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1 INTRODUCTION 
In the formulation stage of engineering design, teams clarify design problems, generate possible 
solutions, and select appropriate candidates for further investigation. This selection may be thought of 
as a process of assigning priorities, or preferences, to the set of possible design choices. This 
assignment process can be challenging when conducted by a team rather than by an individual. 
Imagine that a design team discusses alternatives for a design in order to select one. Individuals will 
have their own preferences, though they may not always express them explicitly. These preferences 
may also change over the course of discussion. Challenges include the accurate elicitation of 
preferences, appropriately balancing the trade-offs between various design choices, and effectively 
aggregating individual team member preferences into a single group preference.  
To address these issues, previous work (Ji et al. 2007, Ji et al. 2012) offered an approach to extracting 
implicit preference information embedded in the transcripts of a team’s deliberations, known as 
Preferential Probabilities from Transcripts (PPT). The approach has been extended to include formal 
linguistic appraisal (Honda et al. 2010), a time-based preference Markov model based on design 
linguistics (Dong et al. 2011), and a sliding-window approach for finer granularity for implicit 
preferences (Ji et al. 2011). These approaches draw on the discussion among team members to 
determine a pattern of preference-related information over time. It is a descriptive approach that 
avoids aggregating group information and instead treats the entire team’s discussion as a single set of 
words. In all of these approaches, preference information takes the form of a preferential probability 
rather than a traditional numeric preference rating. A preferential probability of an alternative is the 
likelihood it will be preferred over all others, also known as the “most preferred” probability.  
Existing formal tools for design decision-making such as Quality Function Deployment (Hauser and 
Clausing 1988) and the Method of Imprecision (Wood and Antonsson 1989, Otto and Antonsson 
1993) require the input of a numeric preference rating. The research question this paper asks is: How 
can preferential probabilities be effectively converted into numerical preference ratings? The ability 
to convert preferential probabilities into preference ratings would allow us to make the powerful link 
between the implied decisions made during free-form, natural language team discussion directly to 
formal, structured design methods. This paper details the conditions for mapping between preferential 
probabilities and preference ratings, then describes previous work translating ratings into these 
probabilities, and finally presents a new approach for mapping probabilities into relative ratings. Note 
that "relative" preference ratings in this paper are constrained to sum to 1 for the set of preference 
ratings. This approach to mapping relative numeric preference ratings and preferential probabilities 
will establish a way to link informal team discussion about design alternatives to sophisticated formal 
decision-making tools in a way that has not been possible before.  

2 RELATED RESEARCH 
Design decision-making. Engineering design research has focused on a number of methodologies for 
making design decisions, including Pugh charts (Pugh 1991), Quality Function Deployment (Hauser 
and Clausing 1988), and Decision-based Design (Hazelrigg 1998). A critical phase in employing these 
methodologies in design selection is to consider multiple criteria, and to make trade-offs when criteria 
are at odds. Utility theory (von Neumann and Morgenstern 1947, Tribus 1969, Keeney and Raiffa 
1976, Howard and Matheson 1984, Thurston 1991) and the Method of Imprecision (Wood and 
Antonsson 1989, Otto and Antonsson 1991) are well known methods for formalizing trade-offs.  
Design preferences. The determination of preferences has been approached in a number of ways. The 
lottery method (Krantz et al. 1971) scales alternatives from 0 to 1. Approaches for eliciting 
preferences through pair-wise comparisons include the Analytical Hierarchy Process (Saaty 2000) and 
the fuzzy outranking method (Wang 1997). In multi-attribute design, aggregation functions (Scott and 
Antonsson 1998) can be applied to calculate overall preferences. Methods drawn from factorial design 
and statistics can be used to elicit preferences, including conjoint analysis (Green and Srinivasan 
1990) and discrete choice analysis (Hensher and Johnson 1981, Ben-Akiva and Lerman 1985).  
These methods either make assumptions about preference values, or are stated value methods that 
require explicit elicitation from stakeholders. Preferential Probabilities from Transcripts (Ji et al. 2007) 
is an implicit strategy for extracting preference-related information in probabilistic form from design 
team transcripts.  
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Preferences of a team. There is a rich literature on group decision-making styles and qualitative ways 
to aggregate team opinion (Vroom and Jago 1988). Studies on decision-making in engineering design 
have centered around more structured methods for aggregation. Arrow’s Impossibility Theorem 
(Arrow 1970, Arrow and Raynaud 1986) posits that there is no guarantee of consistency for 
aggregation of preferences in a group. Nevertheless, research has considered strategies for making 
sense of individual ratings. Dym et al. (2002) have described a structured pairwise comparison chart 
for aggregating individuals’ preference ordering. Keeney makes the assumption that each group 
member’s opinion is equally important and uses cardinal utility functions to accumulate group 
preferences (Keeney 1976). Jabeur et al. (2004) and See and Lewis (2006) have considered unequal 
weights on the preferences of the group members. In our work on PPT (Ji et al. 2007, Honda et al. 
2010), no knowledge of an individual’s preferences is required, nor are individual preferences 
aggregated. The group is instead thought of as a single entity that generates information about the 
group’s overall preferences throughout discussion. Group preferences are extracted from transcripts of 
team discussion, without any aggregation. Honda et al. (2010) applied formal linguistic appraisal to 
the method to identify a group’s attitudes towards design alternatives and extract corresponding 
preferential probabilities. Dong et al. (2011) formulated a time-based Markov model to asses team 
preferences using formal linguistics.  
In several of these studies, the baselines for comparison are surveys of the preferences of designers. A 
method for deriving preferential probabilities from surveys (PPS) (Ji et al. 2012) was developed to 
translate ratings and rankings into preferential probabilities. However, only conversion from ratings to 
preferential probabilities was explored. These extracted preferential probabilities cannot be used 
directly as inputs to formal design methods. This study proposes an algorithm which can convert 
preferential probabilities into the relative group preference ratings. 

