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In school choice, children submit a preference ranking over schools to a centralized assignment algorithm, which takes

into account schools’ priorities over children and uses randomization to break ties. One criticism of existing school choice

mechanisms is that they tend to disperse communities so children do not go to school with others from their neighborhood.

We suggest to improve community cohesion by implementing a correlated lottery in a given school choice mechanism:

we find a convex combination of deterministic assignments that maintains the original assignment probabilities, thus

maintaining choice, but improving community cohesion.

To analyze the gain in cohesion for a wide class of mechanisms, we first prove the following characterization which

may be of independent interest: any mechanism which, in the large market limit, is non-atomic, Bayesian incentive

compatible, symmetric and efficient within each priority class, is a “lottery-plus-cutoff” mechanism. This means that the

large market limit can be described as follows: given the distribution of preferences, every student receives an identically

distributed lottery number, every school sets a lottery cutoff for each priority class, and a student is assigned her most

preferred school for which she meets the cutoff. This generalizes Liu and Pycia (2012) to allow arbitrary priorities. Using

this, we derive analytic expressions for maximum cohesion under a large market approximation. We show that the benefit

of lottery-correlation is greater when students’ preferences are more correlated.

In practice, although the correlated-lottery implementation problem is NP-hard, we present a heuristic that does well.

We apply this to real data from Boston elementary school choice 2012 and find that we can increase cohesion by 79% for

K1 and 37% for K2 new families. Greater cohesion gain is possible (tripling cohesion for K1 and doubling for K2) if we

reduce the choice menus on top of applying lottery-correlation.

1. Introduction

In various school choice mechanisms, students submit a ranked list of schools they would like to attend, and

schools have priorities over students; a centralized assignment algorithm, which may randomize to break
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ties, determines the assignment. Such mechanisms are used to assign children to public schools in many

metropolitan areas in the US, including Boston, New York, New Orleans, San Francisco, and Chicago.

One drawback of existing school choice systems is that children from the same community end up going

to many different schools, thus weakening community ties. Ebbert and Ulmanu (2011) document 19 chil-

dren on one street in Boston going to 15 different schools, as an example of the community dispersion

due to a choice lottery. Community dispersion also raises transportation burdens: Boston Public Schools

spent $80 million in 2012 on busing students, which represents almost 10% of its total budget (Sutherland

(2012)). In his January 2012 State of the City address, Boston’s mayor Menino said,

“Pick any street. A dozen children probably attend a dozen different schools. Parents might not know

each other; children might not play together. They can’t carpool, or study for the same tests. We won’t

have the schools our kids deserve until we build school communities that serve them well.” Menino

(2012)

One important facet of building communities is to have children go to school with others from their com-

munity, so the families get to know one another through common activities. Partly motivated by this, some

have advocated abandoning school choice altogether and switching to a neighborhood-based system, in

which kids predominately go to the closest school. But choice adds value by allowing families to find an

option that fits their individual tastes, and many parents vocally defend their right to choose. Is it possible

to improve community cohesion without sacrificing choice?

The main insight of this paper is that much of the community dispersion is artificial, caused purely by

the allocation algorithm using independently drawn lottery numbers. If we had used a “correlated-lottery,”

then we could implement the same assignment probabilities but improve cohesion. Consider the following

example: There are 2 schools with 2 seats each, and 8 students from 2 communities. Students A, B, C, D

are from community I, and E, F, G, H are from community II. Students A, B, E, F prefer school 1, and C,

D, G, H prefer school 2. Suppose for simplicity that the choice mechanism is Random Serial Dictatorship–

students are ordered uniformly randomly and they pick schools sequentially according to this order. It is

straightforward to work out the assignment probabilities (see Table 1).

Conditional on being assigned, what is a student’s chance of being assigned with someone else from

the same community? Because there are 2 communities and everything is symmetric, we expect this to be

roughly 1
2
. Working out the details, we get that the answer is in fact 13

35
≈ 37%.

However, the random assignment in Table 2 generates the same assignment probabilities for everyone,

while always keeping communities together.

From each individual’s perspective, the second random assignment is “equivalent” to the first, in the sense

that the individual has the same probabilities of being assigned to each school as before. As a result, every

individual’s expected distance to school, expected “academic quality” of assigned school, probabilities of
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Assignment Probability
Community Student Preference School 1 School 2

I

A 1� 2 61/140 9/140
B 1� 2 61/140 9/140
C 2� 1 9/140 61/140
D 2� 1 9/140 61/140

II

E 1� 2 61/140 9/140
F 1� 2 61/140 9/140
G 2� 1 9/140 61/140
H 2� 1 9/140 61/140

Table 1 Assignment probabilities from example. For example, student A from community I prefers school 1 over 2, and in the

randomized assignment she is assigned to school 1 with probability 61/140 and school 2 with probability 9/140. With remaining

probability 1
2

, she is not assigned (or assigned to an outside option).

Assignment
Community Student i ii iii iv

I

A 1 2
B 1 2
C 1 2
D 1 2

II

E 2 1
F 2 1
G 2 1
H 2 1

Probability 61/140 9/140 61/140 9/140
Table 2 Correlated lottery implementation of the assignment probabilities from Table 1. This randomizes over 4 assignments,

each represented by a column. For example, assignment i is chosen with probability 61/140, and assigns A and B to school 1, E and

F to 2, and leaves the rest unassigned. Note that no matter what the realized assignment is, communities stay together as much as

space allows.

getting into some set of schools, are the same as before. In some sense, the second lottery implementation

achieves gains in cohesion “for free.”

Formally, we define the community cohesion of a lottery as the expected number of same-community

school peers a student can expect to see. We propose the following approach to increase community cohe-

sion in any randomized allocation mechanism: estimate the assignment probabilities for every student to

every school in the current mechanism, and implement the same assignment probabilities in a “community-

correlated” lottery. In other words, we seek a convex combination of deterministic assignments that matches

the original assignment probabilities but that maximizes cohesion. We term this optimization problem

correlated-lottery implementation.

In this paper, we address the following questions:

1. For the most prevalent mechanisms used in practice, by how much can we hope to improve community

cohesion using a correlated lottery? In what settings can we expect the most improvement?

2. How to solve the correlated-lottery optimization problem in practice?
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3. For Boston (where community cohesion in school choice has been the focus of much debate), how

much can correlated lottery improve community cohesion? How would such a method interact with other

possible reforms?

To help us address the first question, we prove a large market characterization of all mechanisms that sat-

isfy the following four properties:(1) non-atomicity (a single individual has negligible effect on assignment

probabilities of others), (2) asymptotic Bayesian incentive compatibility (given distribution of students’

preferences, taking the limit as the market size goes to infinity, students reporting truthfully forms a Bayes-

Nash equilibrium), (3) symmetry within each priority class (students with same priorities to every school

and same submitted preferences receive the same assignment probabilities), and (4) asymptotic efficiency

within each priority class (no trading cycles within each priority class). These properties are generally sat-

isfied by commonly implemented mechanisms, such as Deferred Acceptance (DA) or Top Trading Cycles

(TTC) with randomized tie-breakers, when we take a suitable limit as market size is scaled up.1 We show

that any mechanism that satisfies these properties in the large market can be interpreted as a “lottery-plus-

cutoff” mechanism, which means that students are divided into priority classes and are each given an iden-

tically distributed lottery number; given the distribution of preferences, schools set a lottery cutoff for each

priority class; students are assigned to their most preferred school for which they meet the lottery cutoff.

This generalizes a result by Liu and Pycia (2012) to allow for priorities.

Using this characterization, we derive clean expressions for cohesion with independent lotteries and opti-

mally correlated lotteries. In a large market framework, we show that baseline cohesion (using independent

lotteries) is equal to the sum of a measure of variation in school size and between-community variation

in assignment probabilities. Under an additional assumption that each community has the same priority

to all schools, we show that maximum cohesion (using optimally correlated lotteries) is the sum of base-

line cohesion and the average variance of a certain “demand function” of communities for schools. This

improvement term can be interpreted as a measure of preference correlation, with greater improvement

under higher uncertainty of lottery or under higher within-community preference correlation. Under a ran-

dom utility model, we show that if there are no priorities or between-community variation, cohesion gain

from lottery correlation increases when preferences are more correlated.

We address the second question by showing that the problem is NP-hard to solve optimally and introduce

a heuristic that performs reasonably well in practice. The underlying optimization problem is related to the

Quadratic Assignment Problem, which is in general notoriously intractable (see Burkard et al. (1998)), but

there is more structure in our case, which is exploited in our heuristic. We also derive an upper-bound to

test the optimality gap of our heuristic.

We address the third question by applying our heuristic to real data from Boston elementary school

choice, simulating what would have happened if we implemented lottery correlation in 2012 Round 1

assignment. The main grades under consideration are kindergarten 1 (K1) and kindergarten 2 (K2). Defining
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each community to be a .5 mile by .5 mile square, we show that our method improves community cohesion

by 79% for grade K1 and 37% for K2. Conditional on the student traveling outside their walk-zone (1-mile

radius), cohesion improves by 140% for K1 and 64% for K2.

We also compare our approach to reforms discussed by a mayor-appointed city committee during the

2012-2013 Boston school choice reform. The main reforms discussed were to increase the walk-zone per-

centage and and to reduce the choice menu. As of 2012, school programs were split into two halves, one

half that prioritizes students living within 1 mile (walk-zone), and one half that does not have this prior-

ity. For most programs, the walk-zone half represented 50% of seats. By increasing this percentage, policy

makers can induce a closer-to-home assignments, thus increasing cohesion. However, we showed that even

if we had made the percentage 100%, the gain in community cohesion would not be as much as if we had

kept the walk-zone percentage unchanged but used correlated lottery. Furthermore, while increasing the

walk-zone percentage would not increase the number of same-community-peers for students traveling out

of their walk-zone, correlated lottery would.

The other reform discussed by the city committee was to reduce the choice menus of students. During

this process many plans for choice menus were proposed, some involving dividing the city into more assign-

ment zones, and others involving a customized menu that depended on students’ addresses. Using simulated

choices from a discrete choice model fitted with real data, we show that the cohesion gain from lottery cor-

relation is comparable to sizable reductions in choice menus. More interestingly, the two strategies amplify

one another. For example, consider the choice menu called “Home Based A.” (This was the choice menu

eventually chosen by the city committee.) If we were to apply this choice menu reform alone, we would

improve cohesion by 46% for K1 and 30% for K2. If we were to apply correlated-lottery alone, the cohesion

gains are 88% for K1 and 39% for K2. So correlated-lottery achieves more gain. However, if we were to

apply both reform at the same time, cohesion would more than triple for K1 and more than double for K2.

So the number of neighbors students can expect to see at their assigned school would dramatically increase.

We also analyze the geographic distribution of cohesion gains due to correlated lottery, and show that

while performing correlated lottery alone yields uneven gains for K2, this would be largely mitigated if we

simultaneously reduced the choice menu. Furthermore, we show that lottery correlation has minimal impact

on racial or social-economic diversity. These analyses are in the Electronic Companion.

1.1. Related work

While there is much existing literature on school choice (see Abdulkadiroğlu and Sönmez (2003b),

Abdulkadiroğlu et al. (2009, 2006), Pathak (2011)), most of the literature focuses on individual students’

assignments and ignore the correlations between different students’ assignments. One reason for this is that

complementarities in matching is difficult to analyze theoretically.



Ashlagi, Shi: Improving Community Cohesion
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

The idea that different random assignments can represent the same assignment probabilities has appeared

before in the literature. Abdulkadiroğlu and Sönmez (2003a), note that such random assignments may differ

in their ex-post efficiency. However, in their setup there is no guideline to decide between such random

assignments. In our setup, there is the added performance measure of community cohesion. Piantadosi

et al. (2007) and Asadpour and Saberi (2010) seek for an “optimal” convex combination of assignments

that yields the highest entropy while maintaining the same assignment probabilities. In their setting, they

maximizes a concave function, which is computationally tractable. However, in our setting, we seek to

maximize a convex function, and the optimization is NP-hard. This difficulty cannot be avoided by an

alternative definition of cohesion because cohesion is inherently convex, as it corresponds to having greater

variation between assignments (either have children from a neighborhood mostly go to one school or mostly

go to another).

Our approach of defining a mechanism by implementing the marginal assignment probabilities is simi-

lar to Budish et al. (2013). They study a more general framework and address the issues of group-specific

quotas, ex-ante efficiency, ex-post fairness, and implementability of lotteries under general constraints.

However, their techniques do not handle issues involving complementarities, such as community cohesion,

and our work expands on the applicability of their framework in this domain. Another work that studies

the decomposition of assignment probabilities into deterministic assignments to achieve certain properties

is Pycia and Ünver (2012).

Randomization has been much studied in school choice mechanisms. The currently most adopted mech-

anisms break ties in school’s preferences for students using independently generated lottery numbers, and

apply the deferred acceptance (DA) algorithm or the top trading cycles (TTC) algorithm. (See Abdulka-

diroğlu and Sönmez (2003b).) Abdulkadiroğlu et al. (2009) study whether to use a single tie-breaker for

all schools or different tie-breakers for different schools, and their simulations using New York City data

shows that single tie-breaking is better. Pathak and Sethuraman (2011) show that in the absence of school

priorities both tie-breaking methods are equivalent. Erdil and Ergin (2008) illustrate the potential ex-ante

inefficiencies from running an ex-post efficient mechanism after random tie-breaking, and propose a method

to deal with such inefficiencies, but the resultant mechanism is no longer incentive compatible. Azevedo

and Leshno (2010) show that this proposed improvement may yield Nash equilibria in which the outcome

is Pareto-dominated by the original mechanism. Che and Kojima (2011) show that in the large market,

without school priorities, the deferred acceptance algorithm with a randomized tie-breaker is equivalent to

the ordinal efficient probabilistic serial mechanism, which Liu and Pycia (2012) show is equivalent in the

large market to any asymptotically efficient, symmetric, and asymptotically strategyproof ordinal allocation

mechanisms. These works suggest that there may be little room for improvement over the status quo in

terms of individual students’ welfare, given requirements of strategyproofness and fairness. Our work is dif-

ferent from these because we focus on community cohesion, which can be seen as “orthogonal” to students’
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individual assignment probabilities to schools. We show that there is in fact much room for improvement in

this direction, while also maintaining most of the good properties of the current mechanisms.

