
 1

Title page 

A Methodology for Engineering Ontology 

Acquisition and Validation 
 

 

 

 

Corresponding Author 

 Karthik Ramani, Professor 
 School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, USA 
 Email: ramani@purdue.edu 
 Fax: 1-765-494-0539 
 Phone: 1-765-494-5725 

Total Number of Manuscript Pages 33                 2 to 34 

Total number of tables 2 

 Table 1. The EO concepts and knowledge resources           35  
 Table 2. Definitions of the relationships               36 

Total number of figures 10 

 Figure 1. System architecture and functional modules           37 
 Figure 2. EO and EL development process              38 
 Figure 3. The schema of the ontology basis              39 
 Figure 4. Examples of knowledge worksheet              40 
  a. Classification worksheet for ‘washer’ concept 
  b. Relationship worksheet for ‘lock washer’ concept 
 Figure 5. A Portion of EO                    41 
 Figure 6. Distribution of EO concepts                42 
 Figure 7. Distribution of EO relationships               43 
 Figure 8. Part of the device taxonomy for the surgical robot design      44 
 Figure 9. Comparison between the device taxonomy of EO and GlobalSpecTM   45 
 Figure 10. A portion of EO after weight adjustment and normalization     46 

 
 

 

Zhanjun Li 
Alibre Inc. 

Richardson, Texas 75082 USA 

Maria C. Yang 
Department of Mechanical Engineering 

and Engineering System Division 
Massachusetts Institute of Technology 

Cambridge, MA 02139 USA 

Karthik Ramani 
School of Mechanical 

Engineering  
School of Electrical and 
Computer Engineering  

(by courtesy) 
Purdue University 

West Lafayette, IN 47906 USA



 2

ABSTRACT 

 When engineering content is created and applied during the product lifecycle, it is often 

stored and forgotten. Current information retrieval approaches based on statistical methods 

and keyword matching are not effective in understanding the context of engineering content. 

They are not designed to be directly applicable to the engineering domain. Therefore, 

engineers have very limited means to harness and reuse past designs. The overall objective of 

our research is to develop an engineering ontology (EO) based computational framework in 

order to structure unstructured engineering documents and achieve more effective 

information retrieval. This paper focuses on the method and process to acquire and validate 

the EO. The main contributions include 1) a new, systematic, and more structured ontology 

development method assisted by a semi-automatic acquisition tool. This tool is integrated 

with Protégé ontology editing environment; 2) an engineering lexicon (EL) that represents the 

associated lexical knowledge of the EO in order to bridges the gap between the concept space 

of the ontology and the word space of engineering documents and queries; 3) the first large 

scale EO and EL acquired from established knowledge resources for engineering information 

retrieval; and 4) a comprehensive validation strategy and its implementations to justify the 

quality of the acquired EO. A search system based on the EO and EL has been developed and 

tested. The retrieval performance test further justifies the effectiveness of the EO and EL as 

well as the ontology development method. 

KEYWORDS Engineering ontology, Knowledge acquisition, Ontology validation, 

Engineering information retrieval 
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1. INTRODUCTION 

 Engineers are dependent on accessing documents in order to fulfill various design and 

engineering tasks. In fact, today’s engineers rarely make an effort to find engineering content 

beyond doing mere keyword searches (McMahon et al., 2004). In industry sectors, it was 

reported that design engineers spent 20% - 30% of their time retrieving and communicating 

information (Court et al., 1998). “Delivering the right information to the right people at the 

right time” plays an important role in supporting engineers’ memory extension, knowledge 

sharing, design concept exploration, design reuse, and the learning process particularly of 

novice engineers (Ullman, 2001). However, current engineering practices often ignore reuse 

of previous knowledge because appropriate engineering information retrieval tools have not 

been developed. The use of electronic document management systems (EDMs) and product 

management systems (PDMs) as facetted classification and browsing tools provide limited 

support and are not satisfactory (Iyer et al. 2005). Traditional information retrieval (IR) 

approaches either retrieve too much or irrelevant results for engineering. As a result, a large 

amount of time is spent reinventing what is already known in the company or is available in 

outside resources (Hertzum & Pejtersen, 2000). It is, therefore, imperative to minimize such 

overhead by developing the science base for contextual retrieval and then using this 

knowledge to create effective computer-aided tools. 

 Statistics-based methods and keyword-based input have been prevalent in IR research (Lin 

& Demner-Fushman, 2006). They can be viewed as sophisticated stochastic techniques for 

matching terms from queries with terms in documents under the assumption of term 

independence. They try to derive the meaning of the text from the observable syntactic and 

statistical behavior of its units without representing the meaning directly. However, words 

alone cannot capture the semantics or meanings of the document and query intent due to their 

ineffectiveness in understanding the context of engineering content. To put it differently, the 

search results should satisfy the users, who are looking for something that matches their 
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understanding of pertinent text—an understanding that includes, among other things, the 

relations among the terms and the ability to disambiguate and to infer. Therefore, statistical 

methods are knowledge-inadequate but reasonably effective, hence their wide adoption in 

web search engines and other general IR applications. However, a carefully considered 

knowledge-rich approach would probably offer much more effective and nuanced search. 

 Engineering documents represent a class of documents often found in domains of 

professional practice which is characterized by syntax variations, semantics complexities, and 

informalities (Li et al., 2008). An example of the syntax variations is the prevalent usage of 

abbreviations of technical terms. The semantic complexities denote the wide range of 

domain-specific issues and the relationship among these issues that must be considered and 

documented during the lifecycle of product development. Informality refers to certain 

documents such as engineers’ notebooks which contain important design rationales but 

usually recorded in fragmentary descriptions (Yang et al., 2005). These domain-specific 

idiosyncrasies make it difficult to access via traditional IR approaches. There has been a 

limited amount of research aimed at analyzing unstructured engineering documents for 

retrieval purposes, such as Dong & Agogino (1996), McMahon et al. (2004), Yang et al. 

(2005), and Ahmed et al. (2007). These approaches typically incorporate some engineering 

domain knowledge. In a sense, these approaches are more effective than traditional IR 

methods would be on a set of engineering documents, but at the same time retain many of 

their negative performance aspects. See (Li & Ramani, 2007) for extensive reviews. 

 Research in product modeling and ontology modeling (e.g., Sudarsan et al., 2005; Patil et 

al., 2005) is different from analyzing and retrieving unstructured engineering documents to 

assist design process. Rather, it proposes structured and semantics-based representation and 

expects engineers will record the design and development information based on the pre-

defined architecture, templates, rules, and vocabularies. Research in product modeling and 

ontology modeling has made significant progress in establishing complex models as well as 
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in standardizing terminologies to describe the details of the design. In many cases, however, 

establishing the knowledge sharing agreements or mapping out the design decomposition is 

potentially less feasible (Uschold & Grüninger, 2004). Therefore, in our opinion, it is equally 

important to develop a strategy that is comprehensive and effective at retrieving valuable 

content about the design and design process from unstructured documents. Meanwhile, this 

strategy should reduce cognitive burden on engineers in generating and maintaining the 

model that understands the engineering context. 

