

Fully simplified game tree

Questions about a game

- Who wins?
- By how much?

- What is the best move?
- How to combine games?

Combinatorial game theory (CGT) answers these questions precisely.
A game's value tells how many moves of advantage and can be compared, added, etc.

Applicability of CGT

Complete information
No chance
Players moves alternately
First player unable to move loses
Game must end

CGT values (informally)

- Positive: Black wins $0 \bigcirc 0$ has value 1
- Negative: White wins has value - $\mathbf{2}$
- Zero: second player wins \quad has value $\mathbf{0}$

$$
O \odot=\{\bullet \bullet D, O \bullet \bullet \bullet \mid\}
$$

00 has value $\mathbf{0}$

$$
=\{\underline{\mathbf{0}}, \underline{\mathbf{0}} \mid\}=\{\underline{\mathbf{0}} \mid\}=\underline{\mathbf{1}}
$$

- Fuzzy: first player wins

00 has value*
${ }_{*}^{*}$ is less than any positive value greater than any negative value incomparable to zero

CGT values (formally)

A game's meaning is its simplified game tree, written \{ black-moves \mid white-moves \}

$$
\square=\{\mid\}=\underline{\mathbf{0}}
$$

$\bullet 0 \bullet 0 \cdot\{\mid 0 \cdot \bullet \bullet \infty, \infty \cdot \bullet \cdot 0\}$
$=\{\mid-\underline{1}, \underline{-1}\}=\{\mid-\underline{1}\}=\underline{-2}$
$0 \bullet=\{\bullet \cdot \mid-0\}$

$$
=\{\underline{\mathbf{0}} \mid \underline{\mathbf{0}}\}=\underline{*}
$$

Fractions

$000 \cdot 0=\{\underline{\mathbf{0}}, \underline{\mathbf{- 1}} \mid \underline{\mathbf{1}}\}=\{\underline{\mathbf{0}} \mid \underline{\mathbf{1}}\}=\frac{1}{2}$
In $\{\underline{\text { left }, ~ r i g h t ~}\}$, choose the simplest number between left and right.

- integers are simpler than fractions
- among integers, smaller abs value is simpler
- among fractions, smaller denominator (always a power of 2)
$\{\underline{\mathbf{5}} \underline{\underline{2} 2}\}=\underline{\underline{6}} \quad\{\underline{-22} \mid \underline{-7}\}=\underline{8} \quad\{\underline{-22} \mid \underline{3}\}=\underline{0} \quad\{| |\}\}=*$
Why these rules?

I nfinitesimals

- $=\{\underline{0} \mid \underline{*}\}=\uparrow$

Smaller than any positive number
Greater than zero
How does it compare to $*$?
(There are even smaller infinitesimals.)

Simplifying a game

Delete dominated options: $\{\underline{\mathbf{5}, \mathbf{6}} \mid \ldots\}$
Bypass reversible moves:
$P=\{\ldots \mid R, \ldots\}$
$R=\left\{P^{\prime}, \ldots \mid \ldots\right\}$
$P^{\prime}=\{\ldots \mid X, Y, Z\}$
If $P^{\prime}>P$, then $P=\{\ldots \mid X, Y, Z, \ldots\}$
If Right moves to R, then Left will certainly move to P' (or something better), so Right's new options will be $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$.

Why CGT?

- Reduce the search space by summing subgames
- Simplify game values into equivalent but simpler games
- Provide vocabulary for talking about game values
- Tell which move is best, not just which one wins

Separating stone positions: how far can a stone move?

(To determine noninterfering subgames.)
Idea: potential function
Example: no stone can get to the star
Potential function: Initial potential is 20
Goal (star) potential is 21

2	3	5	8	13	21
1	2	3	5	8	13
1	1	2	3	5	8

No jump increases potential

CGT and competitive game-playing

CGT is useless in the opening and middle game Analysis is tractable only for the endgame
CGT gives an exact answer
Do you need the best move, or just a good one?
CGT is a lot of work to program
CGT wins if you can separate a game into pieces 16 stones, branching factor of $4: 4^{16}=4$ billion 2 groups, 8 stones each, branching 2: $2 * 2^{8}=512$

Learning more

Paper and computer program:
http://sdg.lcs.mit.edu/~mernst/pubs
Combinatorial game theory (most formal last):

- Surreal Numbers, Knuth
- Winning Ways, Berlekamp, Conway, \& Guy
- Combinatorial Games, Guy
- On Numbers and Games, Conway