3 METHODS 

3.1 Relationship between Preferential Probabilities and Relative Preference Ratings  
The key challenge in mapping between preferential probabilities and preference ratings lies in the 
distribution of preference values. Previous work (Honda et al. 2010, Ji et al. 2012) assumed that 
preference ratings exist in a bounded distribution with the expected value of the stated ratings. Using 
the principle of maximum entropy (Jaynes 1957, Jaynes 1968), which provides the least biased 
distribution for the given information, the joint distribution of ratings is described as in Equation (1). 
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Where x1, x2, … xN-1 are the sampling variables for the relative ratings for Alternative 1, … , N-1. 
Sample variable xN for Alternative N is implicated by the constraint that xN =1-x1-x2- …- xN-1. [li, ui] is 
the range of the relative values for Alternative i (1≤i≤N). The above distribution function shows that 
the joint exponential distribution is only meaningful when all the sample variables are in the possible 
ranges, otherwise it is zero. 
Parameters λ0, λ1, ... λN-1 can be solved from the following N equations.  
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Where r1, r2, … rN  are designers’ stated relative ratings which are the expected value of the variables 
from the distribution. The first equation guarantees that the total probability is 1 integrated over the 
possible rating ranges for the joint distribution, and the next N-1 equations set the requirements for the 
expected values for variable x1 to xN-1. The expected value for variable xN is met tacitly because 
E(xN)=E(1-x1-x2-…xN-1)= 1-r1-r2-…rN-1= rN.  
Monotonicity: Without loss of generality, we assume rk (k=2,… N-1) is kept constant. When the stated 
rating r1 increases to its upper boundary, the parameter λ1 also increases to fit the distribution. When λ1 
increases, there will be more sample ratings for Alternative 1 near the upper boundary, and the 
probability that it is greater than the samples from other alternatives will increase, which indicates 
higher preferential probabilities for Alternative 1. This indicates monotonicity between relative 
preference ratings and preferential probabilities. 
Continuity: Continuity can be proved under the theorem that all elementary functions are continuous 
within a range. Without loss of generality, the function in Equation (1) is an elementary function on λ1, 
so it is continuous on the range (-∞, ∞) for λ1, and the integral of f on x1, x2, … xN-1 is still continuous 
in the range (-∞, ∞) for λ1. Both preferential probabilities and relative ratings have an integral 
relationship with λ1. In this way, the preferential probability of Alternative 1 is continuous with λ1, and 
the relative rating of Alternative 1 is continuous with λ1; and vice versa. Therefore, the preferential 
probability of Alternative 1 is continuous with the relative rating of Alternative 1.  
Bijection: Let ri (1≤i≤N) be the relative preference rating for Alternative i and pi (1≤i≤N) be the 
preferential probability for Alternative i in a design selection problem with N alternatives. A mapping 
function can be described as  
F: (r1, r2, … rN) à(p1, p2, … pN), where ri ≥0 (1≤i≤N) and r1+r2+…+rN=1.  
Due to the constraint that r1+r2+ …+rN =1 and p1+p2+ …+pN =1, this mapping function can be 
reduced to (N-1) dimensions:  
F: (r1, r2, … rN-1) à(p1, p2, … pN-1), where ri ≥0 (1≤i≤N) and r1+r2+…+rN-1≤1.  
In the given range, the mapping is continuous and monotonically increasing. So for any (N-1)-
dimensional vector of ratings, there is one and only one vector of preferential probabilities, and for any 
vector of preferential probabilities, there is one and only one corresponding relative rating. In other 
words, this function is bijective and maintains a 1-to-1 mapping.  
Symmetry: From Equation (1) and Equations (2) to (N+1), we can deduce that for any mapping,  
F: (r1, r2, … rN) à(p1, p2, … pN), if the values for rm and rn (1≤m,n≤N) are exchanged while the other 
ratings are kept unchanged, then the mapping still holds with only the values of pm and pn exchanged. 
As the mapping is a bijective 1-to-1 mapping, the inverse mapping,  
F’: à(p1, p2, … pN) à (r1, r2, … rN), has the same property. 

