Bromine explosion in smog chamber experiments above a model salt pan

Joelle Buxmann, Robert Holla, Ulrich Platt, Karsten Kotte, University of Heidelberg, Germany

Natalja Balzer, Sergej Bleicher, Cornelius Zetzsch
University of Bayreuth, Germany

Funding by the DFG (German Research Foundation) within Research Unit HaloProc and by the EU within Research Infrastructure EUROCHAMP-2
Fig. 1.1 Geographical distribution of major areas with salt lakes. Note: salt lakes occur outside these areas, but not as frequently.

[Williams, 2002]
Bromine chemistry on salt surfaces

- Bromine (Br) reacts with ozone (O_3) to form BrO.
- HO$_2$ reacts with Br to form HOBr.
- HOBr is converted to BrCl under UV light (hv).
- BrCl is oxidized to Br$_2$.
- Br$_2$ is converted to HBr under UV light.
- HBr is converted to Br$^-$ under UV light.
- Br$^-$ reacts with Cl$^-$ to form BrCl.
- BrCl is converted to HOBr under UV light.

[Aldehydes, alkenes]
Bromine chemistry on salt surfaces

BrONO₂ → BrO
Br → BrONO₂
NO₂ → BrONO₂

BrCl → HBr
Cl → BrCl

Br₂ → HBr
H⁺ → BrONO₂

[Simpson 2007]
Experimental setup

Analytical instruments:

- Multireflection system for DOAS detection of Br
- O₃ analyzer
- NOₓ analyzer
- GC-FID with preconcentrator for toluene, n-butane, n-pentane, 2,2-dimethylbutane, 2,2,3,3-tetramethylbutane, and n-perfluorohexane
 → indirect determination of OH and Cl
Experimental preparation

- Preparation of salt sample:
 artificial salt samples
 NaCl/NaBr = 300/1 (similar to sea water)
 internal mixture
 (dissolved in water, dried overnight, milled)

- Flush chamber overnight with zero air by distilled water to "adjust" relative humidity

- T = 20°C (temperature controlled)

- Add O₃ (O₂ + UV light) and hydrocarbons
- Switch solar simulator on
DOAS spectra

- **RH = 37%**

- **BrO**: 498 ±70 ppt

- **O₃**: 585 ppb (below detection limit)

- **HCHO**: 52 ppb (below detection limit)
Experimental conditions: RH=2%, NaCl/NaBr=300/1

\[
\text{BrO} + \text{BrO} \rightarrow \text{Br} + \text{Br} + \text{O}_2 \quad \text{(rate determining)}
\]

\[
2 (\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2)
\]

\[
\text{net: } 2 \text{O}_3 \rightarrow 3 \text{O}_2
\]

\[
\frac{-d}{dt} \left[\text{O}_3\right] \text{ (“simple model“)} = 2 k [\text{BrO}][\text{BrO}]
\]

\[
\frac{dt}{dt} = 0.005 \text{ ppb/s}
\]

\[
\frac{-d}{dt} \left[\text{O}_3\right]\text{(measured)} = 0.005 \text{ ppb/s}
\]

with:

\[
k = 2.7 \times 10^{-12} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1} \quad \text{[Atkinson, 2007]}
\]

and [BrO]=200 ppt
Experimental conditions: RH=2%, NaCl/NaBr=300/1

\[
\text{BrO} + \text{BrO} \rightarrow \text{Br} + \text{Br} + \text{O}_2 \text{(rate determining)}
\]

\[
2 (\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2)
\]

net: \[2 \text{O}_3 \rightarrow 3 \text{O}_2\]

\[
-\frac{d}{dt}[\text{O}_3] \text{ (“simple model“)} = 2k[\text{BrO}][\text{BrO}]
\]
\[
\frac{dt}{dt} = 0.005 \text{ ppb/s}
\]

\[
-\frac{d}{dt}[\text{O}_3] \text{(measured)} = 0.005 \text{ ppb/s}
\]

with:

\[
k = 2.7 \times 10^{-12} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1} \text{ [Atkinson, 2007]}
\]

and [BrO]=200 ppt
Experimental conditions: RH=2%, NaCl/NaBr=300/1

\[\text{BrO} + \text{BrO} \rightarrow \text{Br} + \text{Br} + \text{O}_2 \text{(rate determining)} \]

\[2 \left(\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2 \right) \]

\text{net: } 2 \text{O}_3 \rightarrow 3 \text{O}_2

\[-d \left[\text{O}_3 \right] \text{ (“simple model”) } = 2 \, k \left[\text{BrO} \right] \left[\text{BrO} \right] \]

\[\frac{dt}{dt} = 0.005 \text{ ppb/s} \]

\[-\frac{d}{dt} \left[\text{O}_3 \right] \text{(measured)} = 0.005 \text{ ppb/s} \]

with:

\[k = 2.7 \times 10^{-12} \, \text{cm}^3 \text{molec}^{-1} \text{s}^{-1} \, [\text{Atkinson, 2007}] \]

and \([\text{BrO}]=200 \text{ ppt}\)
Experimental conditions: RH=37%, NaCl/NaBr=300/1

\[\text{BrO} + \text{BrO} \rightarrow \text{Br} + \text{Br} + \text{O}_2 \text{(rate determining)} \]

\[2 \left(\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2 \right) \]

net: \[2 \text{O}_3 \rightarrow 3 \text{O}_2 \]

\[\frac{-d}{dt} [\text{O}_3] \text{ ("simple model") = } 2 k [\text{BrO}][\text{BrO}] \]

\[\frac{dt}{0.04} = 0.04 \text{ppb/s} \]

\[\frac{-d}{dt} [\text{O}_3] \text{(measured)} = 0.03 \text{ppb/s} \]

with:

\[k = 2.7 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1} \text{ [Atkinson, 2007]} \]

and [BrO]=500 ppt
Experimental conditions: RH=37%, NaCl/NaBr=300/1

BrO + BrO → Br + Br + O₂ (rate determining)

