n/(2/logn) in Part IT (Lemma
B.8), and no more than n%% each in Part 1II (Lemma B.11) and Part IV (Lemma B.14,
leading to a bound of n/(2y/logn) + 2n%%" < n/y/logn on the total number of agents with
multiple stable partners on each side of the market, establishing Theorem 3 (ii).

By Lemma B.8, wvhp, the improvement in the sum of women’s ranks of husbands in Part
IT is at most n?/(2(logn)®?). In Parts III and IV, wvhp there are at most 2n%% women
who obtain better husbands (since each such woman must have received a proposal during
an improvement phase or IIC; see above), and the rank improves by less than n for each of
these women, so the improvement in sum of ranks is less than 2n!'%. It follows that the total
improvement in sum of ranks is, wvhp, less than n?/(logn)*?2. On the other hand, using

Lemma B.4 (iii) and the upper bound in Claim B.16, we obtain that wvhp
Sum of women’s ranks of husbands(MOSM) > n?/(2logn) .

Theorem 3 (iv) follows.
Lemma B.4 (i) and (iii) with ¢ = ¢/2, combined with Theorem 3 (iii) and (iv) (established
above) yields Theorem 3 (i).
[l

C Many-to-one matching markets

This section discusses the extension of our results to many-to-one matching markets, in
which colleges are matched to more than one student. We consider many-to-one markets
where colleges have a small capacity relative to the size of the market, each student has
an independent, uniformly random complete preference list over colleges, and each college
has responsive preferences (Roth (1985)) and an independent, uniformly random complete
preference list over individual students. In Section 4.4, we present computational experiments
demonstrating that imbalance in such markets again leads to a small core and allows the
short side to approximately “choose.” We follow to describe how our theoretical results can
be extended.

Assume that each college has a constant number of seats q. Students are on the short
side of the market if there are fewer students than seats, and, symmetrically, colleges are the

short side of the market if there are more students than seats. We denote the extreme stable
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matchings by SOSM (the student-optimal stable matching) and COSM (the college-optimal
stable matching). The students’ average rank of their colleges is defined as before. We define
the colleges’ rank of students to be the average rank of students assigned to the college.

We argue that the bounds on average rank stated in Theorem 2 will deteriorate by a factor
that depends on ¢,>” whereas Theorem 1 will hold as stated. Thus, with high probability,
the core will be small and the short side will “choose”.

Our proof can be extended as follows. First, using results from Roth and Sotomayor
(1989), one can decompose the many-to-one market into a one-to-one market as follows.
For each seat in a college, create an “agent” that ranks students according to that colleges
preferences. Students rank all seats according to their preferences for the corresponding
schools, and all students rank seats within a college in the same order (i.e., there is a “top”
seat and a “bottom” seat in each college). A matching is stable in the original market if
and only if there is a corresponding stable matching in the decomposed market. With this
decomposition, all our results from Appendix A extend to the many-to-one case, allowing us
to use our algorithms to calculate the extreme stable matchings via a sequence of proposals
by agents on the short side.

Next, the stochastic analysis can be extended to the many-to-one case as follows. Suppose
there are n colleges each with ¢ seats each. First consider the case in which there are fewer
than gn students. The first part of the analysis is student-proposing DA, and we can bound
the number of proposals in this stage by considering ¢ repetitions of the coupon collector’s
problem. The next steps in our proof follow with slight modifications, using the fact that
rejection chains have the same structure as in the one-to-one case. Whenever a seat rejects
a student, the student matched to the bottom seat in the college gets rejected, and that
bottom student in turn applies to a randomly drawn college that ranks the student uniformly
at random. A college will accept the student if the applying student is ranked higher than
the g-th best student currently at the college and will reject that g¢-th best student if it
accepts the applying student. A phase (chain), initiated by a college ¢ rejecting a student,
can terminate either with an application to a school that has not filled its seats, or with
a successful application to college c. Therefore, a phase consists of a series of proposals to

random colleges that in case of acceptance, always reject their lowest ranked student. The

37That is, there is a similar upper bound on the average rank of partners for the short side of the market,

and there is a similar lower bound on the average rank for the long side of the market.
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main difference is that in order to calculate the acceptance probability, we need to calculate
the probability that a (randomly ranked) proposing student is better than the ¢-th best
proposal the college received (instead of being better than the best proposal the woman
received in the one-to-one case). Bounds on this probability will be affected by at most a
constant factor.

Similar arguments allow us to extend our proof to the case when there are more students
than seats. The first part of the analysis is college-proposing DA, and we can again bound
the number of proposals in this stage by considering the coupon collector’s problem. The
rest of our analysis, controlling rejection chains, is almost unchanged. Whenever a student
in a college rejects a seat, the seat accepts the student matched to the next lower seat at the
college and so on, until the bottom seat in the college is rejected. This seat proposes to a
randomly drawn student who ranks the college uniformly at random and accepts if she ranks
the college higher than her current match. A phase (chain) initiated by a student s rejecting
a seat can either terminate with an offer to an unmatched student, or with a successful offer
to student s. Overall, the analysis in this case will be almost identical to our original proof.

We note that these results do not imply that colleges cannot gain from manipulation
in unbalanced matching markets, as a college can potentially manipulate even if there is
a unique stable matching. Kojima and Pathak (2009) show that a college can manipulate
only if a rejection of one of the students assigned to that college will trigger an rejection
chain that cycles back to the college. We therefore conjecture that when the imbalance is
larger than a college’s capacity, even colleges have a limited scope for manipulation, but this
conjecture does not directly follow from our analysis, which only establishes that the core is

small.

D Average rank estimates

Table 1 in Section 4 includes values of the following function for each unbalanced market.

it log (o) for W[ > M|
’W’/( + ||%|| log |/\/1|\M||W\)> for [W| < M|

The definition of EST is based on Theorem 2, as justified by the following facts.

EST = EST(|M|, |[W|) =

Remark 2. Fiz any ¢ > 0.
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e For the case |W| > | M|, Theorem 2 and its proof imply that, with high probability
(asymptotically in |M|), Rupn/EST € (1—¢€,1+4¢€) under all stable matches (including
the MOSM and WOSM). Note that the upper bound on Rygx is part of the statement
of Theorem 2, whereas the lower bound follows from the proof (though it is not part
of the statement). Hence, we think of EST as a heuristic estimate for Rygy in finite

markets with [W| > |M]|.

e For the case |[M| > |W|, Theorem 2 implies that, with high probability (asymptoti-
cally in \W|), Ruex/EST > 1 — € under all stable matches (including the MOSM and
WOSM). Hence, we think of EST as a heuristic lower bound for Rygx in finite markets
with |W| < |IM]|.

E Chernoff bounds

Fact E.1 Chernoff bounds (see Durrett (2010)). Let X; € {0,1} be independent with P[X; =
=0, for1<i<n. Let X =>" X, and \=)""_ 0;.

(i) Fiz any 6 € (0,1). Then
P(|X — A > ) < 2exp{—6\/3}. (12)
(i) For any R > 6\, we have

P(X > R) <27 (13)
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