In terms of implementing other social objectives in school choice, there has been previous work in “con-

trolled school choice,” most of which focus on achieving diversity (see e.g., Ehlers (2010), Ehlers et al.

(2011), Echenique and Yenmez (2012) and Kominers and Sönmez (2012)).

A recent paper that studies neighborhood interactions in school choice is Weiwei (2013), which uses

secondary school choice data from New York City to show that students tend to choose similar schools as

their immediate neighbors. This provides empirical support that students value going to school with their

neighbors.

Outside of school choice, there has been other studies of assignment externalities. On the theoretical

side, general settings of matching with externalities usually yields negative results. (For example, in many-

to-one matching of workers to firms, if preferences can be over colleagues then the game theoretic core

can be empty. See Echenique and Yenmez (2007) for an example. (Klaus and Klijn 2005) show a similar

impossibility result even when joint preferences are between only two agents.) One empirical study that

has similar flavor to ours is Mariagiovann et al. (2012), in which they consider the assignment of faculty

members to offices in a US professional school, and study how institutional and social ties between faculty

affect their choices and the final assignment. They quantify the effects of these network externalities and

assess the matching protocol from a welfare perspective.

2. Model

There are n students to be assigned to m schools. The set of individual students is I and the set of schools

is S. Each school s ∈ S has capacity qs. Without loss of generality, we assume that all students must be

assigned. This is because we can model unassignment if needed by including a dummy school s∅ with

infinite capacity to denote “unassigned.”

The students are partitioned into k disjoint communities:

I = I1 ∪ I2 · · · ∪ Ik.

A community-membership function c : I→{1, · · ·k} maps each student to the index of the community she

belongs to. (For clarity of exposition, we refer to students using the feminine gender and the social planner

using the male gender.) As a slight abuse of notation, we may also index communities using c.

An assignment a is a mapping that takes students to schools, and we require that no school capacity is

violated. Formally, a : I → S, |a−1(s)| ≤ qs, where a−1(s) = {i : a(i) = s}. A random assignment x is a

random variable whose realizations are assignments. Denote the set of all random assignments X .

Slightly abusing notation, we sometimes represent a as an indicator matrix, in which ais is 1 if and only

if student i is assigned to school s. In this notation xis becomes a binary random variable for whether i is



Ashlagi, Shi: Improving Community Cohesion
8 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

assigned to s. And p=E[x] becomes the matrix of assignment probabilities. (pis is probability student i is

assigned to school s.)

For each student i and school s, define the school-specific utility of i for s to be uis. Abuse notation

slightly and define ui(a) := uia(i), which is student i’s school-specific utility under assignment a. Define

vi(a) to be i’s number of same-community peers under assignment a. This is the number of other students

assigned to the same school and from the same community, and can be written as vi(a) = |(a−1(a(i)) ∩

Ic(i))\{i}|.

Assume that student i’s preference over random assignments is induced lexicographically by the ordered

pair

(E[ui(x)],E[vi(x)]).

So students in our model care foremost what school they are assigned to, and within a given school

they prefer to be assigned with more peers from their community. We call this preference structure weakly

community-preferring. We assume that for each student i, uis is different for different s. Hence, the uis’s

induce for student i a complete strict ordering �∗i over schools, in which her more preferred schools are

ranked better. We call �∗i the true preference ranking of student i.

One intuitive measure of community cohesion under assignment a is simply the average number of same-

community peers assigned to the same school. We define f(a), the cohesion of assignment a, as follows:

f(a) =
1

n

∑
i

vi(a) =−1 +
1

n

∑
i

∑
j∈Ic(i)

1{a(i) = a(j)},

where 1{a(i) = a(j)} is the indicator for students i and j being assigned together. Note that nf(a)/2 is

simply the total number of pairs of students from the same community who are assigned to the same school.

The cohesion of a random assignment x is defined as E[f(x)]. (In the example in the introduction, the

expected cohesion of the first lottery is .37 and of the second is 1.)

An assignment mechanismM is a function that takes as input a strict ranking of schools �i from every

student, and outputs a random assignment. Note that the function M may implicitly incorporate various

rules for prioritizing one student over another, but these are given a-priori and are therefore not treated as

inputs.

For any mechanismM, we define its max-cohesion correlated lottery implementation as a mechanism

induced by the following maximization program:

Mmax-cohesion(input) =arg max
x

E[f(x)] (1)

s.t. E[x] =E[M(input)] (2)

x∈X.
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This optimization maximizes cohesion subject to maintaining the same assignment probabilities as the

original mechanism. This is equivalent to maximizing the second component of expected social welfare in

our utility model, which implies that if the original mechanism is Pareto-efficient with respect to school-

specific utilities, the correlated lottery implementation becomes Pareto-efficient with respect to the full

lexicographic utility. By inheriting the assignment probabilities from the original mechanism, we preserve

any statistic of the original mechanism that can be expressed in assignment probabilities, including expected

distance to assignment, probability of attending a certain set of schools, and expected value of the first

component of the preference tuple. This is attractive because the decisions of what choices students have and

who gets what priority is often the result of an intensely-debated political process, so being able to maintain

the exact same assignment probabilities for everyone, while improving community cohesion, makes this

approach less controversial.

2.1. NP-Hardness even with 2 schools

Consider the case of 2 schools. Let the schools be labeled 1 and 2, with capacities q1 and q2 respectively.

Suppose that both schools are acceptable to every student, and that the total number of seats matches the

number of students, q1 + q2 = n.

Without loss of generality, let school 1 be the over-demanded school. We assume that students’ priorities

for school 1 are based on their “priority class,” and a higher priority student always takes precedence over a

lower priority student. For students from the same priority class, we require that if they both prefer school

1, then they get in with the same probability.

Despite the generality of the priority structure, we can characterize the structure of the assignment proba-

bilities. There is a “cutoff priority level” for school 1 at which any student who prefers school 1 with higher

than cutoff priority will get in school 1; any student with lower than cutoff priority level or prefers school

2 will get into school 2; students who who prefer school 1 with exactly the cutoff priority level will be

allocated based on a fair lottery. Respectively denote these sets of students D (get in school 1 for sure), F

(get in school 2 for sure), and E (allocated based on lottery). Define the number of seats to be assigned by

lottery to be q∗ = q1− |D|. Students in E are assigned to school 1 with probability

p=
q∗

|E|
,

and school 2 otherwise. The random assignment is illustrated in figure 1.

An upper-bound on cohesion is if communities in E are always assigned together. In order to achieve

this, we need to be able to partition E into subsets of size q∗, which is a hard “packing” problem. So it is

computationally hard to decide whether this upper-bound can be achieved.

PROPOSITION 1. Unless P=NP, even with 2 schools, there exists no polynomial time algorithm (or FPTAS)

to compute the maximum achievable cohesion by correlated lottery implementation.
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Figure 1 Random assignment in the 2-school case: students who prefer school 1 with higher than cutoff priority level (set D)

get in for sure; students who prefer school 1 with exactly the cutoff priority level (set E) get in with probability

p = q∗

|E| ; students who prefer school 2 or whose priority level is lower than cutoff (set F ) get in school 2 for sure.

However, if there are many communities and no single community dominates in size, one can show that

we can achieve this upper-bound approximately. By analyzing the “large market limit” as the number of

communities go to infinity, one can obtain an exact formula for max-cohesion. We defer this to the Online

Appendix because the insights are similar to the insights from the large market analysis in Section 4, which

uses a model that can encompass many schools.

This NP-hardness result precludes us from having nice expressions for cohesion from correlated lottery

in the finite market model. To circumvent this difficulty, we “smooth away” the NP-hardness by considering

the “large market” environment, in which there is a continuum of communities. Although in practice the

number of communities is finite, the continuum model allows for simple analytic expressions for maximum

cohesion and improvement by correlated lottery, thus illustrating the underlying insights in a clean way.

In Section 3, we setup a large market model and prove a useful characterization result, which may be

of independent interest. In Section 4, we use this characterization to gain insights about how much we can

gain in cohesion from lottery correlation and in what environments we can expect the most improvement.

3. Large market characterization of reasonable one-sided matching
mechanisms with priorities

In this section, we define a large market model for one-sided matching markets with priorities. We show

that in this setup, any mechanism that satisfies certain regularity conditions (non-atomicity, Bayesian incen-

tive compatibility, symmetry and efficiency within each priority class) can be interpreted as “lottery-plus-

cutoff”: each student is given an identically distributed lottery number and each school sets a lottery-cutoff

for each priority class (the cutoffs may depend on the distribution of preferences for each priority class); a

student is assigned her most-preferred school for which she meets the cutoff. This sets up the basis for our

analysis of cohesion in Section 4. However, this characterization itself does not have to do with communities

or cohesion.
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3.1. Large market model

Let the set of students, I , be represented by a subset of Euclidean space of Lebesgue measure 1. Let S be a

finite set of schools, with |S|=m. For s∈ S, let qs be the school’s capacity.

As before, each student i submits preferences �i, which is a ranking of schools. We assume that every

school is acceptable to every student, and that every student ranks all schools. There are m! possible rank-

ings, and we assume that for each possible ranking, the set of students that submit this ranking is measurable.

Our model is one-sided matching with priorities, which means the following. Students are partitioned

into priority classes Π. We assume that for each priority class, the set of students of that priority class is

measurable and of positive measure. Furthermore, the distribution of priority classes and the distribution of

preferences within each priority class is common knowledge.

Given students’ preferences and priorities, an assignment mechanism is represented by a random indica-

tor function 1s(i), which equals 1 if student i is assigned to school s, and 0 otherwise. We assume that the

assignment mechanism satisfies the following regularity conditions in the large market setting:

• Non-atomicity: Any single student changing her preferences has no effect on the assignment probabil-

ities of others.

• Bayesian incentive compatibility in school-specific utilities: Given the distribution of students’ prefer-

ences within each priority class, students reporting truthfully is a Bayes-Nash equilibrium. In other words,

given the measure of students of each priority class and of each possible preference ranking, assuming

that everyone else reports truthfully, a student cannot improve her expected school-specific utility E[ui] by

submitting a false preference. Henceforth we denote this simply by “incentive compatibility.”

• Symmetry: Students in the same priority class with the same preferences receive the same assignment

probabilities.

• Efficiency within each priority class: For students in the priority class, there does not exist a Pareto

improvement “trading cycle” where by s0 ≺i0 s1, s1 ≺i1 s2 · · ·sl ≺il s0 and i0 has positive probability of

being assigned s0, i1 has positive probability for s1, etc.

Note that since these conditions only need to hold in the large market, one can interpret them as only need-

ing to be “asymptotically” true. This means that for example, the “incentive compatibility” condition in the

above is actually the less-restrictive incentive compatibility “in the large” condition described in Azevedo

and Budish (2012). Taking the suitable limit and ignoring“knife-edge” cases, two of the most widely used

mechanisms–Deferred Acceptance with Single Tie-breaking (DA-STB) and Top Trading Cycle with Single

Tie-breaking (TTC-STB), assuming that students are allowed to rank as many choices as they would like,

both satisfy the above conditions in the large market, so both fall into our framework.2 DA-STB is used in

Boston, New York, Denver and San Francisco. TTC-STB is used in New Orleans. For descriptions of these

mechanisms, see Abdulkadiroğlu and Sönmez (2003b) and Abdulkadiroğlu et al. (2009).
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This model is similar to the continuum two-sided matching model in Azevedo and Leshno (2012). The

main difference is that preference structure is one-sided in our model and two sided in their model: only

students have preferences over schools in our model, while schools also have strict preferences over students

in their model. In their paper, they show that a continuum two-sided matching model can be interpreted

as a limit of discrete matching models. This provides a theoretical foundation for such continuum models.

Other works that use continuum matching models include Abdulkadiroğlu et al. (2008), Miralles (2008),

and Budish and Cantillon (2012).

3.2. A characterization theorem

We show that in the large market model, any mechanism that satisfies our four regularity conditions can be

described as a “lottery-plus-cutoff” mechanism: each student gets an identically distributed lottery number

and each school sets a lottery-cutoff for every priority class; a student is assigned her most preferred school

for which her lottery meets the cutoff.

DEFINITION 1. A mechanism is lottery-plus-cutoff if it can be described as follows: given preference sub-

missions, each student i receives an identically distributed lottery number zi (may be jointly correlated).

WLOG, zi ∝Uniform[0,1). Given the measure of students in each priority level submitting each ranking,

schools have a priority-dependent lottery cutoff z∗π,s. Student i is assigned her most preferred school for

which she meets the cutoff (zi ≥ z∗π(i),s).
If in addition the lottery numbers zi are independently generated for different students, then we call the

lottery independently implemented.

THEOREM 1. In the continuum model, an assignment mechanism is non-atomic, Bayesian incentive com-

patible, symmetric and efficient within each priority class if and only if it is a lottery-plus-cutoff mechanism.