The long term goal of our research is to develop a content-oriented, knowledge and 

meaning based computational framework to form the ontological basis of the search, 

browsing, and learning tasks in the engineering domain. In this paper, we focus on 

investigating the method and process to develop such an ontological basis. 

 In general, an ontology can be used as a sophisticated indexing mechanism in order to 

structure an information repository such as unstructured documents in text retrieval systems 

(Uschold & Grüninger, 2004). Attempts have been made to develop ontology-based 

algorithms to achieve high precision and high recall through concept disambiguation and 

query expansion by utilizing the semantically related concept space of the ontology (Li et al., 

2008). Using ontologies allows strong semantics to be applied to the individual paragraphs, 

sentences, and words of the documents to be indexed (Mayfield, 2002). The correlations 

among concepts defined in ontologies also enable navigation and browsing of query-related 

documents. 

 Section 2 provides definition of an ontology and its distinct features compared to other 

representation schemas. Current ontology development in the engineering domain and 

ontology acquisition methods are summarized in section 3. This justifies the needs of the 

proposed engineering ontology and the new ontology development method. An overview of 

the knowledge-based computational framework is described in section 4. Section 5 discusses 

in detail the proposed development method and the acquired engineering ontology. The 
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validation process and empirical studies are introduced in section 6. Section 7 concludes the 

paper and provides future directions. 

2. ONTOLOGY DEFINITION 

 Ontologies have found many applications in the fields where semantics-based 

communications among people and systems are crucial (Uschold & Grüninger, 2004). There 

are several definitions of an ontology. However, with respect to information retrieval, our 

definition of an ontology is derived from the “ontological semantics” theory proposed for 

natural language understanding (Nirenburg & Raskin 2004). An ontology is a constructed 

model of a domain. In more practical terms, it is a highly structured system of concepts 

covering the processes, objects, and attributes of a domain as well as all their pertinent 

complex relations. The grain sizes of the concepts are determined by considerations such as 

the need for an application or for computational complexity. 

From one perspective, an ontology can be viewed as a decomposition of a domain: it is a 

hierarchy of concepts (also called classes). Examples of engineering concepts are 

“mechanical component” (device concept), “aluminum” (material concept), and “support” 

(function concept). Each concept typically has various properties (also called attributes, slots, 

or roles), which describe the meaning and characteristics of the concept. Properties are 

usually represented in some form of logic such as predicate rules in artificial intelligence 

research. The value of a property can be a simple or complex data type such as a string. 

However, the most important use of property is to describe the relationships (or relations) 

between concepts in the ontology, i.e., a true ontology should reflect the correlations among 

concepts across sub-domains.  

Every concept but the root of the ontology has the relationship is-a, and the value of this 

property is the parent of this concept. A concept may have multiple parents and multiple 

inheritances. 



 7

 Ontologies share the inheritance feature with the object-oriented (OO) programming 

languages, which are indeed suitable for implementing ontological procedures. However, in 

OO programming, the focus is on designing the operational properties, i.e., the methods of a 

class, whereas ontology development is based on the structural properties, i.e., relationships 

of a class. More importantly, the OO approach lacks the conceptual content of ontologies, 

and it is not sufficient for addressing the rich knowledge modeling needs discussed here. The 

distinction between form and content is crucial for understanding the proposed ontology 

model. It is the content of ontologies that makes them useful for this application, independent 

of the choice of form, i.e., format or language. Currently, there is also confusion between 

taxonomy-based and ontology-based applications. One of the major differences between 

taxonomies and ontologies is that an ontology represents much richer domain contexts than a 

taxonomy or a list of taxonomies. A taxonomy is a hierarchical classification of concepts in a 

sub-domain. These concepts are connected only by domain-independent (i.e., taxonomic) 

relationships such as is-a. An ontology, however, consists of several taxonomies, along with 

multiple domain-specific (i.e., non-taxonomic) relationships to connect concepts across 

taxonomies. 

3. RELATED WORK 

3.1 Ontology Development in Engineering 

 The recently proposed ontology development in engineering can be categorized based 

upon its intended usages. There are three main categories: high level domain knowledge 

specification, system inter-operability, and knowledge sharing and reuse. 

 Sim and Duffy (2003) present the acquisition and the resulting ontology of generic design 

activities based on the literature and validated by the design process. They categorize a 

generic set of activities as design definition, evaluation, and management. This ontology 

might provide fundamental consistent descriptions of the interpretation of typical design 
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activities upon which design education, system developers, and researchers can further work 

in design research and practice. Brooke et al. (1995) conduct a comprehensive investigation 

of various aspects of knowledge involved in engineering analysis modeling. A higher level 

categorization of this knowledge such as physical model, assumption, mathematical model, 

material property, and geometry are described. 

 As the use of information technology in manufacturing operations has matured, the inter-

operability among these software systems has become increasingly important (Schlenoff et 

al., 2000). The Process Specification Language (PSL) proposed by Gruninger and Menzel 

(2003) is designed to support correct and complete exchange of process information among 

manufacturing systems, such as scheduling, process planning, and work flow management. 

This approach focuses on conceptualizing fundamental elements of manufacturing 

operations, as well as axiomatizing their relations and functions by using first order logic. A 

more detailed case study of using PSL for system inter-operation is demonstrated by Ciocoiu 

et al. (2001). Patil et al. (2005) develop a Product Semantic Representation Language (PSRL) 

as an ontolingua for inter-operation between CAD systems. 

 Recently, many ontology development studies have been proposed with the intention of 

assisting engineering design knowledge sharing and reuse. Lin et al. (1996) present an 

ontology for representing engineering design requirements to support a generic requirements 

management process for sharing configuration knowledge among design teams. An 

equipment ontology proposed by Lohse et al. (2006) enables the fast reconfiguring of 

assembly systems driven by changing requirements. It enumerates the equipment design 

concepts based on the function-behavior-structure paradigm. Witherell et al. (2007) present 

an optimization ontology which incorporates standardized optimization terminology, formal 

method definition, certain optimization details, idealizations and assumptions, and model 

developers' rationales. In system simulation and design, Borst and Akkermans (1997) develop 

a comprehensive engineering ontology for dynamic physical system simulation. To support 
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effective communication among design collaborators, Kitamura and Mizoguchi (2004) 

demonstrate an ontology for functional knowledge systemization while Kim et al. (2003) 

describe pump and motor ontologies to encourage component-based design knowledge reuse. 