2 (Br + O₃ → BrO + O₂)

net: 2 O₃ → 3 O₂

\[-d\frac{[O_3]}{dt}\] ("simple model") = 2 k [BrO][BrO]
\[dt = 0.04 \text{ppb/s}\]

\[-d\frac{[O_3]}{dt}\] (measured) = 0.03 ppb/s

with:
\[k=2.7 \times 10^{-12} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1} \text{ [Atkinson, 2007]}\]
and [BrO]=500 ppt
Experimental conditions: RH=37%, NaCl/NaBr=300/1

\[
\text{BrO} + \text{BrO} \rightarrow \text{Br} + \text{Br} + \text{O}_2 \text{(rate determining)}
\]

\[
2 (\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2)
\]

net: \(2 \text{O}_3 \rightarrow 3 \text{O}_2\)

\[
\frac{-d}{dt} [\text{O}_3] \text{ (“simple model“)} = 2 k [\text{BrO}][\text{BrO}]
\]

\[
\frac{dt}{= 0.04 \text{ppb/s}}
\]

\[
\frac{-d}{dt} [\text{O}_3] \text{(measured)} = 0.03 \text{ppb/s}
\]

with:

\[
k = 2.7 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1} \text{ [Atkinson, 2007]}
\]

and [BrO]=500 ppt
Role of H\textsubscript{2}O\textsubscript{2} and NO\textsubscript{2}

Very fast release of Br-source
d \[\frac{d[BrO]}{dt} = 40 \text{ppt/s} \]

Rate coefficient \(R = \frac{1}{4} \cdot \gamma \cdot v \cdot A \), \(v \sim 220 \text{m/s} \), \(A = \text{effective surface} \sim 1 \text{m}^2/3.5 \text{m}^3 \)

\[\text{Rate} = 5 \text{ s}^{-1} \rightarrow \tau = 200 \text{ms} \]

\[\text{Rate} = 0.09 \text{ s}^{-1} \rightarrow \tau = 11 \text{s} \]

\(\text{RH} = 60\% \), \(\text{NaCl/NaBr} = 300/1 \)

\(\text{BrO}_{\text{max}} = 6420 \text{ ppt} \)

\[\text{Rate coefficient } R = \frac{1}{4} \cdot \gamma \cdot v \cdot A \text{, } v \sim 220 \text{m/s, } A = \text{effective surface} \sim 1 \text{m}^2/3.5 \text{m}^3 \]

[Mochida et al., 1998], [Aguzzi and Rossi 1999]
at 37% RH:

\[[\text{Cl}]_0 \approx 3.5 \times 10^4 \text{ cm}^{-3}\]

\Rightarrow \ [\text{ClO}] \approx 3.3 \times 10^6 \text{ cm}^{-3}
Repeated exposure of salt pan at 60% RH: O_3
Repeated exposure of salt san at 60% RH: Br
Repeated exposure of salt pan at 60% RH: BrO
Three “bromine explosions”: Comparison

Graph showing the comparison of O₃ and BrO concentrations over time at different relative humidities (2%, 30%, and 60%). The graphs plot O₃ and BrO concentrations in ppb and ppt, respectively, against time in hh:mm.

- O₃:
 - 2% relative humidity: Concentration decreases over time, reaching a peak at approximately 03:00.
 - 30% relative humidity: Concentration decreases more gradually, reaching a peak at approximately 02:00.
 - 60% relative humidity: Concentration decreases at a slower rate, reaching a peak at approximately 01:00.

- BrO:
 - 2% relative humidity: Concentration increases sharply at the beginning, reaching a peak at approximately 00:00.
 - 30% relative humidity: Concentration increases more gradually, reaching a peak at approximately 01:00.
 - 60% relative humidity: Concentration increases at a slower rate, reaching a peak at approximately 02:00.

The graphs illustrate the different responses of O₃ and BrO to varying relative humidities, with BrO showing a more pronounced increase at 2% relative humidity.
Discussion of humidity dependence: $[\text{BrO}]_{\text{max}}$
Discussion of humidity dependence: $\text{d}[\text{BrO}] / \text{d}t$
First direct observation of “bromine explosion” in laboratory

BrO up to 6000ppt

Strong dependence on relative humidity

Controlled by thickness of quasi liquid microlayer?

Fast Br-release for 60%rh is not explained by reaction with HO$_2$ alone.

NO$_2$ might play a key role in „bromine explosion“
Scattering by aerosol in the light path
Thank you for your attention!