The core ideas behind the proof appeared previously in Liu and Pycia (2012), which shows that without

priorities and in the large market, any mechanism that is non-atomic, strategyproof, symmetric and efficient

is equivalent to the so-called probabilistic serial mechanism, or equivalently lottery-plus-cutoff with one

priority class. The main difference with our result is that while their setup does not have priorities, we allow

arbitrary priorities. Moreover, while their analysis studies the limit as a discrete model is scaled up, our

analysis is directly in the continuum setting. Our proof is given in the Online Appendix EC.3.

One way to interpret the above result is that in a large one-sided many-to-one matching market, asymp-

totic incentive compatibility and asymptotic efficiency within each priority class constrain the mechanism

significantly, leaving policy makers with only two control levers: (1) cutoffs for each priority class and (2)

lottery correlation. Assuming in addition that the mechanism does not waste desirable resources, then the

first lever, determining cutoffs, is a purely distributional question: how much claim does each priority class

have on each resource and whether such claims can be traded.3 The second lever, lottery correlation, is what

we study in this paper.
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4. Cohesion in the large market model

The characterization in Section 3.2 allows us to study the impact of lottery-correlation in a wide class of

mechanisms. Once we know that a mechanism is “lottery-plus-cutoff,” we can isolate the effects of lottery-

correlation by treating the cutoffs as given. By doing this, we insulate the analysis from the complexities of

how the mechanism treats different priority classes, as all such subtleties are endogenized into the cutoffs.

We first define communities and cohesion in the large market model. Let the unit interval C = [0,1]

represent a continuum of communities. (We need infinitely many communities in order to show analytic

results, because the hardness result in Section 2.1 still hold even if we had infinitely many students per

community but a finite number of communities.) Let the set of students within each community be also

represented by the unit interval [0,1], so the set of all students can be represented by the Cartesian product of

two unit intervals, which is the unit box, I = [0,1]2. Each student i∈ I can be represented by its coordinates

(c, y), in which c is the student’s community and y is the student’s index in this community. (This implicitly

assumes that communities have equal size, but this can be relaxed.) The community membership function

c(i) is simply the first coordinate of i. For simplicity, assume that the total supply of seats equals total

demand, so
∑

s qs = 1.

Define the cohesion for school s, f s =E[1s(i)1s(i
′)|c(i) = c(i′)]. This is the expected measure of same

community pairs assigned to s. Define f =
∑

s f
s as the total cohesion, which is the measure of pairs of

students from the same community assigned to the same school.

Our analytical results on max-cohesion correlated lottery require an additional assumption, which we call

homogeneity of cutoffs within communities.

ASSUMPTION 1. For each school, everyone from the same community sees the same cutoffs to this school.

This would hold if everyone in the same community belongs to the same priority class, which would be

the case if communities and priorities were purely geographically based and communities stay together in

any geographic division. Under this assumption, maximum community cohesion can be attained by giving

everyone in the community the same lottery number. Without this assumption, all of the expressions for

max-cohesion in this section would still hold as upper-bounds, but they might not be attainable.

Given students submitted preferences and the mechanism, define the following quantities:
ps(i) := probability of student i of being assigned to school s. For i =

(c, y), we also write ps(c, y) := ps(i).
1s(z|i) := Indicator for whether student i at lottery z would be assigned to

school s. (It is 1 iff at lottery z, student i finds school s to be her
most desirable option for which she meets the lottery cutoff.) We
call this student i’s demand function for school s.

p̄s(c) :=
∫
y
ps(c, y)dy. The total assignment probabilities to s of students

in community c.
ds(z|c) :=

∫
y
1s(z|(c, y))dy. The total demand for s from community c at

lottery z. We call this community c’s demand function for s.
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These quantities, as well as the cutoff structure, are illustrated in Figure 2. This graphs the students in a

community on the horizontal axis and the lotteries on the vertical axis. It is a “slice” of a cube which would

correspond to I = [0,1]2 in two dimensions and lottery z ∈ [0,1] in the third dimension.

Figure 2 Assignment within community c: horizontal dimension is students and vertical dimension is lottery numbers. z∗1 ,

z∗2 , z∗3 and z∗4 are lottery cutoffs for community c of schools 1,2,3,4 respectively (well-defined because we assume

everyone in the same community are in the same priority class). d3(z′|c) is the demand function for school 3 at lottery

z′. p3(c, y′) is the probability student y′ is assigned to school 3. The area shaded with the same color represents the

1-dimensional measure of assignment probabilities of students from this community to a school (p̄s(c)).

Note from Figure 2 that p̄s(c) =Ez[ds(z|c)], because both are equal to the “area” assigned to school s.

The first is integrating horizontally, and the second is integrating vertically.

The following theorem provides a simple analytical formula for cohesion to any given school in the

independent and max-cohesion lottery implementations. The formula for the max-cohesion case uses the

additional assumption that everyone in the same community has the same cutoff for the school.

THEOREM 2. In the continuum model, for any school s, the cohesion from independent lottery implemen-

tation is:

f sindependent =Ec[p̄s
2] = q2s + Varc(p̄s).

Under Assumption 1,

f smax =Ec,z[d
2
s] = f sindependent +Ec[Varz(ds|c)].
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Thus, the total cohesion,

findependent =
∑
s

q2s +
∑
s

Varc(p̄s),

fmax =findependent +
∑
s

Ec[Varz(ds|c)].

We call findependent the Baseline cohesion, and (fmax−findependent) the potential gain in cohesion from correlated

lottery.

The proof (see Online Appendix EC.3) follows from the cutoff structure, re-arranging orders of integra-

tion, and the law of total variance. We interpret the terms as follows.

•
∑

s q
2
s : Herfindahl index of school size. This is a measure of variation in school sizes. The more varied

school sizes are, the higher the baseline cohesion.

•
∑

s Varc(p̄s): Between community variation in assignment probabilities. The more varied assignment

probabilities are between communities, the higher the baseline cohesion.

•
∑

sEc[Varz(ds|c)]: Potential gain in cohesion from using correlated lottery. For each school, the sum-

mand is the average across communities of the variation in demand function. In other words, it is how

much, on average, the lottery number affects the mass of students from a community assigned to a school.

Intuitively, this has to do with how competitive schools are (high cutoffs), and how correlated preferences

within a community are. This intuition is made more precise in Corollary 2.

By manipulating the expressions in Theorem 2, we immediately yield 2 corollaries. The first shows

that the maximum possible improvement ratio is upper-bounded by the number of schools, which can be

achieved if all schools have size 1
m

and all students share the same preferences. The second corollary

interprets the gain in cohesion as a weighted average of an aggregate statistic representing competition and

preference correlation.

COROLLARY 1. (Upper-bound on improvement ratio)

fmax

findependent
≤ 1∑

s q
2
s

≤m.

COROLLARY 2. Under Assumption 1, the proportional improvement in cohesion for lottery correlation can

be interpreted as a weighted measure of the Squared Coefficient of Variation (SCV) of the demand function.

Define the Squared Coefficient of Variation SCVds(c) = Varz(ds|c)
Ez [ds|c]2

. Intuitively, the SCV of the demand function

is a combination of competition (high cutoffs) and high within-community preference correlation.

Define weights wc =Ez[ds|c]2 = p̄s(c)
2. For any school s, the proportional improvement in cohesion is

a weighted average of the SCV:
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f smax− f sindependent

f sindependent
=
Ec[wcSCVds(c)]

Ec[wc]
.

We now show that maximum cohesion in our large market setup can also be expressed as a constant

minus a measure of within-community heterogeneity. More precisely, define ∆s(i, i
′) = |ps(i) − ps(i′)|.

This is the absolute difference in assignment probabilities to school s for individuals i and i′. Define the

mean absolute difference in assignment probability for school s and community c to be

∆̄s(c) =Ei,i′∈c[∆s(i, i
′)].

This is the expected value of ∆s(i, i
′) for two randomly drawn individuals i, i′ from community c. Aver-

aging across communities, Ec[∆̄s(c)] is then an aggregate measure of within-community heterogeneity in

assignment probabilities to school s. The following proposition shows that maximum cohesion to a school

s is equal to the size of the school minus one half of this measure of within-community heterogeneity.

PROPOSITION 2. (Cohesion is limited by within-community heterogeneity) Under Assumption 1,

f smax = qs−
1

2
Ec[∆̄s(c)].

So that summing across all schools, fmax = 1 − 1
2

∑
sEc[∆̄s(c)], where the term being subtracted is an

aggregate measure of within-community heterogeneity in assignment probabilities.

The expression for gain in cohesion in Corollary 2 is exact but difficult to think about. The SCV of

demand function is hard to estimate. The following proposition bounds potential gain from lottery correla-

tion by an easier-to-estimate measure of lottery uncertainty.

PROPOSITION 3. (Decomposition of potential to improve) Under Assumption 1, the gain from cohesion

from correlated lottery is equal to the average individual assignment variance minus a function of within-

community differences in assignment probabilities.

f smax− f sindependent =Ei[ps(1− ps)]−
1

2
Ec(i)=c(i′)[∆s(i, i

′)(1−∆s(i, i
′))]

≤Ei[ps(1− ps)].

In the first line, the first term is the average across individuals of assignment variance to school s; this is a

measure of how uncertain the lottery is for school s. The second term is minimized when ∆s(i, i
′) is either

close to 1 or close to 0. In other words, for correlated lottery to be most effective, we desire that for two

students within the same community, they either get assigned to a school with very similar probabilities, or

one gets assigned with very high probability and the other with very low probability. Because the second

term is always non-negative, gain from cohesion is upper-bounded by the uncertainty of the lottery.
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The following proposition shows exactly when lottery-correlation is useful. It turns out that for every

school, the following three quantities add up to a constant:

1. Between-community heterogeneity in assignment probability.

2. Within-community heterogeneity in assignment probability.

3. Potential to improve cohesion by lottery-correlation.

So that we are generally in one of the following 3 cases:

1. High between-community heterogeneity: cohesion with independent lottery is already high.

2. High within-community heterogeneity: there is nothing we can do. Maximum cohesion is severely

limited.

3. High potential to improve.

PROPOSITION 4. (Structural identity) For every school s, the following three terms add to a constant:

qs(1− qs) = Varc(p̄s) + 1
2
Ec[∆̄s(c)] + (f smax− f sindependent)

between-community
heterogeneity

within-community hetero-
geneity

potential to improve

This relationship is illustrated in Figure 3.

Figure 3 Diagram illustrating structural identity (Proposition 4). The triangle represents 3 quantities that add up to a constant.

There are 3 possible cases: A) high between-community variation in assignment probability, so baseline cohesion is

already high. B) high within-community heterogeneity in assignment probability, so there is nothing we can do by

Proposition 2. C) significant potential to improve cohesion by correlated lottery. Corollary 2 shows that potential to

improve can be interpreted as baseline cohesion multiplied by a weighted average of the SCV (squared coefficient

of variation) of the demand function (with respect to the lottery z). The SCV can be interpreted to correspond to a

mixture of preference correlation and competition. Proposition 3 shows that the improvement is upper-bounded by a

measure of total uncertainty of the lottery. This relationship holds not only overall but also school by school.
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4.1. Embedding a model with preferences

To more directly illustrate the relationship between preference structure and cohesion, we consider an

explicit model of students’ preferences. Suppose that student i’s preferences for schools is driven by random

utility model

uis = ανs−βωc(i)s + εis,

where νs corresponds to “quality” of school s, ωcs is distance from community c to school s (more generally

can capture any community-specific propensities for specific schools), and εis is an idiosyncratic shock

drawn from a standard Gumbel distribution. This is a realistic structure of preferences that has been used

to fit data in empirical studies. (See Pathak and Shi (2013).) For simplicity, we assume that for different

schools s, s′, νs 6= νs′ and ωcs 6= ωcs′ . We assume that there are no priorities, so Assumption 1 trivially hold.

We study the behavior of findependent and fmax as functions of α and β.

The following proposition shows the limit behavior of findependent and fmax as α (how much quality mat-

ters) or β (how much distance matters) goes to infinity. It shows that if there is no between-community

heterogeneity (β = 0), cohesion with independent lotteries is fixed and is the lowest possible, regardless

of how correlated students preferences are. On the other hand, with correlated lottery, perfect cohesion

can be achieved without between-community heterogeneity, if preferences for quality are very correlated.

With high between-community heterogeneity, perfect cohesion can be approached in both independent and

correlated cases. This corroborates the triangle diagram in Figure 3.

PROPOSITION 5. Assume that capacities are such that when everyone goes to their closest school, the

closest school can accommodate. For any α0,

findependent(α0,0) =
∑
s

q2s , (3)

lim
β→∞

findependent(α0, β) = 1. (4)

For the correlated case, regardless of capacities, for any α0 and β0,

lim
α→∞

fmax(α,β0) = 1, (5)

lim
β→∞

fmax(α0, β) = 1. (6)

While the above result is only for the limit, the following proposition shows comparative statics for the

finite case, in the special case that β = 0. It shows that if capacities are not too different so that more

desirable schools are also more over-demanded (more applicants per seat), then as preferences become more

correlated, cohesion from independent lottery stays fixed, while cohesion from correlated lottery increases.
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THEOREM 3. (Pure vertical differentiation) Suppose that β = 0 (no between-community heterogeneity).

Let rs = eνs . Suppose that the schools are ordered so that the more desirable schools are first, so r1 >

r2 > r3 · · · . Assume that capacities are not “too different,” so that dividing by capacities do not change this

relative order, so r1
q1
≥ r2

q2
≥ r3

q3
· · · . Then for every school s, while f sindependent(α,0) = q2s is constant in α,

f smax(α,0) is strictly increasing in α.

5. Computing the correlated lottery implementation in practice

Fixing students’ submitted rankings, let p be the assignment probabilities of the original mechanism. (pis is

the probability student i is assigned to school s under the mechanism.) The max-cohesion correlated-lottery

implementation problem can be written as

Max E[f(x)] (7)

s.t. E[x] = p

x∈X.