 Although significant progress has been made in ontology development in engineering, 

very little effort has been made to systemize the established knowledge in design and 

manufacturing by developing the corresponding ontological representation. Most of the 

reviewed ontologies lack the scope and granularity of concepts in reflecting the 

idiosyncrasies of engineering content as well as engineers’ information needs. In addition, no 

attempt has been made to formalize the associated lexical knowledge in order to bridge the 

concept-based representation of the ontology and the word-based representation of 

documents and queries. Therefore, it is infeasible to apply these ontologies for indexing and 

retrieving engineering documents. 

3.2 Methods for Ontology Development 

 The method used to build the Cyc ontology consists of general steps and codification of 

articles and pieces of knowledge (Lenat & Guha, 1990). Manual process is used to extract the 

common sense knowledge that is implicit in different sources. All methods proposed later all 

start from the identification of the scope and the need for the ontology: The work by Gruber 

(1995) represents the first attempt to consolidate experience gained in developing ontologies. 

It can be summarized as five ontology design criteria: clarity, coherence, extensibility, 

minimal ontological commitment, and minimal encoding bias. Uschold and King (1995) 

developed Enterprise Ontology for enterprise modeling processes. Their development method 

includes four activities: 1) purpose identification, 2) ontology building, 3) evaluation, and 4) 

documentation. They also proposed three strategies for identifying the concepts in the 

ontology: top-down, bottom-up, and middle-out. Grüninger and Fox (1995) proposed an 

ontology design and evaluation method while developing the TOVE (Toronto Virtual 

Enterprise) project ontology. It uses a set of natural language questions, called competency 
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questions to determine the scope of the ontology and to extract the main concepts of the 

ontology as well. Their major focus, however, is to build the first-order logical model 

representation of the ontology. A similar method was introduced by Noy and McGuinness 

(2001) using Frame-based representation. Fernández-López et al. (1999) presented a more 

structured method and life cycle definition for developing ontologies from scratch, called 

METHONTOLOGY. However, the evaluation is still subjective. 

 Among the recently proposed ontology acquisition methods in engineering, Nanda et al. 

(2006) apply the formal concept analysis to form the product family ontology of one-time-use 

cameras. Ahmed and Wallace (2007) design an ontology development process which can be 

customized for a particular manufacturing company. However, their acquisitions did not 

explicitly explore the domain-specific relationships among concepts and therefore, the 

acquisition result is a list of independent taxonomies, not an ontology. 

 In summary, current ontology development methods still require tremendous effort and 

subjective judgments from the ontology developers to acquire and maintain the ontology. 

Very few attempts have been made towards systematically validating the completeness and 

accuracy of the acquired ontologies. Most of the target acquisition sources in the 

aforementioned methods solely focus on domain experts. However, for the application of 

engineering information retrieval, it is important to take into account the domain models of 

users as well as the established and objective knowledge resources. It is, therefore, critical to 

investigate an ontology development method that 1) is systematic, more structured, and 

consists of a comprehensive validation process; 2) acquires ontologies from established and 

objective sources; and 3) can incorporate domain model conceptualizations and vocabularies 

from different users. More specifically, the proposed ontology development method 

1. Represents a structured engineering ontology (EO) development process which is 

descriptive (what to do) and prescriptive (how to do); 
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2. Formalizes the cumulative domain knowledge such as the classification of mechanical 

elements, their function, design, and manufacturing knowledge and formulates in a single 

standard format; 

3. Acquires and formalizes the lexical knowledge, i.e., the engineering lexicon (EL) that 

associates with the EO. The EL is an ordered list of lexical terms which are the natural 

language phrases of the corresponding concepts defined in the EO. They are used to 

match the concepts with words in documents and queries assisted by the concept 

disambiguation processing (Li et al., 2008); 

4. Develops a semi-automatic tool and formatted knowledge worksheets into the practical 

ontology development process in order to alleviate the acquisition effort; and 

5. Validates the completeness and accuracy of the acquired EO and EL based upon 

comprehensive empirical studies. 

4. OVERVIEW OF EO-SEARCH 

 Figure 1 shows the overall architecture of interactions between the ontological basis, i.e., 

the EO and EL, with other functional modules applied to the knowledge-based engineering 

information retrieval framework, i.e., EO-Search. The framework comprises six portions: 

pre-processing, ontology basis, ontology acquisition and maintenance, concept tagging, 

concept indexing, and query processing. 

<<Figure 1. System architecture and functional modules>> 

1. Pre-processing: It converts engineering documents into .txt files, i.e., PartTexts, which can 

then be processed by the system. The inputs are catalog descriptions, drawings, technical 

reports, and engineers’ notebooks. We developed a PDF stripper based on Adobe 

application program interfaces (APIs). It converts texts in PDF documents such as 

supplier’s catalogs into a congruent stream of plain text while maintaining layout of the 
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documents. Third party software, i-Prowler 1 is used to extract textual descriptions from 

engineering drawings. It uses various CAD APIs, such as SolidWorksTM and 

AutoCADTM. It converts the texts such as drawing notes and title blocks (in 2D 

drawings) as well as shape features and mating relations (in 3D drawings) into .txt files. 

2. Ontology basis: This consists of domain knowledge and lexical knowledge, i.e., the EO 

and its associated EL, respectively. They are used to assist in recognizing technical terms 

in documents and queries at the concept level. 

3. Ontology acquisition and maintenance:  Protégé 3.12 is used to build and update the EO 

and EL. The output scripts from Protégé record the content of the EO and EL. These 

Frame-based XML scripts are then read into the system to generate the EO and EL in the 

memory. 

4. Concept tagging: The documents in the neutral format are tagged by using the concept 

definitions in the EO and EL. They are then transformed into an XML-based 

representation, i.e. PartXMLs. Using EO and EL makes the tagging process less dependent 

on NLP techniques in understanding the texts. Metadata, such as names of the original 

documents, are also stored. 

5. Concept indexing: An inverted index is generated to index the PartXML documents. The 

filenames and the locations where the concept (tag) appears are listed along with the 

concept. This index is accessed when the system ranks the documents during query 

processing. 

6. Query processing: EO plays an important role in interpreting the user’s queries accurately, 

and therefore improves retrieval performance. Queries with qualitative or quantitative 

property-value pairs are also handled. Ontology-based query processing algorithms are 

developed to fulfill these tasks. 

                                                            
1 http://www.imaginestics.com 
2 http://protege.stanford.edu 
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 Please refer to [12] for more details of the concept tagging, indexing, and query 

processing. 

5. DEVELOPING EO AND EL 

 The process of developing the EO and its associated EL includes six steps. These are 1) 

Specification: determining the scope and granularity of the EO; 2) Conceptualization: 

acquiring the EO and EL from various knowledge resources; 3) Formalization: putting the 

acquired knowledge into structured formats; 4) Population: converting the formalized 

knowledge into Protégé’s Frame-based representation; 5) Evaluation: validating the accuracy 

and completeness of the EO and EL; and 6) Maintenance: updating the EO and EL after they 

are established. Figure 2 illustrates the development process and the supporting activities in 

each step. Note that the de facto development of EO and EL is an iterative process since the 

specifications of an ontology may change throughout its life cycle as the definitions are 

initialized and modified. 