3.2 Forward Mapping: Relative Preference Ratings to Preferential Probabilities  
Section 3.1 describes the conditions of the relationship between preferential probabilities and relative 
numeric preference ratings. In this section, we consider one way to map between them. A method 
called Preferential Probabilities estimated from Surveys (PPS) (Ji et al. 2012) can be applied to 
translate ratings into preferential probabilities. This approach is drawn from the principle of maximum 
entropy (Jaynes 1957, Jaynes 1968) and it does not assume a deterministic distribution a priori for 
preference ratings. The distribution and parameters are calculated while maximizing information 
entropy so that it does not have any unknown parameters.  
Details of the derivation of PPS are given in (Ji et al. 2012). Rather than specifying a number of points 
(e.g. 10 points) to allot among all alternatives, we set the sum of all alternative ratings to 1 because 
ratings are all relative in this study. The steps for PPS for converting group relative preference ratings 
to preferential probabilities are summarized as follows: 
1. Construct a joint distribution for group’s ratings for all alternatives, as described in Equation 1; 
2. Randomly select a sample as the “true” group rating based on the joint distribution. The 

rejection method (Ross 2006, Press et al. 2007) can be employed to generate samples; 
3. Compare the group ratings to determine the most-preferred alternative; 
4. Repeat Steps 1-3 until the predefined number of simulation runs is reached. The group’s 

preferential probability for an alternative can be estimated from statistical simulation by 
calculating the proportion of runs when this alternative has the highest simulated group rating. 
In the case study in this paper, 10,000 simulation runs were used for statistically estimating the 
probability values.   
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3.3 Inverse Mapping: Preferential Probabilities to Relative Preference Ratings 
Finally, this paper describes a strategy for mapping preferential probabilities into relative preference 
ratings. The challenge is that simulation-based approaches are difficult to control. It should also be 
noted that the resulting ratings are not deterministic values but the expected preference values with 
maximum likelihood. It is not trivial to describe the mathematical relationship from the preferential 
probabilities as explanatory variables to the relative ratings as response variables, based on the known 
mathematical equations in Section 3.1. Response Surface Methodology (RSM) (Box and Wilson 1951) 
is a statistical technique for exploring the relationship between explanatory variables and response 
variables when the model or the parameters are unclear. Although the main idea of RSM was for 
optimal response with experiment design, it could also be used to estimate the approximate response 
variables (e.g. relative ratings) from any given set of explanatory variables (e.g. preferential 
probabilities).   
For generating the experimental data for statistics analysis, we could apply the algorithm in Section 
3.2 to generate sample sets of preferential probabilities with given sets of relative ratings. One 
difficulty associated with formulating a numerical approximated response function is that samples of 
preferential probabilities are determined from simulation results of forward mapping, and it is very 
difficult to control the location of the samples of preferential probabilities. Thus, it is necessary to 
assume that samples are not located in a regular rectangular grid. Common techniques like polynomial 
interpolation, spline interpolation and linear interpolation require a rectangular grid. An approach that 
works well for this irregular domain is Akima interpolation (Akima 1978). An appealing property of 
this technique is that it guarantees continuity and local differentiability that a mapping from a 
probability to a rating should have.  
The following steps collect relative preference ratings by inverse mapping preferential probabilities:  
1. Divide the space for relative preference ratings into suitably small ranges; this scale of the range 

can be determined by the tradeoff between the simulation time and the tolerance errors.  
2. Increase preference ratings from the lower bound for each alternative by the size chosen in Step 

1, and generate the sample for the combinations of ratings for all alternatives. For example, 
when 1/12 is chosen as the small range for a 3-alternative design selection, there are 19 
combinations, such as (0,0,1), (0, 1/12, 11/12), (0, 1/6, 5/6), etc. Due to the symmetry of 
preferential probabilities and relative preference ratings in the mapping discussed in Section 3.1, 
we can minimize the number of the samples by employing the constraint r1≤r2≤…≤rN. 

