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Experimental Apparatus: the HPFS

The motivation: Ea for cyclohexane

Abstract
•The observed activation energy for the gas-phase reaction of 
OH + cyclohexane is elevated relative to other cycloalkanes, 
which is not predicted by our understanding of such reactions
•Little absolute rate constant data exists for OH + cyclopentane 
and OH + cycloheptane 
•Absolute rate constants for the two title reactions were 
measured using Harvard’s HPFS
•Experiments were conducted in 6-8 Torr of nitrogen over a 
temperature range of 230-350 K
•The absolute rate constant for OH + ethane was also measured 
as a test of system performance
•All data are fit using both a traditional Arrhenius fit and a 
modified fit based on transition state theory

Results Conclusions
•This work represents the second temperature-
dependent absolute rate constant measurement 
for OH + cycloheptane, and the third for OH + 
cyclopentane near ambient temperatures
•Room temperature rate constants are in excellent 
agreement with literature
•Both title reactions exhibit activation energies 
similar to cyclohexane, but the fit is very sensitive 
to outlying data
•All fits return values for Ea which are high relative 
to other studied cycloalkanes
•This experiment is ongoing, and extended 
temperature ranges will help to stabilize fits

Fits to This Work:
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Fits to All Data:
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Not shown:high T from Bott and Cohen, 
Sivaramakrishnan and Michael

Fitting

Traditional Arrhenius Fit:

•Assumes T-independent A and Ea 

•Often cannot model wide range of T

Modified Arrhenius Fit:

•Derived from transition state theory
•Models the conversion of free rotors into vibrations at 
the transition state
•n1 is a doubly-degenerate loose C-H-O bend (280 cm-1)
•n2 is a tight H-O-H bend (500 cm-1)
•Ea is a true zero-point corrected activation energy

k T =AeEa /T
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Alkane kfit (298 K) Ea Ea
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Cyclopentane (this work) 4.82 471 0.94

Cyclopentane (fit to all) 4.88 412 0.82

Cycloheptane (this work) 9.84 250 0.50

Cycloheptane (fit to all) 10.8 332 0.66

Cyclohexane (fit to all) 6.96 326 ± 17 0.65

Cyclooctane 14.1 149 ± 26 0.30

Methylcyclopentane 7.65 109 ± 13 0.22

Methylcyclohexane 9.43 83 ± 14 0.16

Methylcycloheptane 14.4 142 ± 36 0.28

Propylcyclohexane 13 112 ± 15 0.22
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