<<Figure 2. EO and EL development process>> 

5.1 Specification 

 Similar to the aforementioned ontology development methods, such as 

METHONTOLOGY (Fernández-López et al., 1999), the first step is to identify the scope or 

themes of the EO for information retrieval purposes. These themes are determined based on 

the discoveries by cognitive studies in the engineering domain (e.g., Kuffner & Ullman, 

1991; Baya et al., 1992; Pugh, 1997; Lowe et al., 2002). The prior studies investigated what 

types of information are requested by engineers and what domain-specific issues are 

documented during the product development process. The results of these studies are 

categorized and used to determine the themes of the EO. These include designed devices such 

as product assemblies and engineering components, functionalities and properties of the 

devices, common geometry and assembly features used in modeling and making the devices, 
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design and manufacturing processes, material selections, environmental objects which may 

interact with the devices in their working status, and the standards or specifications that 

certain design or manufacturing process must comply with. Measurement unit and value 

types are, in general, related to how device properties are described in the document. The 

overall schema of the EO is shown in Figure 3. Each taxonomy represents an issue or a sub-

domain of the EO. Recall that a taxonomy consists of concepts organized in a hierarchy. 

However, the EO is differentiated from simply a list of taxonomies by having other domain-

specific inter-relationships among concepts across these taxonomies. Therefore, what types of 

inter-relationships exist among concepts must also be determined. In the second step, 

taxonomies, concepts, and relationships among concepts will be acquired. Note that concepts 

are used in tagging and query processing while relationships are important for 1) concept 

disambiguation where a word in documents/queries may match with multiple concepts, 2) 

navigation among related concepts in order to narrow down the search process quickly. 

Please refer to (Li et al., 2008) for more details. 

<<Figure 3. The schema of the ontology basis>> 

 Now the question becomes what level of granularity of the concepts should be taken into 

account in the EO. Since the goal is to build a search mechanism that is more effective than 

keyword-based search while less dependent on using NLP techniques to understand 

documents or queries, the EO must include more specific concepts, i.e., lower-level concepts 

in EO, such as ‘spur gear,’ as well as more general concept categories, i.e., upper-level 

concepts, such as ‘mechanical components.’ This is because specific concepts are usually 

used in documentation while both general and specific concepts may be the interest of users’ 

queries. Note that 1) the more detailed analytical knowledge of the EO concepts such as 

mathematical constraints and physical rules is not required for the current information 

retrieval task; 2) different brand names of the product or components are not treated as 
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concepts; and 3) instances of the concepts appear only in the documents by concept tagging 

and not as part of the EO. 

5.2 Acquisition 

 Most of the ontology development methods conduct the ontology acquisition in a 

subjective manner. They generate concepts and relationships either by brainstorming (i.e., 

enumerating a list of terms and then figuring out how they are related to each other), or by 

interviewing with experts. The first approach might be effective in creating ontologies for 

either a general domain or higher level concept representations. However, it is not feasible in 

developing the EO, which includes broader as well as very specific engineering domain 

knowledge. The second approach may be appropriate if the ontology is built based upon the 

knowledge in a smaller domain, such as a company. However, the content of the ontology 

may be limited and subjective. 

 In our method, the acquisition task is conducted mainly by extracting the relevant content 

from established engineering knowledge resources (EKRs). Examples of the EKR are 

handbooks, engineering texts, engineering databases, literature, and bill of materials 

(BOMS). The last one is analyzed in order to acquire the desired knowledge of proprietary 

products. 

By acquiring ontological content from the EKRs, it ensures the resultant ontologies are 

more consistent, more objective and have better quality. For example, design handbooks 

usually classify engineering components in hierarchical form which can be put into an 

ontology model as concepts and taxonomies. Each component is described in detail, 

including its engineering characteristics such as material, physical, geometrical and 

functional properties. These descriptions can be easily identified and mapped to relationships 

by undergraduate students with reasonable training of ontology acquisition. 

 The EO acquisition consists of three tasks: concept acquisition or taxonomy acquisition, 

relationship acquisition, and lexicon acquisition. In practice, these three tasks can be done 
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either simultaneously or sequentially. First, the EKRs corresponding to a specific taxonomy, 

or part of the taxonomy, are collected, for example, material selection handbooks for the 

material taxonomy. Second, the sentences and phrases which describe the concepts of this 

taxonomy as well as their relationships with other concepts are extracted by ontology 

developers and then documented in free texts. Certain EKRs, such as Function basis (Hirtz et 

al., 2002) and motor and pump ontologies from (Kim et al., 2003) are reused. For example, 

the verbs in the function vocabulary of the Function basis are used to construct the function 

taxonomy in the EO, while the nouns in the flow vocabulary of the Function basis are 

dispersed into several other taxonomies such as device taxonomy, material taxonomy, and 

environment taxonomy, mainly as higher level concepts. The relationships between the 

function concepts and other concepts are constructed according to the definitions of the 

function verbs. 

 Lexical terms are the natural language phrases of the corresponding concept. They are 

used to 1) match the concepts with word(s) in documents and queries and 2) explicitly 

represent the vocabularies of different user models toward the same ontology concept. 

Therefore, morphology forms, abbreviations, acronyms, and synonyms of the word/phrase 

are also lexical terms and share the same concept with the original lexical term. For example, 

move, moving, and moves are lexical terms of the functional concept MOVE. The first one 

represents the original lexical term while the last two are morphology forms. In another 

example, outside diameter, outer diameter, and o.d. are lexical terms of the property concept 

OUTSIDE DIAMETER, where the second one is the synonym and the third is the 

abbreviation of the original lexical term. Note that morphology forms of the original lexical 

term are obtained automatically through the APIs of WordNet3 while other forms of the 

lexical term are acquired manually since WordNet is a general lexical resource and lacks 

engineering terminologies. 

                                                            
3 http://wordnet.princeton.edu/ 
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 In the end, the references of the investigated EKR are also recorded. The generated 

descriptions are the informal representations of the domain knowledge. 

 Note that the device taxonomy includes classifications of engineering catalog components 

and proprietary products. The latter one needs to be customized for each specific company 

including product line classifications, subassembly classifications, and part inventory 

classifications. The properties of the device concepts are conceptualized in the property 

taxonomy and connected with the device concepts through has-property relationship. This is 

also true for the properties of the material concepts such as ‘hardness’ and properties of 

process concepts such as ‘revision stage.’ 