3. Use the forward mapping approach described in Section 3.2 to obtain the preferential 
probabilities for the sampled relative preference ratings.  

4. Use permutation (switching the order of the sampled preferential probabilities and the order of 
the corresponding relative preference ratings) to build the statistical mapping between the vector 
of preferential probabilities (explanatory variables) and the relative ratings of the first 
alternative (response variables). Permutation is utilized to reduce dimensionality of the 
response.  Rather than fitting to produce interpolation from N-Dimension vector of preferential 
probabilities to N-Dimension vector of relative preference ratings, we are utilizing permutation 
to just do N-Dimension to 1-Dimension mapping and simplifying the surface fitting process.   

5. Use Akima interpolation based on the existing statistical sample data to obtain the relative 
rating of the first alternative for any given vector of preferential probabilities.  

6. Relative ratings for other alternatives can be found by reapplying the permutation of the given 
preferential probabilities on the statistical data. For example, we can switch the first preferential 
probability for the second and run Akima interpolation to find the relative rating for the second 
alternative.   

With the approaches for forward- and inverse-mapping, these two forms of preferences are inter-
convertible, and the conversion between them bridges the gap between the implicit preferences 
extracted probabilistically and the established decision-making framework using preference ratings. 

4 CASE STUDY 

4.1 Case Description 
The data source for this case is a transcript of a discussion about design selection by a team of three 
engineering graduate students at a US university. One had 7 years of work experience, one had 2 
years, and the third had none.  



  5 

Before the experiment, each team member was given a think-aloud training exercise to practice 
naming each alternative with proper names rather than ambiguous pronouns (“this” or “that”) to 
enable the tracking of design alternatives in the transcript. For example, a “plastic carafe” had to be 
called “plastic carafe” or “plastic pot”. During the experiment, the team members were asked to reach 
consensus through discussion, and they were also asked to individually complete written surveys every 
~10 minutes with their preference ratings for design choices. The experiment lasted 50 minutes, 
including 10 minutes for instruction and training, and 8 minutes for 5 surveys.  
The team’s task was to consider two design selection problems, for a carafe and a filter for a 
coffeemaker. Each had 3 candidate alternatives defined beforehand. Total cost for these 2 components 
could not exceed $35, and the intended user was a retired person who is a coffee connoisseur.  
Preferences may be ambiguous. Hey (1998) and Kulok and Lewis (2005) found that human designers 
may not be consistent when stating their preferences explicitly. This has the potential to make 
quantitative analysis of surveyed preferences difficult. The approach taken in this paper is to 
determine overall trends in preferences across a number of design alternatives, rather than assume that 
the findings for one alternative at one point in time are correct. Only the carafe selection problem was 
taken as a case study in this paper. The designers were provided additional features and specifications 
that might play a role in their preferences (Table 1).  

Table 1. Sample of Design Information for Carafe Selection 

Name/ID Glass carafe Stainless-steel carafe Plastic carafe 
Photo 

 
  

Description Glass with warming plate thermal-insulated stainless-
steel 

thermal-insulated plastics 
(inside glass) 

Cost $10.00 $20.00 $15.00 
Warming plate cost $5.00 0 0 
Footprint size Big Small Small 
Fragility Fragile Strong Fragile material inside 
… … … … 

Studies of team discussion suggest that team members enter discussion with only partial, independent 
knowledge of a topic. Group discussion can help in eliciting this partial knowledge so that higher 
quality decisions may be made (Gigone and Hastie 1997). In order to encourage discussion among the 
participants and to better simulate a real-world team experience, each participant were provided 
detailed information regarding only one of the three alternatives. 
In this study, when preferential probabilities were extracted from the transcript using PPT, appraisal 
analysis rather than pure word occurrence was applied for better extracted results from the transcript 
(Honda et al. 2010). A base time interval of 10 minutes was used to calculate the preferential 
probabilities for two reasons: 10 minute intervals corresponded to the timing of surveys, and earlier 
work showed that 10 minute intervals resulted in a sufficient number of word occurrences for analysis. 
The first 3 intervals were used for analysis in this case study because designers finished selection of 
carafe in 3 intervals and the last one was focusing on continuous design of the filters. 