Define the assignment polytope

P =

{
a∈Rn×m :

∑
s

ais = 1,
∑
i

ais ≤ qs,0≤ ais ≤ 1

}
.

Represent random assignment x explicitly as {(λl, al) : al ∈ Vertices(P), λl ∈ [0,1],
∑

l λ
l = 1}, so that

x= al with probability λl, and let A be the nm by |Vertices(P)| matrix in which the columns encode the

vertices of assignment polytope P . Define f(A) naturally as the vector in which the lth component is the

cohesion of the lth column of A. We can rewrite the above in the more explicit form

Max f(A) ·λ (8)

s.t. Aλ= p

~1 ·λ= 1

λ≥ 0.

which is a standard form linear program (albeit with exponentially many variables). The theory of LP

implies that there is an optimal solution with only nm positive components of λ (because rank

(
A
~1

)
≤ nm).

In other words, for any assignment probabilities {pis}, there exists a random assignment x with E[x] = p

which randomizes over at most nm deterministic assignments and achieves maximum cohesion.

This suggests the following mechanism.

1. Estimate the individual assignment probabilities pis of the original mechanism by independently sim-

ulating T times. Note that the computed estimates are unbiased and have component wise standard deviation√
(1−pis)pis

T
≤ 1

2
√
T

.
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2. Use the estimated p as inputs to program (8) and compute a convex combination of deterministic

assignments {(λl, al) :
∑

l a
l = 1}. Output assignment al with probability λl.

For any T , the resultant randomized mechanism induces the same individual assignment probabilities as

the original mechanism (using crucially the unbiasedness of the simulation in first step).

The only difficulty is what algorithm to use to solve the intractably large program (8). As shown in

Proposition 1, solving the cohesion optimization is NP-hard even with 2 schools. In Online Appendix EC.1,

we show that the case with many schools is related to the notoriously hard Quadratic Assignment Problem

(QAP), which is NP-hard to approximate to any constant factor (Burkard et al. (1998), Sahni and Gonzalez

(1976)).

We propose a simple heuristic to solve this in practice. This heuristic is related to the Birkhoff-von

Neumann theorem, as it seeks to express the original assignment probabilities as a convex combination

of deterministic assignments by iteratively breaking off one deterministic assignment at a time. To find a

deterministic assignment at each iteration, it solves a max-weighted bipartite perfect matching problem,

with the students on one side of the graph to be matched to the schools on the other side. As input to the max-

weighted matching procedure at each iteration, we define an edge from a student to a school if and only if the

assignment probability of that student to the school is positive, after having subtracted off the deterministic

assignments from previous iterations. The weight of this edge is randomly generated, but we constrain the

weights to be the same for everyone from the same community to the same school. An intuition of why

this might work is that conditional on student i being assigned to school s in the max-weighted perfect

matching, the edge weight of that student to the school is probably high, and so the edge weight of other

students from i’s community to s is probably high, so we expect many of them to be co-assigned with i to

s. Another intuition is that giving the same edge weights to students of the same community reduces “local

minima” in which a trading cycle can increase cohesion. Details of the heuristic and elaborated intuition

is in Appendix EC.1. We implemented our correlated-lottery implementor in Java (code is available upon

request). Our heuristic does not require Assumption 1 to hold. As shown in Section 6, this heuristic achieves

good results even when students of the same community have different priorities. Assumption 1 was only

needed to prove exact analytical results in the large market case.

5.1. An upper-bound on maximum cohesion

To evaluate the optimality gap of our heuristic, we derive a simple upper-bound to the correlated lottery

implementation mathematical program (7). Consider student i and school s, conditional on the student

being assigned to s, the expected number of same community peers that can be co-assigned to school s,

E[vi(x)|xis] is upper-bounded by

E[vi(x)|xis]≤min

(qs− 1),
∑

c(i′)=c(i),i′ 6=i

min(1,
pi′s
pis

)

 .
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Where the first term follows from the capacity constraint of s, and the second term follows from

E[xi′s|xis] =
E[xisxi′s]

pis
≤ min(pis,pi′s)

pis
.

Summing over all students and taking the expectation over school s, we get that cohesion is upper-

bounded as follows.

E[f(x)] =
1

n

∑
i,s

pisE[vi(x)|xis] (9)

≤ 1

n

∑
i,s

min

pis(qs− 1),
∑

c(i′)=c(i),i′ 6=i

min(pis, pi′s)

 . (10)

6. Application to Boston elementary school choice

6.1. Description of school choice in Boston

School Choice in Boston Public Schools (BPS) began with the adoption of the Controlled Choice Student

Assignment Plan in 1988. The plan organized public elementary and middle schools into three zones–

East, North, and West–and students were given the option to apply to any set of schools within their zone.

To apply, students submitted ranked lists of their preferred schools, and a centralized lottery produced

the assignment. Since then, policies regarding the assignment process have been revised numerous times,

including the lottery algorithm itself, but the overall framework of the process remained the same.

Our empirical study focuses on BPS elementary school assignment in 2012, which is when Mayor

Menino made his call to improve community cohesion in school assignment. We focus on elementary

schools because this is arguably the time when going to school with neighbors is most important, and

because this was the focus of the mayor’s call for reform. The goal of this study is to analyze what would

have happened if we had adopted a correlated lottery procedure to improve community cohesion in 2012,

and to compare with alternative approaches to improve cohesion considered by the mayor-appointed city

committee.

The vast majority of students enter BPS elementary schools via entry grades K1 and K2 (K for kinder-

garten). To enroll, students participate in one of 4 application rounds by submitting rankings over specific

programs in schools (a school may offer several programs: regular, English Language Learner, Montessori,

etc). They can rank as many schools as they would like. The first round occurs in January. and this is when

the majority of families participate (about 80% of families who eventually apply first apply in Round 1.) For

families that come later, there are 3 smaller subsequent rounds that take place from March to June. There

is also a wait-list process in which families may get a seat at a subsequent round if more capacity becomes

available or if others drop out. The wait-list favors applicants from earlier rounds so it is always the best to

apply in Round 1. For simplicity, since the majority of seats are allocated in Round 1, we focus on Round 1

in this paper.
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After families submit choices, the assignment is computed by Deferred Acceptance with Single Tie-

Breaker (DA-STB). This was adopted in 2005 to eliminate the need for strategic manipulation. See Abdulka-

diroğlu et al. (2006). More precisely, each program is internally divided into 2 halves, a walk-zone half

and an open half. Students’ preferences on programs are augmented into preferences on halves, such that

students living in the walk-zone (within one mile of school) prefers the walk-half and students from out-

side the walk-zone prefer the open half. (Preferences between different programs are maintained in the

augmentation.)

Each of the program halves also rank students in the following way: each student is given an i.i.d. ran-

dom lottery number. The ranking over students is induced by several levels of priorities (1st level is most

important, 2nd is to break 1st level ties, 3rd level is to break 2nd level ties, etc). The priorities are given in

Table 3.

Hierarchy Priority rule
1st level continuing students > others
2nd level have sibling in this school > others
3rd level (only for walk-halves) lives in walk-zone > others
4th level by lottery number

Table 3 Order of priorities used in Boston elementary school assignment in 2012. The earlier level priorities are more

important, with later levels only used to break ties. The 3rd level is applied only for walk-zone halves.

Given students’ rankings on program halves and program halves’ rankings on students, assignment is by

the student-proposing deferred acceptance algorithm, which is as follows:

1. Find an unassigned student, have her apply to her top remaining choice.

2. If the program half is not full, accept her; otherwise, bump out the least preferred student from that

program half (which may be her), and remove this program half from that student’s ranking.

3. Iterate until all unassigned students have gone through all their choices.

It is well-known that the above algorithm induces a unique assignment regardless of the order of application.

(See Roth and Sotomayor (1990).) This induces an assignment of students to school programs, and this

assignment is mailed to families. It is well-known that if families can submit as many choices as they would

like and if their submissions do not influence the priorities, then this assignment process is strategyproof for

all students. (See Abdulkadiroğlu and Sönmez (2003b).)

6.2. Data

We use 2012 Round 1 choice data for grades K1-2, which have been anonymized but still contain informa-

tion on students’ demographics, geocode (division of Boston into 868 smaller regions), top 10 choices, and

final assignment. Although we were not given capacities of programs, we were able to infer them from final

assignments. As a check, we were able to replicate 98.2% of K1 assignment and 99.0% of K2 assignment
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K1 K2 K1-2
Schools 66 75 75
Programs 106 123 229
Seats 1921 3689 5610

Continuing students
167 1904 2071
(6%) (47%)

Non-continuing siblings
690 467 1158

(26%) (12%)

New families
1809 1659 3469
(68%) (41%)

Total Students 2666 4030 6696
Table 4 Summary statistics of the choice data.

K1 K2
% of students % assigned top

choice
% of students % assigned top

choice
Continuing 6% 92% 47% 95%
Non-continuing siblings 26% 80% 12% 79%
New families 68% 24% 41% 29%

Table 5 Percentage of students of each type getting their top choice. For example, for K2, 47% of students are continuing from

K1, and 95% of them get their top choice.

(excluding students who were administratively assigned by BPS after the assignment algorithm described

before has finished). Table 4 summarizes the supply and demand data.

In the data it turns out that the lottery mostly matters only for new families (non-continuing, non-siblings).

Table 5 tabulates the fraction of students of each type getting their top choice.

Since continuing students and siblings are very likely to be assigned their first choice (so there is essen-

tially no lottery for most of them), we can only hope to significantly impact via lottery correlation those

who are new families. So in reporting outcomes, we focus on the new families.

Our approach also takes as input delineations of community. The city may want to do this based on

natural dividing lines or other considerations. For the purpose of this study, we simply use a square grid of

.5 miles in length, with each .5 mile × .5 mile square defining a community. Figure 4 plots the geographic

distribution of all 6696 K1-2 students, partitioned into 205 non-empty communities.

6.3. Impact of correlated lottery implementation

We take the actual choices, simulate the current assignment algorithm 1000 times with independently drawn

lottery numbers to estimate the assignment probabilities, and run the correlated lottery heuristic described in

the Online Appendix EC.1.1 to produce another 1000 assignments with the same assignment counts for each

student-program pair, but correlated so within the same assignment students from the same community are

more likely to be co-assigned to the same school. Drawing one of the 1000 correlated assignments is then

a correlated lottery that replicates the estimated assignment probabilities for all students, but has improved

cohesion. In Table 6, we tabulate for various groups of students their average baseline cohesion (with-

out correlation), improved cohesion (with correlated lottery), upper-bound to cohesion (from Section 5.1),
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Figure 4 Partition of Boston into .5 mile×.5 mile squares. We treat each square as a community. Each circle corresponds to a

geocode, and the area of the circle is proportional to the number of students residing at the geocode. Defined in this

way, the average number of students per community is 2666/205 = 13 for K1 and 4030/205 = 19 for K2.

Baseline Improved Upper-bound Improvement Bound on Improvement
K1
All students 1.35 2.11 2.70 0.75 1.34
Continuing students 1.30 1.32 1.38 0.02 0.08
Non-continuing siblings 1.35 1.43 1.56 0.08 0.21
New families 1.36 2.44 3.26 1.08 1.90

K2
All students 2.48 2.89 3.39 0.42 0.91
Continuing students 2.26 2.27 2.30 0.01 0.04
Non-continuing siblings 2.91 3.01 3.23 0.10 0.32
New families 2.61 3.58 4.69 0.97 2.08

Table 6 Impact of lottery correlation on cohesion for various groups of students. For example, for K1 new families,

conditional on being assigned, students on average can expect to find 1.36 same-community peers. If we use correlated-lottery, the

number of same community peers improves by 79% to 2.44. Based on the given assignment probabilities, no correlation procedure

can produce cohesion greater than 3.26. Using correlated lottery, the average K1 new family gains 1.08 additional

same-community peers. No correlation procedure can produce a gain greater than 1.90.

amount of improvement (improved minus baseline), and upper-bound on improvement (upper-bound minus

baseline).

As can be seen, while lottery correlation does little for continuing students and siblings (who mostly get

their 1st choice regardless of the lottery), it increases average cohesion for new families by about 1 in both

K1 or K2. This is one additional “neighbor” these students can find at their school assignment, which is a
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Baseline Improved Upper-bound Improvement Bound on Improvement
K1
All 0.53 1.11 1.48 0.58 0.95
Continuing students 0.55 0.58 0.60 0.03 0.04
Non-continuing siblings 0.54 0.64 0.73 0.10 0.19
New families 0.53 1.26 1.73 0.74 1.20

K2
All 0.98 1.34 1.71 0.36 0.73
Continuing students 0.93 0.95 0.99 0.02 0.06
Non-continuing siblings 1.01 1.12 1.31 0.12 0.31
New families 1.00 1.64 2.27 0.64 1.27

Table 7 Expected number of same-community peers co-assigned conditional on being assigned outside of walk-zone. This is

the number of same-community neighbors a student who is traveling outside of his/her 1-mile walk-zone can expect to find at

his/her assigned program. So for a K1 new family, conditioning on the student going outside of walk-zone for school, he/she on

average has only 0.53 neighborhood peers in the current lottery. But with correlated lottery this more than doubles to 1.26.

Without changing assignment probabilities, we cannot expect this to be larger than 1.73.

significant increase since the baselines are 1.36 and 2.61 respectively. Moreover, even if we had solved the

max-cohesion problem to optimality, we cannot expect the improvement in cohesion to be more than 1.9

for K1 and 2.08 for K2, so to achieve greater gains we would need to alter the assignment probabilities.