5.3 Formalization 

 When most of the knowledge has been acquired, it is unstructured and needs to be 

organized by using representations that both computers and humans can understand. Such 

representations are named “knowledge worksheets.” They are formatted templates and 

independent of ontology engineering tools or implementation languages used. The 

worksheets 1) are used as formal documentations of the EO and EL development; 2) direct 

the acquisition of the EO and EL; and 3) improve the efficiency of the ontology development 

process by enabling automatic parsing of the acquired knowledge into the ontology 

engineering tool used. They have been used extensively by the undergraduate students who 

fulfill the acquisition and formalization tasks as ontology developers. Note that the 

knowledge worksheets are different from the “intermediate representations” proposed by 

Fernández-López et al. (1999) where they are designed for human consumption only. 

 There are two types of knowledge worksheets: classification worksheets and relationship 

worksheets. Examples of the knowledge worksheets are shown in Figure 4. Each taxonomy, 

or a classification unit within the taxonomy (e.g., the classification of washers in the device 

taxonomy) corresponds to a classification worksheet while each concept, in general, has a 

relationship worksheet. The classification worksheet is used in organizing the unstructured 
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results from the concept acquisition into a hierarchical structure. In our experience, 

formalizing classification worksheets is the most challenging step of the overall development 

process, where different EKRs may classify the same taxonomy or concept from different 

perspectives and hence have to be merged carefully to handle redundancy or contradiction. 

For instance, the manufacturing process can be classified by either functionality or material 

removal/addition. And a child concept in one EKR becomes an ancestor of its parent in 

another EKR. In this case, ontology developers conduct re-classification by referring to 

additional knowledge resources. The relationship worksheet describes the ontological 

definitions, i.e., related concepts and type of relationships, of a concept. Note that some 

relationship descriptions may be empty either because such knowledge has not been acquired 

or because of the characteristics of the concept being described. For example, lock washer 

does not consist of any sub-parts. 

<<Figure 4. Examples of Knowledge worksheet>> 

5.4 Population and Maintenance 

 The population step refers to modeling the EO and EL by using the generated knowledge 

worksheets, as well as Protégé 3.1, one of the most widely used ontology engineering tools. 

Protégé is open source and well supported by the medical informatics group at Stanford 

University and many participating researchers from various disciplines. It provides visual 

tools for ontology editing, including concept, taxonomy, and relationship building, as well as 

ontology visualization. It supports Frame-based and OWL-based representation schema and 

various types of representation language formats, such as XML, RDF schema, and OWL. We 

choose the XML format as the output script of the EO and EL model because of its better 

readability. 

 The modular structure of the EO and EL lend themselves easily to expansion such as 

adding a new relationship or new concept from documents or user queries. In Protégé, 

concepts are modeled as classes while relationships are slots. An attribute (unary 
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relationship) slot named lexical-terms is assigned to each class. This attribute slot contains all 

the lexical terms of the pertinent concept as strings. 

 Concept-naming conventions are applied in order to 1) make the EO more readable; and 2) 

make each concept (label) unique. Otherwise for example, CYLINDER can refer to both a 

device concept and a shape feature concept and therefore, can cause ambiguities in the EO, 

which is not allowed. The naming conventions require that all concepts are in upper case, that 

they consist of a prefix representing the taxonomy to which the concept belongs, and that the 

tokens of each concept are connected by “-.” Therefore, the two concepts in the previous 

example are written as D-CYLINDER and SF-CYLINDER, respectively. Table 1 lists more 

details of the EO concepts and the acquisition resources. 

 In general, each concept in EO connects with its relevant concepts through relationships. 

For instance, a property concept (e.g., P-OUTSIDE-DIAMETER) is related with some 

measurement unit concepts (e.g., MU-MILLIMETER) and value type concepts (e.g. V-

FLOAT). Exceptions include value-type concepts and concepts, which are self-contained. 

Note that the relationships are one-way connections. Definitions of the relationships are given 

in Table 2. Note that device concepts have correlations with most of the other types of the 

concept in EO. This reflects the fact that designing a physical product is the central task of 

engineers. 

<<Table 1. The EO concepts and knowledge resources>> 

<<Table 2. Definitions of the relationships>> 

 Two options are provided for populating the EO and EL in Protégé: automatic and manual. 

Traditional approaches require ontology developers to use logic languages in order to encode 

the ontology (Fernández-López et al., 1999). Current trend is to use interactive ontology 

editing tools such as Protégé, which can significantly reduce the human effort in this step. 

However, during our investigation, we recognized that it is still a time-consuming and error-

prone task to populate large and complex ontologies. For example, to populate the EO, it 
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takes about 6 minutes per concept to manually create the concept in Protégé, with all its 

relationships pointing to the pertinent concepts and its associated lexical terms. Therefore, we 

developed an automatic parser by using Protégé APIs. It reads in the knowledge worksheets 

and generates the EO and EL model. The classification worksheets are parsed prior to the 

relationship worksheets. It is possible that certain concepts which are part of the descriptions 

in the relationship worksheets may not be defined in the EO yet. Therefore, some human 

interventions are expected. Though it is more efficient and causes less operational errors to 

use the automatic population when building large ontolgies from scratch, the manual 

approach is more appropriate for ontology maintenance or creating small-size ontologies.  

 Automatic ontology learning (e.g., Shamsfard & Barforoush, 2004) aim at facilitating the 

ontology construction process by extracting knowledge from texts, and by employing NLP 

techniques, corpus statistics, and a kernel ontology. It has potential to accelerate the 

maintenance process of ontologies by automatically identifying new concepts and 

relationships. It is desirable to incorporate these techniques for maintaining EO in the future. 

6. EVALUATION 

 The resultant EO is organized in a directed graph or lattice: each node represents a concept 

and each arc represents a relationship. A portion of the EO is shown in Figure 5. EL is a flat 

list, where all lexical terms are organized in descendent order with respect to their length 

along with the concept with which the lexical term associates.  

<<Figure 5. A portion of EO>> 

 Currently, there are 10 taxonomies, 2,889 concepts, 14 types of relationships and more 

than 11,000 relationship instances in the EO, and more than 7,000 lexical terms in the EL. 

Figure 6 illustrates the concept distributions in different taxonomies. Figure 7 describes the 

number of relationship instances for each type of relationship. The EO represents the general 

domain knowledge as well as the proprietary product knowledge. The general domain 
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knowledge refers to the knowledge about the most frequently used catalog components, 

including the more standardized components such as motors and gears, and more-customized 

ones such as linear slides. Three undergraduate students who have design and manufacturing 

experience conducted the EO and EL development. The total amount of time spent for the 

acquisition and formalization tasks was about 100 hours. 