4.2 Survey Ratings 
The three designers are coded as X, Y and Z. Table 2 details designers’ relative survey ratings.  

Table 2. Survey ratings from team members 

 
Interval 

 
Designer 

Carafe 
Glass Steel Plastic 

 
1 

Designer X 0.5 0.3 0.2 
Designer Y 0.5 0.4 0.1 
Designer Z 0.6 0.4 0 

 
2 

Designer X 0.5 0.2 0.3 
Designer Y 0.5 0.4 0.1 
Designer Z 0.6 0.4 0 

 
3 

Designer X 0.5 0.3 0.2 
Designer Y 0.6 0.3 0.1 
Designer Z 1 0 0 
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4.3 Sampled Mappings 
Using the method from 3.2, we first create a group of sample preference rating sets and run 
simulations to obtain corresponding preferential probabilities. 
A step size is chosen that can accommodate the general case as well as edge cases. Too big a step size 
may cause significant errors when fitting the mapping from preferential probabilities to relative 
preference ratings; too small a step may impose strict requirements on the precision of the simulation 
and it may require a longer simulation run. In this case study, 1/12 is chosen as the step size because it 
results in acceptable simulation time and tolerance error, and can cover edge cases when the ratings of 
3 alternatives are equal or the ratings of 2 are equal.  
Table 3 shows the sampled relative ratings for 3 alternatives and the corresponding preferential 
probabilities. Note it only includes the possible combinations of sampled ratings without permutation. 
"Alternative A" means the lowest rated alternative, not a certain alternative such as "Carafe Glass". 
The permutation of the samples can cover all cases. For example, the permutations for Row #2 in 
Table 3 include (0.000, 0.083, 0.917), (0.000, 0.917, 0.083), (0.083, 0.000, 0.917), (0.083, 0.917, 
0.000), (0.917, 0.000, 0.083), and (0.917, 0.083, 0.000). 

Table 3. Sampled Mapping from Relative Preference Ratings to Preferential Probabilities 

Sampled 
Data 

Relative Preference Ratings Preferential Probabilities 
Alternative A Alternative B Alternative C Alternative A Alternative B Alternative C 

1 0.000 0.000 1.000 0.000 0.000 1.000 

2 0.000 0.083 0.917 0.000 0.003 0.997 

3 0.000 0.167 0.833 0.000 0.050 0.950 

4 0.000 0.250 0.750 0.000 0.140 0.860 

5 0.000 0.333 0.667 0.000 0.258 0.742 

6 0.000 0.417 0.583 0.000 0.375 0.625 

7 0.000 0.500 0.500 0.000 0.000 1.000 

8 0.083 0.083 0.833 0.004 0.004 0.991 

… … … … … … … 

19 0.333 0.333 0.333 0.333 0.334 0.333 

The Akima interpolation function in the statistics software package R was used to predict the relative 
ratings. When Akima interpolation is applied to any given vector of preferential probabilities (p1,p2,p3), 
r1 can be obtained. And r2 and r3  can be retrieved by running interpolation on (p2,p1,p3)  and (p3,p1,p2). 
As a sanity check, we make sure that (r1,r2,r3) sums up to 1. 

4.4 Assessment of Ratings Inverse-mapped from PPS  
PPS estimates the preferential probabilities from individual survey ratings, so when they are mapped 
in the reverse direction by the proposed method to group relative preference ratings, the resulting 
ratings should lie within a reasonable range. The inverse-mapped ratings from PPS are shown in Table 
4. All are between the maximum and the minimum of the individual survey ratings in Table 2.  