One motivation for increasing cohesion is so that families can car-pool and students can have neighbor-

hood friends, but to some extent this matters only when the student is going to school not in his/her neigh-

borhood (otherwise he/she would not need to go by car and would have neighborhood friends regardless).

In Table 7, we examine the expected # of same-community peers conditional on being assigned outside of

own walk-zone. The upper-bound uses a similar formula as the one in Section 5.1, except that it conditions

differently. As seen, the proportional impact of correlated lottery is more pronounced in this case, more than

doubling baseline cohesion for K1 new families and achieving a 64% gain over baseline cohesion for K2

new families.

6.4. Comparison and interaction with other reforms

During the 2012-2013 school choice reform, two types of reforms proposed to the city committee were

increasing the walk-zone percentage and reducing the choice menu (the set of schools students from various

neighborhoods could rank from). Both strategies were intended to affect assignment probabilities to result

in closer to home assignment. By theorem 2, this would increase cohesion as it would increase between-

community heterogeneity. We empirically estimate the increase in cohesion due to these potential reforms

and compare to correlated lottery (which does not affect anyone’s assignment probabilities.) We also eval-

uate the interaction of these reforms with lottery correlation, to see how much we can improve by applying

both at the same time.
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Conditional on busing
Walk-zone Percentage Baseline Improved Improvement Baseline Improved Improvement
K1
50 1.36 2.44 1.08 0.53 1.26 0.74
60 1.44 2.56 1.12 0.48 1.13 0.65
70 1.56 2.72 1.16 0.46 1.13 0.67
80 1.69 2.86 1.18 0.44 1.07 0.64
90 1.82 3.01 1.19 0.46 0.95 0.50
100 1.91 3.11 1.20 0.54 0.86 0.33

K2
50 2.61 3.58 0.97 1.00 1.64 0.64
60 2.74 3.73 0.99 0.95 1.59 0.65
70 2.90 3.87 0.97 0.91 1.53 0.62
80 3.09 4.05 0.96 1.00 1.62 0.61
90 3.21 4.14 0.93 1.05 1.72 0.66
100 3.32 4.21 0.89 1.08 1.70 0.62

Table 8 Baseline and Improved Cohesion with differing walk-zone percentages. The first three columns correspond to

students’ expected # of same-community peers co-assigned conditional on being assigned. The last three columns correspond to

the same number conditional on being assigned outside of walk-zone.

6.4.1. Increasing the walk-zone percentage As described in Section 6.1, the BPS assignment algo-

rithm in 2012 had 50% of seats of a program allocated to the walk-half (the side that respected walk-zone

priority) and the rest to the open half. One approach to increase community cohesion is to induce closer-

to-home assignment by increasing the percentage of seats allocated to the walk-half. For K1 and K2 new

families, we show in Table 8 the result of this on their baseline cohesion, on their improved cohesion, as

well as on their cohesion conditional on traveling outside of walk-zone (1 mile radius).

As can be seen, while increasing the walk-zone percentage increases cohesion, the maximum magnitude

of increase (to 1.91 for K1 and 3.32 for K2) is less than if we kept the same walk-zone percentage but

switched to correlated lottery (to 2.44 for K1 and 3.58 for K2). For the students who are traveling outside

of their walk-zone, Table 8 shows that altering walk-zone percentage has almost no effect on their expected

# of same-community peers, while lottery correlation significantly increases it. From the perspective of

increasing community cohesion, both in terms of overall increase and in terms of helping those who need it

the most, lottery correlation is more effective than increasing the walk-zone percentage.

6.4.2. Reducing the choice menus Another approach to increase cohesion is to decrease the choice

menu, so as to focus choices from the same community to similar schools. To evaluate such a reform, we

need a model for how students would choose given a new menu. We use the same demand model as in the

study commissioned by the city committee during the 2012-2013 school choice reform to evaluate a range

of potential outcomes. This is a multinomial logit model fitted using the same data as in this study, and

includes a fixed effect for each school, and linear controls for distance to choices, racial/socio-economic

interactions and school-specific affinities (whether a student is continuing student, has sibling at a school,

or lives in the walk-zone of a school). The demand model is documented in detail in Pathak and Shi (2013).
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Cohesion conditional on busing
Choice Menu Baseline Improved Improvement Baseline Improved Improvement
K1
3-Zone 1.11 2.09 0.98 0.42 1.16 0.74
6-Zone 1.32 2.64 1.32 0.53 1.81 1.28
9-Zone 1.52 3.16 1.64 0.69 2.42 1.73
Home Based A 1.62 3.34 1.73 0.66 2.48 1.82
11-Zone 1.66 3.37 1.72 0.79 2.74 1.95
23-Zone 1.93 3.85 1.92 0.59 1.76 1.17

K2
3-Zone 2.10 2.91 0.81 0.74 1.38 0.63
6-Zone 2.62 3.97 1.35 0.92 2.19 1.27
Home Based A 2.84 4.49 1.65 1.10 2.93 1.83
9-Zone 2.91 4.47 1.56 1.01 2.56 1.55
11-Zone 3.18 4.84 1.66 1.08 2.63 1.55
23-Zone 3.55 5.37 1.82 0.91 2.27 1.36

Table 9 Cohesion with differing choice menus. The first three columns correspond to students’ expected # of same-community

peers co-assigned conditional on being assigned. The last three correspond to the expected # of same-community peers conditional

on being assigned outside of walk-zone. The rows are sorted in increasing baseline cohesion.

During the 2012 school choice reform, many different plans for choice menus were proposed. Some

involved subdividing the city into smaller zones (such as the 6-zone, 9-zone, 11-zone, or 23-zone plans)

and some involved giving the closest schools of certain types to each family (such as the Home Based A

plan). For the purpose of this study we do not go into the details of each plan. These choice menus are

documented in Pathak and Shi (2013), BPS (2013), and Shi (2013).4 Table 9 shows the impact of various

menus on baseline and correlated cohesion, as well as the impact on cohesion conditional on traveling

outside of walk-zone. The statistics are averages of 25 draws of simulated choice data. (For each draw, the

different plans share the same underlying random utility shocks so as to minimize sampling variance in the

comparison. This is the simulation approach used in Pathak and Shi (2013).)

As can be seen in Table 9, for K1, correlated lottery beats the cohesion improvement from any menu

change. For K2, correlated lottery accomplishes the same effect as tripling the number of zones to 9. For

either K1 or K2, for students who are traveling outside of their walk-zone, correlated lottery alone delivers

greater increase in cohesion than any choice menu change.

What is most interesting is that the impact of menu change and correlated lottery magnify one another.

As can be seen, as the first column (baseline cohesion) increases, the third column (improvement due to

correlated lottery) also tends to increase. For example, for K2, while changing to Home Based A (the plan

adopted by the city committee) increases cohesion by 2.84 − 2.10 = 0.74, and correlated lottery alone

increases cohesion by 2.91−2.10 = 0.81, doing both at the same time more than doubles cohesion, increas-

ing it by 4.49− 2.10 = 2.39> 0.74 + 0.81.

This phenomenon can be understood in terms of proposition 2. In the large market, the gain in cohesion

is the product of the baseline cohesion and a weighted average of SCV (Squared Coefficient of Variation) of
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VARIABLES Improvement in cohesion
Grade -0.741***

(0.144)
Uncertainty 6.183***

(1.609)
Pref. Correlation 2.503***

(0.354)
Constant -3.307***

(1.055)
Observations 18
R-squared 0.931

Table 10 Descriptive regression of improvement in cohesion for new families in various choice menus. This seeks to explain

variation in the 18 rows of data in Table 9 in terms of grade, uncertainty of lottery, and preference correlation. “Grade” is dummy

for K2. “Uncertainty” is the average individual assignment variance, Ei[
∑

s pis(1− pis)]. “Preference Correlation” is the average

number of common programs in the top-3 lists of two randomly chosen students from the same neighborhood. Robust standard

errors are shown in parenthesis. Consistent with Proposition 3, the magnitude of improvement is increasing in uncertainty and

preference correlation.

community demand function. The SCV is positively related with within-community preference correlation.

When we focus the preferences by reducing the choice menus, both the baseline cohesion and the SCV

increase, thus yielding magnified gains. By Proposition 3, this should be additively decomposable into a

term for individual lottery variance and a term related to within-community heterogeneity. To check this

intuition, we run a regression of the improvement in cohesion from Table 9 on a dummy for grade, a

measure of lottery uncertainty, and a measure of within-community preference correlation. The results are

in Table 10. As seen, all of the terms are individually significant, and the R- squared is very high (93.1%),

supporting the intuition from the theory.

7. Discussion

In this paper, we examine the potential of correlating the school choice lottery to increase community cohe-

sion without affecting individual assignment probabilities. This is desirable as altering individual assign-

ment probabilities inevitably raises questions of equity and access, which are hard to settle without a dif-

ficult political process. In contrast, a method that provides cohesion gains without changing assignment

probabilities may face less opposition.

In our analysis, we show that while maximizing cohesion is an NP-hard, messy optimization problem in a

discrete setting, studying the large-market limit “smooths away” the hardness and yields very clean analysis.

Under such a setting, all “reasonable” one-sided many-to-one matching mechanisms can be described as

lottery-plus-cutoff. This allows us to decouple the allocation from the lottery correlation, and obtain fairly

general results for the potential to improve cohesion by lottery correlation. We can also build a random

utility model on top and prove comparative statics, which would be unthinkably difficult if we had remained

in the discrete setting.
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An empirical finding is that while lottery correlation and reducing choice menus both improve community

cohesion, they work best together. For Boston, in the main entry grade K2, correlated lottery alone can

improve cohesion for new families by 39%, and choice menu reduction alone can improve it by 30%. But

doing both at the same time more than doubles cohesion.

A question for future work is whether lottery correlation can be used to achieve other desirable social

outcome. A first attempt might be to increase racial or socio-economic diversity at schools. Intuitively, one

may try to “negatively correlate” race or socio-economic status in the lottery. Unfortunately, we show in

the Electronic Companion that in the large market, using a correlated lottery produces no gain in diversity,

because independent lotteries already achieves the optimum. Significant additional gain in diversity will

require altering assignment probabilities.

From an implementation perspective, a potential criticism of our approach is that the lottery becomes

less intuitive and transparent. Drawing random lottery numbers and using it to determine priorities is very

intuitive, and in the current Boston system, a family may ask the school board for their lottery number.

One may imagine a family dissatisfied about their assigned choice may theoretically “audit” the system by

checking everyone’s lottery number. However, in our approach, there is no longer a simple mapping between

lottery numbers and assignment outcomes. Nevertheless, some of the intuitiveness and transparency may be

restored if the school board explains the mechanism as a lottery on joint assignments instead of on individual

priorities: the school board may print out a large table in which each row denotes a student, and each column

denotes a joint assignment. The entry in each cell is the student’s assigned school in an assignment. The row

counts of each student being assigned to each school would be consistent with the simulated assignment

probabilities under the original mechanism. The lottery is then to draw a random column from this table,

and a family dissatisfied about the outcome may theoretically “audit” the system by checking this table.

While in this paper we assumed that increasing cohesion is desirable from a policy perspective, this

claim warrants further investigation. Although families may in general prefer having more neighboring kids

going to the same school so that the children can travel together, share homework help, car-pool on certain

occasions, or play together after school, how much they value this and how much this contributes to the

students’ development are yet to be determined. Moreover, it may be that not everyone wants to be with

their neighbors, and for families living in high crime, high-poverty neighborhoods, it is conceivable that

some may want the opposite. To accommodate this, one may want to use an opt-in or opt-out system in

practice.

Another potential criticism of our approach is that it is unclear how one ought to define “community.”

In the empirical study, we used a .5 mile by .5 mile grid, and a natural extension would be to optimize

the grid size. But doing this optimization requires more in-depth understanding of what community means:

too find a grid and the community definition may be too restrictive, too course and we may no longer be

capturing “neighborhoods.” More broadly, it is unclear if any geographic delineation can adequately capture
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the notion of community, since this may be more determined by family background, work proximity, and

other factors than home proximity. One way to micro-found our setting is to assume students preferences

are lexicographic in the sense that each student first cares to which school she is assigned to, and for

each assignment, she prefers to be co-assigned with more students from her own community. To relax

these issues one potential is to allow families to define communities for themselves, or even let students

report with which peers they would prefer to be assigned with. But this makes preferences for peers private

knowledge and raises difficult incentive problems due to the complementarities such preferences introduce.

For example, in the closely related matching markets, when couples exist in the market (who have joint

preferences) a “stable” assignment may not exist (Klaus and Klijn 2005). One can similarly show that an

“envy-free” allocation (with respect to the priorities) in the school choice problem need not exist even when

just two students wish to be co-assigned. One direction is to limit the complementarities in the market.

Ashlagi et al. (2010) show that as long as the number of couples in the market does not grow too fast, a

stable matching exist. Students however may have asymmetric preferences over who they wish to be co-

assigned with. Dur and Wiseman (2014) adopts a mechanism design approach that allows students to submit

preferences over peers but relaxing the stability notion.5

Endnotes

1. Following Azevedo and Leshno (2012), a suitable limit would be any sequence of finite economies

with market size going to infinity, but with the proportion of students of each preference and priority, as

well as the relative capacities of programs, converging to the large market limit. Both DA-STB and TTC-

STB satisfy incentive compatibility and symmetry regardless of market size. Azevedo and Leshno (2012)

Theorem 1 and 2 imply that except when capacities fall into some measure-zero set, DA-STB satisfies

asymptotic non-atomicity. On the other hand, TTC-STB satisfies asymptotic non-atomicity always, because

another student changing her preferences only affects me if her change is affecting the allocation of the “last

seat” at a school, which happens with negligible probability. Both mechanisms satisfy efficiency within

each priority class because in the large market limit, the distribution of preferences of students of the same

priority class is fixed regardless of lottery number, and this precludes trading cycles within each priority

class.