<<Figure 6. Distribution of EO concepts>>  <<Figure 7. Distribution of EO relationships>> 

 We investigated the design of a commercialized surgery robot as an example of the 

proprietary products by analyzing the drawing descriptions and BOMs. Three classifications 

are added under the D-PROPRIETARY-DATA concept of the device taxonomy. They are D-

PRODUCTLINE which includes the product level concept, e.g., D-LAPROTEK; D-

SUBASSEMBLY which contains subassembly concepts such as D-ASSEMBLY-GIMBLE-

INNER-LINK; and D-PART-INVENTORY which is a list of part level concepts, e.g., D-

CAPSTAN. Part of the device taxonomy as modeled in Protégé is showed in Figure 8. We 

also acquired the lexical terms, the relationship instances among these device concepts, and 

the relationship instances between a device concept and other type of concepts, e.g., property 

concepts and material concepts. In the end, 65 device concepts and 219 relationship instances 

were added into the EO. The creation of the proprietary product knowledge in the EO further 

demonstrates the feasibility of the proposed acquisition method.  

<< Figure 8. Part of the device taxonomy for the surgical robot design>> 

 The more pressing questions are: How is the EO to be validated? How much does this 

ontology cover? And how accurate are the concept and relationship definitions? A series of 

experiments are conducted to validate the EO content regarding the most frequently used 

catalog components and their specifications. The same methods and processes can be applied 

in validating the EO content about proprietary products. 
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6.1 Validating EO Completeness 
 We designed two experiments to evaluate the EO coverage with respect to concepts. The 

completeness of the EO concepts can reflect the completeness of the relationships to certain 

degree, because the type of relationships is defined based upon the type of concepts 

initialized during Specification, Section 5. 1. However, future research should address how to 

estimate the coverage of relationships in a more direct manner. 

The first experiment is to estimate the EO coverage within its scope while the second is to 

test beyond the current scope. In the first experiment, five graduate students are asked to 

independently highlight phrases in 100 different test documents, which are randomly selected 

from 1,000 PDF catalogs downloaded from 62 manufacturers’ websites. The length of the 

documents ranges from one to two pages. The highlighted phrases bear engineering 

meanings. Each student is assigned 20 test documents.  Note that those engineering catalogs 

were selected according to the type of device concepts defined in the EO. They contain 

descriptions of the engineering specifications which are comparable to the rest of the 

taxonomies and their concepts defined in the EO. In addition, there are extensive amount of 

online catalogs which are published by various manufacturers and reflect diverse 

vocabularies and semantics under engineering context. Therefore, they are appropriate for the 

completeness test within the specified ontology scope. 

Prior to the experiment, the subjects are briefed about the scope of the EO. Then we 

compare the manually highlighted content against the concepts defined in the EO. It is 

observed that 82.1% of the expert-selected content is associated with the concept in the EO, 

while 17.9% of the content is not due to incompleteness of EO or EL. This observation 

indicates that maintenance will be the life cycle issue in using EO for information retrieval. 

 In the second experiment, we use 4GlobalSpecTM as a baseline knowledge base to check 

the sufficiency of the taxonomies and the higher level device concept categories defined in 

                                                            
4 http://www.globalspec.com 
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EO. Examples of the higher level device concept categories are D-MECHANICAL-

COMPONENT and D-MOTION-CONTROL-COMPONENT, which have lists of sub-

concepts such as D-GEAR and D-SLIDE, respectively. The baseline system maintains an 

extensive engineering component and equipment classifications for manually indexing the 

manufacturers’ websites and catalogs. The examples of its classifications are mechanical, 

thermal and fluid, electrical and electronic, control and processing, and digital devices. Its 

component classifications are comparable to the device taxonomy in EO, including higher 

level concepts as well as lower level concepts. In addition, each specific type of component 

in the baseline also contains “specifications,” which are similar to the concepts in the 

property taxonomy and material taxonomy. Because the baseline system does not have 

organized content comparable to the rest of the taxonomies in EO except the device 

taxonomy, the comparison of the coverage between EO and the baseline system is limited to 

the device taxonomy, specifically, the higher level concept categories and the first level sub-

concepts in each category. Five component categories were chosen from the baseline 

according to the number of classification units in the device taxonomy. These categories are 

electrical component, flow control components, fluid power components, mechanical 

components, and motion control components. Within each category, equipment type sub-

concepts in the baseline have been removed such as fans and electronic cooling and 

consumer appliances. Figure 9 indicates the approximate effort that might be needed for 

ontology acquisition in order to expand the current research prototype to an industry-scale 

EO. 

<< Figure 9. Comparison between the device taxonomy of EO and GlobalSpecTM>> 

6.2 Validating EO Accuracy 
 Regarding the accuracy of the EO and EL, because the lower-level concepts and more 

upper-level concepts, their lexical terms, and the relationships connecting those concepts are 

manually acquired from a wide range of EKRs, we believe that the EO and EL reflect the 
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actual vocabularies and semantics of the documents and users’ queries reasonably well. 

However, up to this point, the levels of relevance between any pair of adjacent concepts in 

EO, represented as weights of relationships, are equal, i.e., 1. This may not be realistic 

because it does not consider the type of relationship. For example, two device concepts 

connected by an is-a relationship may show stronger relevance than a device concept being 

linked with a material concept by a has-material relationship. It is therefore necessary to 

consider that each relationship in the EO should be weighted. We propose to adjust these 

weights by using the corpus statistics of the concept pair. The corpus refers to the set of 

domain-specific documents on which the EO will be applied for retrieval purposes. For the 

ease of implementation, we use the  

1,000 PDF catalogs as the test corpus. By combining the ontology content with empirical 

corpus statistics, our proposal also provides the potential for adapting a static knowledge 

structure to dynamic contexts. 

 The proposed approach is based on Resnik’s method (Resnik, 1999), which uses the 

information content of an ancestor concept to measure the semantic similarity between a pair 

of its descendent concepts. In this measure, the information carried by the ancestor concept is 

captured by the probability of finding the instances of its descendents in the corpus, i.e., the 

similarity of the descendent concepts is evaluated by the common information they share. 

Equations 1-4 illustrate the similarity measurement between two concepts, C1 and C2 in a 

taxonomy: 
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 Where ancestor(C1; C2) is the set of concepts that subsume C1 and C2, word(C) represents 

all the words or phrases that are identified as concept ‘C’ or its descendent in the corpus, 

count(n) is the number of occurrences of such words or phrases in the corpus, and N is the 

total number of occurrences of instances of ‘C’ and its descendent in the corpus. Jiang and 

Conrath (1997) extend this measure by taking into account the link strength (LS) of the 

taxonomical relation, i.e., is-a. LS represents the difference in the information content values 

between a child concept and its parent concept: 

)5()(log)_(log)_()()_,( CpCParentpCParenticCicCParentCls −=−=  
 
 However, this approach can not be generalized for ontologies where non-taxonomic 

relationships are dominant because the concepts connected by these relations usually have no 

common elements. We propose a corpus-based ontology relationship weighting schema, 

which calculates the information content of the EO relationships with respect to the test 

documents in order to evaluate the weight for each relationship. For both taxonomic 

relationships, refer to Equation 5, and for non-taxonomic relationships: 

 

)7(
),(

log),(

)6(),(),(_

21
21

2121

⎟
⎠

⎞
⎜
⎝

⎛−=

=

N
CCfreq

CCic

CCicCCwtrelation
 

 
Note that in the latter case, the higher the co-occurrence of the concept pair, the lower the 

weight between them, i.e., the two concepts are more relevant to each other. Figure 10 

illustrates part of the EO after the weight adjustment and normalization. 