Table 4. Group Relative Preference Ratings from Different Sources 

Time 
Interval 

Source of 
Ratings 

Preferential Probabilities for Carafe Selection   Mapped/Surveyed Relative Preference Ratings 
Glass Steel Plastic   Glass Steel Plastic 

1 
PPS 0.654 0.322 0.023   0.562 0.353 0.084 
PPT 0.615 0.270 0.114  0.511 0.299 0.192 

Avg Survey - - -  0.533 0.367 0.100 

2 
PPS 0.680 0.272 0.048  0.563 0.315 0.117 
PPT 0.652 0.329 0.019  0.566 0.363 0.071 

Avg Survey - - -  0.533 0.333 0.133 

3 
PPS 0.884 0.101 0.015  0.734 0.203 0.063 
PPT 0.860 0.086 0.054  0.686 0.182 0.133 

Avg Survey - - -   0.700 0.200 0.100 
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4.6 Comparison of Ratings from Multiple Sources  
Table 4 shows the relative preference ratings extracted from transcripts using Appraisal PPT, inverse-
mapped from PPS, and average values based on individuals’ preference ratings. The visual 
comparison is also illustrated in Figure 1. While the numeric values for these three are not exactly the 
same, the trends between the three methods are generally similar. All three methods show the glass 
carafe has the highest ratings in all three time intervals, the steel carafe has the second highest rating in 
all intervals, and the plastic carafe has the lowest rating throughout the discussion. This is also 
consistent with a qualitative reading of the transcript and consistent with the survey results. 

 
Figure 1: Relative Preference Ratings from Different Sources 

Besides the general trend, we also notice fluctuations in preference ratings from Appraisal PPT during 
Session 2. A qualitative reading finds that the team was analyzing the features of steel carafe and 
plastic carafe in Session 2 after they had finished analyzing the glass carafe, and is consistent with 
these fluctuations. 
The Pearson correlations and p-values between these 3 data sets (ratings from Appraisal PPT, ratings 
from PPS, and average survey ratings) are shown in Table 5. We can see that correlation value 
between the ratings from PPS and the survey average ratings is very close to +1, which indicates a 
statistically significant linear relationship. This makes intuitive sense because both are sourced from 
surveys, simply with different algorithms applied. This validates our assumption that the inverse-
mapped ratings from PPS should be the same as the averaged group ratings when the team members 
contribute equally to discussion, or when there is no weighting information for individuals in the team 
discussion.  

Table 5. Pearson Correlation Between Relative Ratings from Different Sources 

  PPS Rating PPT Rating Survey Avg 
PPS 

Rating - 0.972 
(p-value=1.21E-5) 

0.999 
(p-value=3.39E-10) 

PPT 
Rating - - 0.972 

(p-value=1.15E-5) 
Survey 

Avg - - - 

 
The correlation between the ratings from Appraisal PPT and the ratings from surveys is statistically 
significant, which indicates that the ratings from the transcript could be a reliable source for implicit 
ratings, even when an explicit survey is not feasible or practical. 

5 CONCLUSION 
This paper examines the underlying theoretical mapping between preferential probabilities and relative 
preference ratings, and explores the feasibility of converting preferential probabilities into to relative 
preference ratings. The paper presents an approach for performing this conversion, and then illustrates 
the use of the approach in a case example. The method proposed in this research has the potential to 
greatly broaden the usability of preference information in a variety of applications. In particular, it 
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offers a possible way to link implicit preference information generated by design teams operating in 
the real world with formal design decision-making tools.  
The approach in this work estimates the relative preference ratings from preferential probabilities by 
simulating under the principle of maximum entropy and interpolation for approximation. Rigorously 
speaking, the mapped preference ratings from preferential probabilities are estimated instead of 
calculated deterministically. These estimated ratings may be used in scenarios when other sources of 
preference ratings do not exist, are difficult to elicit, or are not reliable. The methodology explained in 
this paper can also be used as a check for preferences derived in other ways.  When preferences from 
multiple sources are consistent, it offers confidence on the accuracy of the extracted preference 
ratings.  
By applying this approach to preference models which extract preferences in the form of preferential 
probabilities, it provides a clearer picture of how design selection can change over time. The case 
study in this paper focuses on preferences for design alternatives, but the proposed methodology can 
be applied to estimate preferences for the attributes of an alternative as well. A promising avenue for 
future research would be studying the effectiveness of employing the relative ratings extracted 
implicitly in establishing a decision making framework. 
This work investigated a small group discussing a simple task. Many design problems in practice 
involve larger teams addressing more complex problems. Future work may consider team size, task 
complexity, the role of group dynamics, and team membership roles, such as authority, decision-
making styles, and dominance of individuals. These would be useful directions for improving 
accuracy of forward- and inverse-mapping between relative preference ratings and preferential 
probabilities. The method in this research is based on simulation and statistical analysis, so uncertainty 
in the mapping process is also a valuable topic for future research. It could include subtopics such as 
evaluation and sensitivity analysis of the certainty/uncertainty of the mapped preference ratings.  
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