2. See endnote 1.

3. In DA-STB, the claims cannot be traded, while in DA-TTC, the claims can.

4. In Pathak and Shi (2013) and Shi (2013), Home Based A is called “ClosestTypes2463.”

5. See also Lavy (2012) for empirical findings from a natural experiment in Tel Aviv which allowed

students to report also preferences over peers and not just students.



Ashlagi, Shi: Improving Community Cohesion
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 31

References
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Proofs and Additional Results

EC.1. Solving the Correlated-Lottery Implementation Problem

The natural approach to tackling (8) in Section 5 is column generation. Using the language of the simplex

algorithm for LP, suppose we are currently at basis B, let β = A−1B f(AB), the column generation sub-

problem of finding the deterministic assignment with the highest rate of improvement when we pivot to it

(in the sense of the Simplex algorithm) is

Max f(a)−β · a (EC.1)

s.t. a∈P.

Note that in the above we’ve relaxed constraint a ∈ Vertices(P) to a ∈ P . We can do this because the

objective is convex. In fact it is quadratic as cohesion can be written as

f(a) =
1

n

(
−n+

∑
s,c

(
∑
i∈Ic

ais)
2

)
.

Either the optimum objective of (EC.1) is positive in which case we pivot to the corresponding column

al representing the optimal solution found, or the optimum is non-positive and we yield a certificate of

optimality for (8).

However, this subproblem (EC.1) seeks to maximize a quadratic over the assignment polytope, which in

its general case is exactly the notoriously difficult quadratic assignment problem (QAP) (see Burkard et al.

(1998)), which is NP-hard to approximate to any constant factor (Sahni and Gonzalez (1976)). One hope is

that since our quadratic is of a simpler form, we may still find a polynomial time algorithm. Unfortunately,

one can show that the decision problem for both the original (8) and subproblem (EC.1) are NP-complete

in the strong sense, even when community sizes are constrained to be 2 or 3. The proof can be done by

reduction from Not-All-Equal-3-SAT.

EC.1.1. A practical heuristic

We present an efficient heuristic for correlated-lottery implementation.

The idea of this heuristic is similar to in the Birkhoff-von Neumann theorem. We express the original

assignment probabilities as a convex combination of deterministic assignments, by iteratively breaking

off deterministic assignments with high cohesion. In each iteration, we find a deterministic assignment

with high cohesion that limits to assigning students to schools for which they have positive assignment

probability. This ensures that we can break off a positive multiple of this deterministic assignment. To find

such a deterministic assignment, we solve a max-weight perfect matching problem on a bipartite graph, in
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which one side of the graph are students and the other is schools. We define an edge in this bipartite graph

between a student and a school if and only if the student still has positive assignment probability to that

school, after subtracting off deterministic assignments found in earlier iterations. The weight of each edge

is random, but we constrain the weights to be equal for everyone from the same community to the same

school. The intuition of why this may work is that conditional on student i being assigned to school s in the

max-weighted matching, the weight between i and s is probably high, so the weight of everyone else from

same community as i to s is probably high, so many of them are probably assigned to school s.

To solve the max-weight bipartite perfect matching problem in each iteration, we use a specialized primal-

dual implementation with worst case running timeO(n2m), but which is closer toO(nm2) in practice. (This

helps because in our case n >>m.) The total number of iterations is at most min(mn,T ), because each

iteration reduces the number of non-zero assignment probabilities by at least 1. The number if iterations

is also upper-bounded by T because if all assignment probabilities are multiples of 1
T

, then the amount

subtracted each time is at least 1
T

. The total running time guarantee is O(n2mmin(nm,T )).

A precise pseudo-code of the algorithm is given below.

Algorithm 1 Heuristic for program 8
Require: p∈P (assignment probabilities to implement)

x←∅

while p 6=~0 do

ucs← random weight, ∀c∈C,s∈ S

wis← uc(i)s, ∀i∈ I, s∈ S

eis =

{
1 if pis > 0

0 otherwise
, ∀i∈ I, s∈ S

a← arg maxa′{w · a′ : a′ ∈P, a′ ≤ e}

λ←max{λ′ : p−λa
1−λ ∈P}

x← x∪ (λ,a)

p← p−λa

end while

return random assignment x= {(λj, aj)}

EC.1.1.1. Explanation for the inner step Another intuition behind our method of finding a determin-

istic assignment in each iteration with high cohesion is as follows. Let eis be the indicator for whether the

assignment probability of i to s is positive. We want to find deterministic assignment a≤ e each time that

maximizes cohesion f(a), but since this is NP-hard, we settle for “not-too-bad” solutions. It turns out that
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our method of generating community-specific random weights and solving max-weight assignment always

avoids a kind of “locally-suboptimal” solutions, in which cohesion can be improved by trading cycles.

To describe our notion of local sub-optimality, we first define trading cycles: Given an assignment a, we

say that there is a trading cycle (between communities and schools) c0→ s0→ c1→ s1 · · · → sl−1→ c0 if

for each community cj there is some student ij ∈ cj such that aijsj−1
= 1 and eijsj = 1 (where arithmetic on

j is modulo l). In other words, by undoing the assignments ij→ sj−1 and re-assigning ij→ sj , we arrive at

another feasible assignment a′. We say that this trading cycle leads a to a′.

Our notion of local sub-optimality occurs in assignment a when both trading cycles c0 → s0 → c1 →

s1 · · · → sl−1→ c0 and the reverse c0← s0← c1← s1 · · · ← sl−1← c0 exist in a. Suppose the first leads

to a′ and the second to a′′, then we have that the demographic counts, encoding for each community c and

school s the number of assignments from c to s, satisfies da = 1
2
(da
′
+da

′′
). However, cohesion f(·) can be

written as a strictly convex function on da, so by convexity f(a)< 1
2
(f(a′) + f(a′′)) where both a′ and a′′

are feasible assignments ≤ e. So a is suboptimal.

However, this situation cannot occur by our method because for any cycle c0 → s0 → c1 → s1 · · · →

sl−1→ c0 and any {ij ∈ cj}, either
∑

j wijsj −
∑

j wijsj−1
> 0 for all such {ij ∈ cj} or the reverse for all

(since weights from the same community to the same school is defined to be the same, and the difference

is non-zero with probability 1 as weights are randomly generated); since a max-weight matching pushes as

much as possible along positive weight trading cycles and reverses as much as possible any negative weight

trading cycle, the above kind of local non-optimality can never occur in our inner step.

EC.2. Additional empirical results

EC.2.1. Distribution of gains

We examine how the gains in cohesion from correlated lottery are distributed among various neighborhoods.

Figure EC.1 shows baseline cohesion and improvement (correlated-baseline) for various geocodes for K1.

Figure EC.2 does the same for K2. The plots show that the gains from correlated lottery for K1 is reasonably

evenly distributed geographically, with some amounts of “green” throughout the city. On the other hand, the

gains for K2 is very uneven, being concentrated in north east corner, south west corner, and a small wedge

on the eastern part of the city. This is reflected also in the box plots, as the median improvement for K1 is

about 0.6, while the median improvement for K2 is only 0.25. (The mean improvement is roughly 1 in both

cases.) This is a disappointing finding as K2 is where the majority of students enter BPS.

How do we make sense of the uneven distribution of improvement in cohesion? The theory in Section 3

suggests that cohesion improvement should benefit those whose lottery is most uncertain (high variance)

and whose communities have lowest within-community heterogeneity. Moreover, we expect that within a

community, lottery correlation should help the most those whose preferences are most similar to the rest

of the community. For ease of interpretation, we define the following proxy: for student i, comparing her
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Figure EC.1 Geographic distribution of baseline cohesion and cohesion improvement for K1 new families. Each circle corre-

sponds to a geocode. Its color corresponds to the average value of students living at that location, and its size is

proportional to the number of students. The bar on the right of each map shows a box-plot based on the same color

scale of the student level distribution, with the ends of the box showing the 25 and 75 percentiles, and the red line

shows the median (parts of box plot maybe outside of range to have colors show reasonable contrast). From the

left plot, we see that cohesion is highest in East Boston (upper-right island), and varies in different pockets in the

city. Improvement in cohesion from correlated-lottery is unevenly distributed, being highest in north east, south

west, and various pockets of the city.

with a randomly drawn peer from her community, what is the expected # of programs they have in common

among their top 3 choices? We label this proxy choiceAgreement(i).

We plot this for K1 and K2 new families in Figure EC.3. As shown, this metric of within-community

preference correlation is about twice higher for K1 than for K2, and the geographic distribution seems

to match the distribution of cohesion gains in Figures EC.1 and EC.2. To illustrate this relationship more

precisely, we regress individual-level improvement in cohesion on 4 variables: individual lottery variance

(
∑

s pis(1− pis)), scaled choice agreement (|c(i)|choiceAgreement(i)), and dummies for whether student

i is continuing student or non-continuing sibling. The scaling in the choice agreement is to control for

community size. The regression results are tabulated in Table EC.1. As can be seen, much of the variation

in gains from cohesion can be explained by uncertainty of lottery and preference correlation and incoming

status, with highest gains for new families who face uncertain lottery and whose preferences are highly

correlated with their community.
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Figure EC.2 Geographic distribution of baseline cohesion and cohesion improvement for K2 new families. From the left plot,

we see that cohesion is highest in East Boston (upper-right island), and various pockets in the city. Improvement

in cohesion from correlated-lottery is very uneven, concentrated in north east, extreme south west, and eastern

part of the city, with very small gains in the center of the city. The median cohesion gain is only about 0.25.

(1) (2)
VARIABLES K1 K2

Uncertainty 0.396*** 0.381**
(0.139) (0.158)

Pref. Agreement 0.0386*** 0.0434***
(0.00390) (0.00493)

Non-continuing sibling -0.823*** -0.726***
(0.106) (0.188)

Continuing -0.394*** -0.161
(0.0958) (0.111)

Constant 0.089 -0.153*
(0.0877) (0.0863)

Observations 2,654 4,020
R-squared 0.434 0.533

Table EC.1 Descriptive regression of individual improvement in expected # of same-community peers from correlated lottery.

Uncertainty of lottery is measured by variance of individual lottery (
∑

s pis(1− pis)). Preference agreement is proxied by product

of size of community and average # of top 3 choice agreements with community (|c(i)|choiceAgreement(i)). Non-continuing

sibling and continuing are dummies. The standard errors are from clustering on the 205 communities. As can be seen, students for

whom the lottery is more uncertain, whose preferences are highly correlated with their communities, and who are not siblings nor

continuing students can expect the greatest cohesion gains from correlated lottery.
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Figure EC.3 Plot of choiceAgreement(i) for K1 and K2 new families. For each student i, this is the average # of programs

she has in common in her top 3 choices with an uniformly random peer i′ from the same community. As seen,

the median is almost twice larger for K1 new families than for K2. Moreover, for K2, this is low in the middle

portions of the city, which matches the pattern of low gain from correlated lottery from Figure EC.2.

EC.2.2. Equitable distribution when applying both menu change and correlated lottery

While the cohesion gain from correlated lottery alone is not equitably distributed across the city, it turns

out that doing correlated lottery along with a reduced choice menu remedies this inequity. Recall that the

choice menu reduction chosen by the city in the 2012-2013 school assignment reform was Home Based A.

By applying correlated lottery to Home Based A, we can yield cohesion improvements across all neighbor-

hoods, with 75% of students experiencing a cohesion gain of about 1 or more. This is shown in Figure EC.4,

which plots the geographic distribution of baseline cohesion, improvement from correlation alone, improve-

ment from choice menu reduction alone, and improvement from applying both at the same time.

EC.2.3. Impacts on racial and socio-economic diversity

One concern of using a correlated lottery is that it may cause racial or socio-economic segregation, because

race and socio-economic status are correlated with geography, so higher chances to go to school with neigh-

bor may entail higher chances to go to school with others of same race or socio-economic status. We check

whether this is a cause for concern in Boston.

One practical concern with our approach is that it might harm racial or socio-economic diversity, which

historically is a key reason why many school choice systems were created in the first place. However, in the
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Figure EC.4 Interaction of menu change and correlated lottery for K2 new families. The menu we change to is Home Based A

(the one adopted by the city). As can be seen, while the median increase from correlated lottery alone is about 0.4,

and the median increase from menu change alone is about 0.6, the median increase from both together is about

1.8. The red region in the middle of the city in the second and third graph effectively disappears in the last graph,

showing that large cohesion gain is achieved throughout the city when we apply these reforms together.
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data, we find that lottery correlation has minimal impact on diversity. As a measure of diversity, we compute

the probability that two random students assigned to the same school are of the same race or socio-economic

status.

To do this, we compute the probability for a random pair of students who are assigned to the same

school to be of the same race or socio-economic status. The races in our data are black (21%), white (16%),

asian (7%), hispanic (43%), other (3%), or missing (10%). The percentages in the parenthesis denote the

percentage of applicants of that race counting both K1 and K2. For socio-economic status, we use eligibility

to receive free or reduced lunch as proxy. The options are free lunch (49%), reduced lunch (4%), non-

free/reduced lunch (12%), and missing (36%). To computing the diversity measure, we go through the 1000

deterministic assignments that form the lottery, cycle through all pairs of distinct students who are assigned

to the same program, and count the percentage of times they are of the same race or lunch status. We call

these the “peer same race %” and “peer same lunch status %.” Table EC.2 shows the results. This is based

on actual Round 1 choice data.