<<Figure 10. A portion of EO after weight adjustment and normalization>> 

 In order to further justify the completeness and accuracy of the EO, we conducted a more 

comprehensive experiment by measuring the retrieval performance of the EO-based search 

system (Li et al., 2008). In this system, we developed the concept disambiguation and 

concept abstraction algorithms which use the semantically related concept space of the EO to 

1) interpret user queries as well as documents at the concept level; 2) understand users’ query 
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intent when exact query terms are not available; and 3) enable querying with quantitative as 

well as qualitative engineering specifications. The test documents include the 1,000 PDF 

component catalogs and 91 users’ queries. It is reported that EO-based search achieves the 

average recall of 85% and the average precision of 78%, in contrast to 46% and 49%, 

respectively for the vector space model based IR method (Salton, 1989). This search system 

also provides an orienteering interface that allows users to navigate the relevant documents 

according to the domain contexts identified as query intent by using the EO. This navigation 

mechanism further enhances user’s information seeking experience. 

 Note that the standard information retrieval performance evaluation such as the precision 

and recall solely focuses on the quality of the overall answer set generated. However, due to 

the complexities of engineers’ information needs, it usually takes them several steps prior to 

reaching the right information target. At each step, engineers may interest in different 

abstractions or different aspects of their needs. Future studies will investigate engineering-

specific metrics to evaluate this interactive search process. 

7. CONCLUSION 

 This research focuses on the method and process that acquire and validate an ontological 

basis for engineering information retrieval. This ontological basis consists of an EO and its 

associated EL. The EO is acquired from textual descriptions embedded in established 

engineering knowledge resources. Ontology building encodes the free-text based and 

domain-specific knowledge descriptions from various resources into a graph structure by 

using the frame-based predicate calculus representation. The ontology development is a 

collaborative and iterative process. The proposed development method is hybrid and semi-

automatic, which highly regulates, limits, and systematizes human contributions. It acts as 

systematic guidelines in order to obtain the ontology with good quality. The specifications of 

the EO synergize the principles from ontological semantics theory, engineering common 
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sense, and cognitive studies in engineering domain. The elicitations of the EO take into 

account general engineering knowledge independent of a particular company, engineering 

knowledge specific to a company as well as the information needs of engineers. The novel 

knowledge worksheets further structure the acquisition process and enable populating EO and 

EL with less human effort. The modular structure of the EO and EL, the integration with the 

ontology engineering tool, and the proposed NLP tools for ontology acquisition alleviate the 

difficulties of ontology maintenance. The method also distinguishes itself by incorporating a 

comprehensive validation strategy and its implementations in order to justify the quality of 

the acquired ontology. Two experiments are conducted which estimate the completeness of 

the EO within its defined scope as well as beyond the scope. A new corpus-based approach is 

developed to automatically evaluate the weight distributions of EO relationships. Therefore, 

the accuracy of the ontology representation is enhanced by incorporating more objective and 

dynamic domain knowledge descriptions. A research prototype based on the acquired EO and 

EL is developed. Using a test bed of 1,000 engineering component descriptions from various 

suppliers, we find that the EO-based search improves the average recall by 39% and the 

average precision by 29%.  The preliminary results further prove the validity of the EO and 

EL, and hence the development method. 

 For future research, we consider following important topics: 

 First, a large amount of engineering knowledge within a company is already codified and 

available in engineering databases, design repositories, company-specific standards, etc. Each 

of these is either semi-structured or structured and has its underlying implicit ontologies. 

Therefore, it is feasible to develop NLP-based learning approaches to automate or semi-

automate the knowledge acquisition process from such resources complementary to the 

handcrafted approach. 

 Second, the EO represents the cumulative knowledge in engineering design and 

manufacturing for the purpose of more effective IR. It is desirable to further integrate the EO 
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with common ontologies about basic science and mathematics (e.g., Gruber & Olsen, 1994). 

This may provide a foundation to acquire the analytical and design rationale knowledge into 

the EO in order to achieve a unified framework for engineering retrieval, reuse, and 

knowledge-based design. 
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Taxonomies 
Num. of 
concepts Examples of concepts Acquisition resources

Examples of 
acquisition resources 

Engineering 
component 451 

D-LOCK-WASHER,
D-LINEAR-SLIDE 

Engineering texts, 
Handbooks, Online 
catalogs 

Rothbart, 1996; Kutz,
2005; 
www.globalspec.com Device 

Proprietary 
product 190 D-BASE-COVER 

BOMs in the 
drawings and Excel 
sheets 

BOMs of the base 
cover assembly 

Function 246 
F-SUPPORT, F-
LOCK Existing taxonomies 

Collins et al., 1976; 
Hirtz et al., 2002 

Material 1017 

M-STAINLESS-
STEEL, 
M-2008-T4 AL 

Engineering texts, 
Handbooks, Online 
catalogs 

Kutz, 2002; 
www.matweb. Com 

Process 252 

R-DESIGN-
REVISION, 
R-WELDING 

Engineering texts, 
Handbooks 

Kutz, 2005; corporate 
manuals 

Property 378 

P-SHAFT-
DIAMETER, P-
DUCTILITY 

Same as Device 
taxonomy 

Same as Device 
taxonomy 

Measurement unit 64 

MU-INCH, 
MU-FT-
LB/SECOND Online resources 

www.ex.ac.uk/cimt/di
ctunit/dictunit.htm 

Shape feature 47 
SF-LINEAR-SLOT, 
SF-TOOTH Existing taxonomies 

STEP AP224, 
vocabularies of major 
CAD packages 

Environment 135 
E-HEAT, 
E-AXIAL-LOAD 

Engineering texts, 
linguistic resources 

Pugh, 1997; 
WordNet2.1 

Standard 31 S-MIL-STD-130 Standard libraries www.nssn.org 

Value-type 78 

V-FLOAT 
(Numerical), 
V-HIGH (Symbolic) 

Engineering common 
sense; Online catalogs www.globalspec.com 

Table 1. The EO concepts and knowledge resources 
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Relationsh
ip 

(Concept*, Related 
concept

) 

Definitions of the relationship Examples 

is-a Child Parent Describes the generalization from a child 
concept to its parent concepts or the 
specification from a parent concept to its child 
concepts 

is-a (D-ELECTRICAL-MOTOR, D-
MOTOR) 

has-part DC DC Represents the part-whole between a DC and 
the other DC 

has-part (D-LINEAR-SLIDE, D-
BALL-BEARING) 

has-
function 

DC/RC FC Refers to the connection between a DC or RC 
and one of its FCs 

has-function (D-LOCK-WASHER, 
F-LOCK) 

interface-
with  
& 

Interact-
with 

 
DC/RC 

DC 
 

EC 

Complements the has-function relationship 
when there is an ‘object’ in the function 
description of ‘subject + verb [+ objects]’. 
Together, they represent the interactions 
between a DC (or RC) and the other DC or EC

interface-with (D-LOCK-WASHER, 
D-FASTENER); 
interact-with (D-LOCK-WASHER, 
E-FRICTION) 

has-
material 

DC MC Describes the type of materials used in making 
the DC 

has-material (D-WASHER, M-
METAL) 

has-
process 

DC RC Describes the type of design/manufacturing 
process used to make/fabricate the DC 

has-process (D-GEAR, R-
HOBBING) 

use-
material 

RC MC Describes the type of possible raw materials 
that certain manufacturing processes act on 

user-material (R-COATING, M-
NONFERROUS-METAL) 

has-
property 

DC/MC/RC
/SFC 

PC Each DC has several PCs characterizing its 
attributes such as various physical attributes 
and geometry attributes; each MC may also 
have several PCs specifying its characteristics 
such as physical and mechanical attributes. So 
does a RC or SFC. 

has-property (D-PLAIN-WASHER, 
P-INSIDE-DIAMETER); 
has-property (M-METAL, P-
HARDNESS) 

has-
measurem

ent 

PC MUC Most of the PCs have one or several MUCs has-measurement (P-LENGTH, MU-
METER) 

has-value PC/MUC VC Each PC may have numerical VC or symbolic 
VC while MUC only has numerical VC 

has-value (P-DIAMETER, V-
NUMERICAL) 

has-feature DC SFC Describes the significant shape features a 
device may have 

has-feature (D-SCREW, SF-
THREAD) 

has-
standard 

DC/MC/RC SC Specifies the standard a DC/MC/RC may 
comply with 

has-standard (D-WASHER, S-ASME 
B18.13) 

DC: device concept; FC: function concept; EC: environment concept; MC: material concept; 
RC: design or manufacturing process concept; SFC: shape feature concept; SC: standard concept; 
PC: property concept; MUC: measurement unit concept; VC: value type concept 

Table 2. Definitions of the relationships 



 37

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1. System architecture and functional modules 
(1) Pre-processing: Consolidating heterogeneous documents 
(2) Ontology basis: Engineering Ontology & Engineering 
 Lexicon 
(3) Ontology acquisition and maintenance 
(4) Concept tagging 
(5) Concept indexing 
(6) Query processing 

PartTexts
(unstructured)

Tagging4

Query
processing 6

3
2

Inverted
concept index 5

Document collections

Technical reports
CAD drawings

Engineers' notebooks
Online catalogs

......
Pre-processing1

Engineering
lexicon

Engineering
ontology

Indexing

PartXMLs
(structured)
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Method / Steps Supporting activities

1. Specification 
 1.1 Scope determination 
 1.2 Granularity selection 

2. Acquisition 
        2.1 Concept acquisition 
        2.2 Relationship acquisition 
        2.3 Lexical term acquisition 

3. Formalization 
        3.1 Taxonomy formalization 
        3.2 Relationship formalization 
        3.3 Lexical term formalization 

4. Population 
        4.1 Manual population 
        4.2 Automatic population 

5. Validation 
        5.1 Accuracy validation 
        5.2 Completeness validation 

6. Maintenance 
        6.1 EO maintenance 
        6.2 EL maintenance 

Protégé modeling 
NLP-based machine learning 

Statistical learning 
Empirical studies 

Protégé modeling 
Automatic parsing 

Knowledge worksheets 

  Knowledge resource collection 
  Knowledge resource reuse 
 Knowledge extraction

Cognitive studies in engineering 
   Design considerations 

 Figure 2. EO and EL development process 
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Figure 3. The schema of the ontology basis

Engineering ontology

Property
taxonomy

Measurement unit
taxonomy

   Device
taxonomy

Function
taxonomy

Environment
taxonomy

Shape feature
taxonomy

Standard
taxonomy

Engineering
lexicon

Material
taxonomy

Value type
taxonomy

Process
taxonomy
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Lock washer 

Definition 
A washer designed to prevent undesired 
loosening of a nut after it has been tightened 

Lexical terms 
Lock washer, 

Sub-part 
None, 
 
Function descriptions  
Lock fastener, distribute force, 

Properties 
Inside diameter, outside diameter, thickness, 

Material 
Ferrous metal, thermal plastics, 

Manufacturing process 
Surface coating, 

Shape feature 
Hole, tooth, 

Standard 
ANSI B18.21.1,

Figure 4. Examples of knowledge worksheet 

b. Relationship worksheet for  
‘lock washer’ concept 

a. Classification worksheet for 
‘washer’ concept 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Root 
    Device 
        Engineering component 
            Mechanical component 
                Washer 
                    Plain washer 
                    Lock washer 
                        Helical spring lock washer 
            Tooth lock washer 
                 External tooth lock washer 
          Internal tooth lock washer 
                        Countersunk external tooth lock 
    washer 
                 Beveled washer 
            Belleville washer 
         Spring washer 
                 Preload spring washer 
                 Belleville washer 
                 Wave washer 
                 Curved washer 
                 Finger washer 
             Spacer 
         Thrust washer 
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has-
manufacturing

D-WASHER

FUNCTION

F-LOCK

R-COATING

ProcessDEVICE

R-METAL-
COATING

MATERIAL

......
......

ROOT

......
M-NON-

FERROUS-
METAL

R-ORGANIC-
COATING

PROPERTY

NUMERIC-VALUE
has-value

use-material

M-ZINC

P-SURFACE-FINISH

D-PLAIN-WASHER
D-LOCK-
WASHER

D-BELLIVILLE-WASHER

D-TOOTH-LOCK-WASHER

......

has-function

M-FERROUS-
METAL

......

......

is-a

ha
s-

m
at

er
ia

l
Figure 5. A Portion of EO 
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Number of concepts in each taxonomy
(Total number of concepts = 2889)
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Figure 6. Distribution of EO concepts
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Number of instances of each relationship type
(Total number of relationship instances > 11,000)
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Figure 7. Distribution of EO relationships



 44

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Part of the device taxonomy 
for the surgical robot design
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Coverage: Device taxonomy vs. GlobalSpec component classifications
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Figure 9. Comparison between the device taxonomy of EO and GlobalSpecTM
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Figure 10. A portion of EO after weight adjustment and normalization 
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