Baseline Improved
K1
Peer Same Race % 36.7% 36.9%
Peer Same Lunch Status % 41.6% 41.8%
K2
Peer Same Race % 42.6% 42.7%
Peer Same Lunch Status % 45.2% 45.2%

Table EC.2 Impact of correlated lottery on racial or socio-economic diversity. For example, when we use independent lottery

implementation for K1, on average 36.7% of pairs of students assigned to the same school are of the same race. This percentage

increases by only 0.2% to 36.9% when we use correlated lottery.

As can be seen, the impact of correlated lottery on racial or socio-economic diversity is minimal. For

example, for K1, the same-race probability increases from 36.7% with independent lottery to 36.9% with

correlated lottery; for K2, this increases from 42.6% to 42.7%. The impact is similarly small for same-

lunch-status probability. One reason why the impact is so small is that geographic patterns of racial and

socio-economic concentration in Boston are at a larger scale than the neighborhood sizes we define (.5

mile by .5 mile squares). Moreover, because choices are heterogeneous to begin with, the impact of lottery

correlation is on the order of magnitude of about 1 additional neighbor, which does not significantly impact

diversity because class sizes are usually 22 or more.

EC.3. Proofs

Proof of Proposition 1 (NP-hardness of 2 school case): Since there are only 2 schools and since only

students in E have non-deterministic assignments, the max-cohesion problem becomes selecting a random

q∗-subset of E so that each element of E is selected with probability p = q∗

|E| , and the E’s stay in their
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communities as much as possible. Partition E into communities, defining Ec = E ∩ Ic. (And similarly

Dc =D ∩ Ic, Fc = F ∩ Ic.) Let xi be the binary random variable that equals 1 iff i is assigned to school 1.

To simplify notation, we restrict attention to components of x that corresponds to E (because D is assigned

to school 1 with probability 1, andE to school 2 with probability 1). DefineA to be all elements of {0,1}|E|

that sum to q∗. The max-cohesion problem becomes:

fmax = Max Γ +

[
k∑
c=1

∑
i 6=j∈Ec

(xixj + (1−xi)(1−xj))

]
(EC.2)

s.t. E[xi] = p ∀i∈E

x∈∆(A),

where the constant Γ = 2
∑k

c=1

[(|Dc|
2

)
+
(|Fc|

2

)
+ p|Dc||Ec|+ (1− p)|Ec||Fc|

]
.

An upper-bound on the maximum cohesion is Γ + 2
∑

c

(|Ec|
2

)
, which corresponds to |E|’s always being

assigned with their community members.

It suffices to prove that it is strongly NP-hard to decide whether this upper-bound is achievable. To do

this, we reduce from the following version of 3-PARTITION: Given a multi-set of k= 3h integers {ac}, for

which
∑k

c=1 ac = hB, and B
4
< ac <

B
2

. Can the ac’s be partitioned so the sum of each partition is B? This

is well-known to be strongly NP-hard. A proof is given in Garey and Johnson (1979).

Reduction: given an instance of 3-PARTITION, construct a case of the 2-school max-cohesion problem

for which |Ec|= ak, q∗ =B, then we can achieve perfect cohesion of U iff the |Ec|’s can be partitioned so

the sum of each partition is exactly q∗, which is what we needed. �

Proof of Theorem 1 (Large Market Characterization): We show that a mechanism is non-atomic,

incentive compatible, symmetric and efficient within each priority class, if and only if it is lottery-plus-

cutoff.

If a mechanism is lottery-plus-cutoff, then it is non-atomic because any single agent changing preferences

does not affect the measure of students in each priority class submitting each ranking, which is what cutoffs

depend on. The mechanism is symmetric because within the same priority class, the cutoffs are the same

for everyone, so since the lottery numbers are identically distributed, the assignment probabilities are the

same for those submitting the same preferences. The mechanism is incentive compatible in school-specific

utilities because no individual student can change her cutoff, so for each lottery realization her set of feasible

schools is fixed. Submitting a false preference, if it changes her assignment at some lottery number, can only

place her in an suboptimal school for those lottery numbers. (This is because with a truthful submission, she

would already be assigned her most preferred schools among the feasible set by definition.) The mechanism

is efficient within each priority class because if student i0 prefers school s1 over s0 (s0 ≺i0 s1) and i0 is

assigned to the less-preferred school s0 with positive probability, then the cutoff for s1 must be higher:
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z∗π(i0),s0 < z∗π(i0),s1 , because otherwise there would be no lottery number at which i0 would select s0 as her

most preferred school. So trading cycles are prohibited by the arithmetic impossibility:

z∗π,s0 < z
∗
π,s1

< z∗π,s2 < · · ·< z
∗
π,sl

< z∗π,s0 .

Conversely, suppose a mechanism is non-atomic, incentive compatible, and symmetric and efficient

within each priority class, we show that it is lottery-plus-cutoff. To do this, we first use non-atomicity to

produce a finite set of “representative” students for each priority class, such that every one of them! possible

preference orderings are submitted by someone from the representative set. By symmetry within each prior-

ity class, this pins down the assignment probabilities of everyone in that priority class. We then use incentive

compatibility and efficiency within each priority class to produce a set of cutoffs, and show that the assign-

ment probabilities of everyone in the representative set is consistent with these cutoffs. This implies that the

assignment probabilities from the original mechanism is consistent with a lottery-plus-cutoff description.

To show that the mechanism itself is lottery-cutoff, we use the flexibility of arbitrary correlation of lottery

numbers to define the lottery numbers so that they produce the exact random assignment of the original

mechanism. The fact that the assignment probabilities are consistent with the cutoffs will mean that our

lottery numbers can be distributed as Uniform[0,1).

As outlined above, the first step is to produce a finite set “representative” students for each priority class

using non-atomicity. For any priority class π ∈ Π, let the set of students in this class be Iπ. Its measure

is µ(Iπ) > 0. Because there are finitely many rankings, there exists some ranking �0 that is picked by

a positive measure of students in Iπ. We choose m! of these students who submitted �0 and have them

alter their preference submission to each of the m! different possible rankings. By iteratively applying non-

atomicity, this does not alter the assignment probabilities of anyone else. By symmetry, the assignment

probabilities of each of these m! students is representative of the assignment probabilities of anyone with

their preference within the whole priority class. Denote the set of representative students Irep. For any

ranking �, define p(�, s) as the assignment probability to school s of the student in Irep corresponding to

ranking �.

The second step is to use incentive compatibility and efficiency within each priority class to produce a set

of valid cutoffs. First, note that incentive compatibility in school-specific utilities implies that if any student

submits preference list s1 � s2 � · · ·sl � sl+1 � · · · , reshuffling the relative order of the top l choices among

themselves, or reshuffling the later choices among themselves, cannot affect the total assignment probability

to {s1, · · ·sl} (any of the top l choices). To see this, suppose her utilities for top l schools are all M + εs

and for later schools εs with M >> εs for all s, then the above condition is necessary for her not to have

incentive to deviate from truthful preferences at some preference ranking (because for sufficiently large M ,

the potential to gain a greater probability of getting M trumps any other considerations).
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Fix a priority class, focusing on the representative student of this class, we define a complete ordering

> over schools, such that s > s′ if there exists a student in Irep who prefers the first school s but receives a

positive probability of being assigned to the second school s′. The lack of trading cycles among Irep makes

this a well-defined ordering. In the case two schools are not comparable directly, we use transitivity to define

their relative order. If after taking into account all ordering relations two schools are still not comparable,

we can order them arbitrarily. Re-label the schools so that s1 > s2 > s3 · · ·> sm. Call this the over-demand

ordering for this priority class. Intuitively, the earlier schools in this ordering are more highly demanded

relative to the supply allocated to this priority class. For each j, define “run-out time” t∗π,sj as the assignment

probability to sj of students in I rep who rank sj first. (The nomenclature is motivated from the probabilistic

serial mechanism.) This is well-defined because of the previous argument from incentive compatibility.

Having defined the “run-out times,” the key step is to note that if school s is more over-demanded than

school s′ according to the cutoff-ordering, then the run-out time of school s must be weakly smaller, that

is t∗π,s ≤ t∗π,s′ . To see this, note that t∗π,s is a student’s chances of getting into s if she ranks it first, and

other schools in arbitrary order. Similarly, t∗π,s′ is a student’s chances of getting into s′ if she ranks s′ first

and s second, and other schools in arbitrary order. Now, if this student reorders her top two rankings to

rank s first and s′ second, then her total probability of getting into one of these schools must still be t∗π,s′

by incentive compatibility, but her chance of getting into school s is t∗π,s, which has to be smaller than the

total probability. So t∗π,s ≤ t∗π,s′ . This means that the run-out times follow a reverse ordering to that of the

over-demand ordering of schools, t∗π,s1 ≤ t
∗
π,s2
≤ · · · t∗π,sm .

We now can define valid cutoffs using these run-out times. Define cutoffs z∗π,s = 1−t∗π,s. We need to show

that everyone’s assignment probabilities are consistent with applying lottery-plus-cutoff on these cutoffs.

For any subset of schools U ⊆ S, let minU denote the least over-demanded school in U , which by the above

paragraph is also the school with the largest run-out time. We observe that if a student in priority class π

ranks schools U first in arbitrary order, followed by other schools in arbitrary order, her total assignment

probability to some school in U must be equal to t∗π,minU = maxs∈U t
∗
π,s. This is because this probability

must not depend on her relative ranking within U by incentive compatibility, and so must equal to the

probability when she ranks school minU first, which equals to t∗π,minU because she gets into school minU

with this probability and other schools in U with zero probability since those are more over-demanded.

The above observation allows us to pin down everyone’s assignment probabilities to every school, since

if a student ranks schools U first, followed by s, followed by other schools, her assignment probability to s

must be

max
s′∈U∪{s}

t∗π,s′ −max
s′∈U

t∗π,s′ .

Therefore, if a student in priority class π submits ranking �, her assignment probability to school s is

equal to
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p(�, s) = max(0, t∗π,s−max
s′�s

t∗π,s′).

This can be re-written as

p(�, s) = max(0,min
s′�s

z∗π,s′ − z∗π,s),

which is exactly the assignment probability induced by cutoffs z∗π,s and lottery numbers ∝Uniform[0,1).

Having shown that the assignment probabilities are consistent with some set of cutoffs, we now show

that by correlating the lottery numbers suitably, we can recover the original random assignment exactly.

We do this by reverse construction. For student i in priority class π who submits ranking �i, suppose an

instantiation of the random assignment x of the original mechanism assigns i to s. Among the schools

which i prefers over s, let s′ be the one with the lowest cutoff. It must be that the cutoff of s′ is higher than

s because otherwise the student would have never been assigned to s. We generate

(zi conditional on xi = s)∼Uniform[z∗π,s, z
∗
π,s′).

Since i is assigned to swith probability exactly z∗π,s′−z∗π,s, generated in this way, the unconditional zi would

be distributed Uniform[0,1). The lottery-plus-cutoff mechanism using these lottery numbers zi, along with

the cutoffs z∗π,s, generates the exact same random assignment as the original mechanism, which is what we

needed to show. �

Proof of Theorem 2: Using the cutoff structure, we can express cohesion in both the independent and

max-cohesion cases in terms of simple integrals. The theorem follows from re-arranging orders of integra-

tion and the law of total variance.

f sindependent =

∫
c

∫
y

∫
y′
ps(c, y)ps(c, y

′)dy′dydc

=

∫
c

(∫
y

ps(c, y)dy

)2

dc

=Ec[p̄s(c)
2]

=E2
c [p̄s] + Varc(p̄s)

= q2s + Varc(p̄s).

Where the last equality follows from our assumption that total supply exactly equals demand.

For max-cohesion, we first note that by giving everyone in the same community the same lottery number,

we can achieve cohesion of Ec,z[d2s(z|c)]. This is because at lottery number z, the measure of students from

community c that would be assigned to school s is ds(z|c), so the measure of pairs of students is d2s(z|c).

Because there is a continuum of communities, this lottery-correlation scheme is feasible, since the total



e-companion to Ashlagi, Shi: Improving Community Cohesion ec13

measure of students that would be assigned to school s remains equal to supply. Hence, maximum cohesion

satisfies

f smax ≥Ec,z[d2s].

On the other hand, the probability of any two students being co-assigned to school s is upper-bounded by

min(ps(i), ps(i
′)). But if i and i′ are in the same community, they see the same school cutoffs, because we

assumed that everyone in the same community are in the same priority class, so

min(ps(i), ps(i
′)) =

∫
z

1s(z|i)1s(z|i′)dz.

Therefore,

f smax ≤
∫
c

∫
y

∫
y′

min(ps(c, y), ps(c, y
′))dy′dydc

=

∫
c

∫
y

∫
y′

∫
z

1s(z|(c, y))1s(z|(c, y′))dzdy′dydc

=

∫
c

∫
z

∫
y

∫
y′
1s(z|(c, y))1s(z|(c, y′))dy′dydzdc

=

∫
c

∫
z

(∫
y

1s(z|(c, y))dy

)2

dzdc

=

∫
c

∫
z

d2s(z|c)dzdc

=Ec,z[d
2
s].

Combining the two, we get that

f smax =Ec,z[d
2
s].

Note that the above correlation scheme would not be feasible in a finite market, but our having a contin-

uum of communities allows the variation in demand from this level of extreme correlation to be averaged

away so that we do not violate any capacity constraints. In a certain sense, the continuum of communities

smooths away the NP-hardness of the max-cohesion problem in the finite case. �

Proof of Proposition 2:

f smax =

∫
c

∫
y

∫
y′

min(ps(c, y), ps(c, y
′))dy′dydc

=

∫
c

∫
y

∫
y′

max(ps(c, y), ps(c, y
′)) + min(ps(c, y), ps(c, y

′))

2
dy′dydc

−
∫
c

∫
y

∫
y′

max(ps(c, y), ps(c, y
′))−min(ps(c, y), ps(c, y

′))

2
dy′dydc

=

∫
c

∫
y

ps(c, y)dydc− 1

2

∫
c

∫
y

∫
y′
|ps(c, y)− ps(c, y′)|dy′dydc

= qs−
1

2
Ec[∆̄s(c)],

which is what we needed to show. �
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Proof of Proposition 3:

f smax− f sindependent =

∫
c

∫
y

∫
y′

min(ps(c, y), ps(c, y
′))− ps(c, y)ps(c, y

′)dy′dydc

=

∫
c

∫
y

∫
y′

ps(c, y) + ps(c, y
′)

2
− p

2
s(c, y) + p2s(c, y

′)

2
dy′dydc

−
∫
c

∫
y

∫
y′

|ps(c, y)− ps(c, y′)|
2

− (ps(c, y)− ps(c, y′))2

2
dy′dydc

=Ei[ps(i)(1− ps(i))]−
1

2
Ec(i)=c(i′)[∆s(i, i

′)(1−∆s(i, i
′))],

which is what we needed. �

Proof of Proposition 4: The structural identity follows directly from Proposition 2 and Theorem 2.

qs(1− qs) = qs− f sindependent + Varc(p̄s)

=
1

2
Ec[∆̄s(c)] + f smax− f sindependent + Varc(p̄s).

�

Proof of Proposition 5: The first line follows directly from Theorem 2, and observing that there is no

between community variation in assignment probabilities (since communities have identical preferences

and sizes).

The second line follow from when β→∞, we get the case in which everyone goes to their closest school.

The third and fourth line follows from almost everyone’s preferences in the same community become the

same as α→∞ or β→∞, so the demand function ds(z|c) in any community for any school at any lottery

number become close to 1. The result follows from the identity in Theorem 2.

Note that in the above, for independent lottery to achieve perfect community cohesion, we needed school

capacities to be just right. No such assumption is needed in the proof for the correlated lottery case. �

Proof of Theorem 3: If β = 0, then there cannot be between community variation in assignment proba-

bilities, so by Theorem 2, f sindependent = q2s .

Label the schools so r1 > r2 > · · · . (Recall that rs = eνs .) Because of the logit utility structure, in any

community, the probability that school s is chosen first is

rs∑m

j=1 rj
.

Because we assumed no priority, the mechanism is equivalent to probabilistic serial (or lottery-plus-cutoff

with a single priority class). Define run-out time t∗s = 1 − z∗s . The cutoff for the most highly demanded

school, school 1, is such that

t∗1 = q1(

∑m

j=1 rj

r1
).
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By the independence of irrelevant alternative properties of logit, these students, given a lower lottery num-

ber, would choose school s with probability rs∑m
j=2 rj

. The cutoff for the 2nd most demanded school is such

that

t∗2− t∗1 =

(
q2− t∗1

r2∑m

j rj

)∑m

j=2 rj

r2

=

(
q2
r2
− q1
r1

) m∑
j=2

rj.

Define tail sum Rs =
∑m

j=s rs. Continuing in this way by induction we gets

t∗s =
s−1∑
j=1

qj +
Rs
rs
qs,

and

t∗s − t∗s−1 =

(
qs
rs
− qs−1
rs−1

)
Rs,

which implies the formula for max-cohesion,

f smax =
s∑

k=1

(t∗k− t∗k−1)(
rs
Rk

)2 = r2s

s∑
k=1

(
qk
rk
− qk−1
rk−1

)
1

Rk
.

Since increasing α increases the ratios r1
r2
, r2
r3
, · · · , rm−1

rm
, it suffices to show that if one of these ratios

increase, while the others stay the same, maximum cohesion increases. In other words, it suffices to show

that for any l, if we perform the transformation
r1, r2, · · · , rl, rl+1, · · · , rm

↓
γr1, γr2, · · · , γrl, rl+1, · · · , rm

with γ > 1, we increase maximum cohesion f smax.

Now, for l≤ s− 1, we have

f smax = r2s

s∑
k=1

(
qk
rk
− qk−1
rk−1

)
1

Rk

=
qsrs
Rs
− r2s

s−1∑
k=1

qk
RkRk+1

.

so f smax increase because the transformation fixes rs, Rs and the q’s, while only increasing some of the

Rk’s in the denominator of the negative term. (Recall that Rk =
∑m

j=k rs.)

For l≥ s, we write f smax in a different way

f smax = r2s

s∑
k=1

(
qk
rk
− qk−1
rk−1

)
1

Rk

=
s∑

k=1

[
qk
rs
rk
− qk−1

rs
rk−1

]
rs
Rk

.
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so f smax also increases by the transformation, since each of rs
rk

and rs
rk−1

stays fixed, while rs
Rk

increase because

the numerator increase by a factor of γ while the denominator Rk =
∑m

j=k rj increase by a factor less than

or equal to γ (some of the summands increase by factor γ while others stay the same). This completes the

proof. �

EC.4. Detailed analysis with two schools

Continuing from the notation in Section 2.1 and proof of Proposition 1, in the 2 school case a mechanism

using independent lotteries simply chooses a q∗-subset of E uniformly randomly, and assign them to school

1. We call the cohesion obtained by independent implementation of the lottery findependent. It is straightfor-

ward to work out

findependent = Γ +

(
1− 2q∗(|E| − q∗)
|E|(|E| − 1)

)
(2
∑
c

(
|E|
2

)
) (EC.3)

We want to bound the ratio fmax
findependent

, which is how much correlated lottery improves cohesion in this

setting. However, fmax is computationally hard to solve.

However, we can come up with fairly good bounds on fmax when the number of communities is large.

Imagine that we arrange students in E in a circle, with members of the same community being adjacent

to one another. We can randomly split this circle into a group of q∗ and a group of |E| − q∗ by uni-

formly randomly selecting a student and counting q∗ students clockwise from her. This keeps communities

together except for at most 2 communities. The expected number of same-community pairs split is at most
2
∑

c |Ec|
(

1
|Ec|

∑|Ec|
a=1 a(|Ec|−a)

)
∑

c |Ec| =
2
∑

c |Ec| (|Ec|−1)(|Ec|+1)
6∑

c |Ec| ≤ 2
∑

c |Ec|(|Ec|
2 )∑

c |Ec| ≤maxc 2
(|Ec|

2

)
.

So this randomization, while not necessarily keeping all communities together, gives up at most the

largest community. Thus,

Γ + 2
∑
c

(
|Ec|

2

)
− 2max

c

(
|Ec|

2

)
≤ f(max)≤ Γ + 2

∑
c

(
|Ec|

2

)
(EC.4)

Combining this with previous expression for findependent,

1≤ fmax

findependent
≤

Γ + 2
∑

c

(|Ec|
2

)
Γ + (1− 2q∗(|E|−q∗)

|E|(|E|−1) )(2
∑

c

(|E|
2

)
)

(EC.5)

When the number of communities k is large and |Ec|’s are approximately equal,
maxc (|Ec|

2 )∑
(|Ec|

2 )
→ 0, so the

upper-bound is asymptotically achievable using the lottery correlation scheme defined above.

The maximum improvement occurs if Γ is small, and 2q∗(|E|−q∗)
|E|(|E|−1) ≈ p(1 − p) is large, in which case

the improvement ratio fmax
findependent

≈ 1

1− 2q∗(|E|−q∗)
|E|(|E|−1)

≤ 2 + 2
|E|−2 . So the maximum possible improvement from

correlated lottery is about a factor of 2. (This is achieved if for example there are no priorities and the lottery

is most random, so Γ = 0, p= 1
2
, in which case an independent lottery splits any given same-community pair

about 1
2

the time, and a correlated lottery, using the scheme described above, keeps communities together

almost all the time.)
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EC.4.1. Large market approximation with two schools

The NP-hardness in the finite case precludes precisely pinning down max-cohesion fmax, but as seen in the

above this difficulty disappears when the number of communities is large. We examine this “large-market”

case more closely to yield more intuition on when exactly we can expect correlated lottery to improve

cohesion the most.

We approximate the expressions for findependent and fmax in Equations EC.3 and EC.4 in this large market

case. For each community c, define nc = |Ic| and define uc, vc, wc to be the fraction of this community

in sets D, E, F respectively. So uc = |Dc|
|nc| , vc = |Ec|

|nc| , wc = |Fc|
|nc| , and we can approximate 2

(|Dc|
2

)
≈ n2

cu
2
c ,

2
(|Ec|

2

)
≈ n2

cv
2
c and 2

(|Fc|
2

)
≈ n2

cw
2
c . Moreover, we approximate the term in Equation EC.3, q∗(|E|−q∗)

|E|(|E|−1) ≈
q∗(|E|−q∗)
|E|2 = p(1− p). To simplify notation, treat c as a random variable that takes a particular value c0 with

probability
n2c0∑
c′ n

2
c′

. Rescale cohesion to be between 0 and 1 by defining f̃ = f∑
c′ n

2
c′

. We have

f̃independent
∼=E[u2

c + v2c + 2pucvc + 2(1− p)vcwc + (1− 2p(1− p))v2c ]

=E[(uc + pvc)
2] +E[(wc + (1− p)vc)2]

=E2[uc + pvc] +E2[wc + (1− p)vc)] +V ar(uc + pvc) +V ar(wc + (1− p)vc)

=q̄1
2 + q̄2

2 + 2V ar(uc + pvc).

Where q̄1 = q1
n

, q̄2 = q2
n

are the proportion of seats that are in school 1 and 2 respectively. Moreover, when

the number of communities is large and when the relative size of the largest community is small, we have

that the upper-bound in Equation EC.4 becomes equality, so

f̃max
∼=E[u2

c + v2c + 2pucvc + 2(1− p)vcwc + v2c ]

∼=f̃independent + 2E[p(1− p)v2c ].

We can interpret the terms as follows:

• q̄12 + q̄2
2: Herfindahl index of school size. This is a measure of school size concentration. It is higher

when school sizes are more unequal.

• 2V ar(uc + pvc): Between community variation in assignment probabilities. uc + pvc is exactly the

expected proportion of people from community c who go to school 1. This variation is 0 if assignment

probabilities in communities are identical, and increases if preferences and/or priorities result in more varied

proportion of people assigned to each school in different communities.

• E[2p(1− p)v2c ]: How much independent lottery hurts cohesion. This is the expected number of same

community pairs split up by independent lottery. It is higher when communities have more people affected

by the lottery (|E| is higher) and when the lottery is more “uncertain” (closer to p = 1
2
). For fixed p, it is

higher when the variation across communities of the number of people affected by the lottery (V ar(vc)) is

higher (or equivalently when within-community heterogeneity is low).
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An interesting special case is when there are no priorities and school sizes equal, in which the above

expressions immediately yield.

PROPOSITION EC.1. When there are no priorities (uc = 0) and q1 = q2 = 1
2
, we have that the proportional

improvement from correlated lottery is

f̃max− f̃independent

f̃independent

=
1− p
p

= 2E[vc]− 1,

which can be interpreted as a measure of overall preference correlation or competition.

Proof of Proposition EC.1: When uc = 0 and q1 = q2 = 1
2
, we have p= 1

2E[vc]
, so

f̃independent =E[(uc + pvc)
2] +E[(wc + (1− p)vc)2]

= p2E[v2c ] +E[(1− pvc)2]

= 2p2E[v2c ] + 1− 2pE[vc]

= 2p2E[v2c ].

So

f̃max− f̃independent

f̃independent

=
2p(1− p)E[v2c ]

2p2E[v2c ]

=
1− p
p

.

�

Based on this, we gather the following qualitative insights: to have higher cohesion when the lottery is

implemented independently, one needs to have more varied school sizes, more between-community varia-

tions in preferences, or have the over-demanded school give more priority to communities that most demand

it. Furthermore, the potential to improve cohesion via correlated lottery is greater when more people are

affected by the lottery, when within-community preference correlation is high, or when the lottery is more

uncertain. When school sizes are equal, the cohesion improvement is greater when more people desire the

over-demanded school.

EC.5. Inability of lottery correlation to increase diversity

Besides community cohesion, another desirable outcome might be racial or socio-economic diversity.

Unfortunately, we show in this section that running an independent lottery already achieves near optimal

diversity, so any significant gain requires changing the assignment probabilities.

To see why this is true, consider the assignment of students of different races to a school of capacity

q. Suppose there are r different races. In the random assignment, let n1, n2, · · ·nr be random variables

denoting the number of students of each race assigned to the school. Suppose that the school is always
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assigned at capacity, so
∑r

j=1 nj = q. A metric for diversity is the number of pairs of students of different

races assigned to the same school, so maximizing diversity at this school is to maximize

E[
∑
j1 6=j2

nj1nj2 ].

This is the same as minimizing

q2− 2E[
∑
j1 6=j2

nj1nj2 ] =E[
n∑
j=1

n2
j ].

However, by Jensen’s inequality,

E[
n∑
j=1

n2
j ]≥

n∑
j=1

E[nj]
2.

This lower bound is approximately achieved by running an independent lottery, because in that case nj is

almost always close to E[nj] by Chernoff bound. In fact, in the large market model of Section 3, nj would

be equal to E[nj] always, and this lowerbound is exactly achieved by independent lottery implementation.

In a finite market, one can achieve small diversity gains by constraining nj to be always between bE[nj]c

and dE[nj]e. More precisely, one would express the original assignment probabilities as a convex combina-

tion of such constrained deterministic assignments. This idea has been previously explored in Budish et al.

(2013). However, by the above argument, one would expect gains in diversity to be small.


