
LobbyView: Firm-level Lobbying & Congressional

Bills Database∗

In Song Kim†

August 30, 2018

Abstract

A vast literature demonstrates the significance for policymaking of lobbying by special inter-
est groups. Yet, empirical studies of political representation have been limited by the difficulty
of observing a direct connection between politicians and interest groups. This article introduces
LobbyView, a comprehensive lobbying database that is based on the universe of lobbying reports
filed under the Lobbying Disclosure Act of 1995. LobbyView bridges two distinct observable
political behaviors with regard to congressional bills: (1) sponsorship by politicians, and (2)
reported lobbying by interest groups. It also allows researchers to identify political actors and
their lobbying activities based on standardized firm- and industry-level identifiers to facilitate
systemic research on lobbying and merging with external datasets. Finally, we develop an API
(Application Programming Interface) that enables researchers to bulk download the massive
amount of unstructured data in standard formats so that they can conduct further analyses
using preferred statistical software.

∗Financial support from the National Science Foundation is acknowledged (SES-1264090 and SES-1725235).
†Associate Professor, Department of Political Science, Massachusetts Institute of Technology, Cambridge, MA,

02139. Email: insong@mit.EDU, URL: http://web.mit.edu/insong/www/

mailto:insong@mit.edu
http://web.mit.edu/insong/www/


1 Introduction

This document currently contains only some technical details of the database. We will soon update

this paper to provide a full description of the methods used for constructing the database. Specifi-

cally, we will show 1) how we disambiguate interest group names using natural language processing

(NLP) as well as collaborative filtering, 2) how the complex relational structure is stored using

PostgreSQL and Elasticsearch, and 3) the scalability of our methods for bill number and bill title

matching described in Section 2. Moreover, we will conduct several descriptive and statistical anal-

yses to demonstrate the scope and quality of the lobbying database. Until then, we refer readers

to the following two papers for an introduction to LobbyView.

References

Kim, In Song. 2017. “Political Cleavages within Industry: Firm-level Lobbying for Trade Liberal-

ization.” American Political Science Review 111 (1): 1–20.

Kim, In Song, and Dmitriy Kunisky. 2018. “Mapping Political Communities: A Statistical Analysis

of Lobbying Networks in Legislative Politics.” Working paper available at http://web.mit.edu/

insong/www/pdf/network.pdf.

2 Identifying Bills and Missing Congress Numbers

Identifying congressional bills in lobbying reports is difficult because bill numbers are repeated

across Congresses, and often do not appear directly annotated with Congress numbers in lobbing

reports. Using the report filing year to guess the Congress often leads to erroneous matches, because

reports filed at the beginning of a new Congress tend to include disclosures of lobbying activities

from the previous year (and therefore, if a new Congress has begun recently, from the previous

Congress as well). For example, consider the following lobbying report filed by Google, Inc. in

2013. It reads:

Monitor legislation regarding online privacy including Safe Data Act (H.R. 2577, S. 1207) and Do not track
proposals (H.R. 654). Monitor any Congressional or Administration efforts to impose privacy laws on search
engines. Monitor Spectrum acts (S. 911, H.R. 2482).

Figure 1: First Quarter Report by Google, Inc. in 2013

A naive guess would be that the bill H.R. 2577 refers to a bill from the 113th Congress, because

the report was filed in 2013. However, it is clear from the report that this is a bill from the 112th

Congress, the “SAFE Data Act.” We use the following strategies to mitigate this problem and

correctly identify Congress session numbers under various circumstances.

1

http://web.mit.edu/insong/www/pdf/network.pdf
http://web.mit.edu/insong/www/pdf/network.pdf


1. Bill Number Search: We first identify bill numbers (e.g., H.R. 2577 above) using regular

expression search in the report text. In the above example in Figure 1, our algorithm would

identify bill numbers H.R. 2577, S. 1207, H.R. 654, S. 911, and H.R. 2482. Note that all of

these bills are from the 112th Congress rather than the 113th.

2. Congress Identification: Given a bill number found in a specific issue text (a section of

the lobbying report), we attempt to identify the most likely Congress to which that bill would

belong using other text around the bill number. We consider a range of candidate Congresses

extending backwards from the Congress containing the year that the lobbying report was

filed. By default, we consider the three preceding Congresses; in the above example, there-

fore, we would consider the 113th, 112th, and 111th Congresses. We then retrieve the bills

having the same number as the given bill from each of these Congresses (omitting the Con-

gresses that do not have a bill of that number), and compute a bag-of-words representation

(after a tokenization and stopword filtering pipeline) of each of those bills, producing vectors

v1, . . . ,vn representing the n candidate bills. We also compute the same representation of

the text around the mention of the bill number in the lobbying report, producing a vector

w representing that text. We then choose the Congress number by maximizing the cosine

similarity between the vi and w, choosing bill i∗ with index given by

i∗ = argmax
1≤i≤n

v>i w

‖vi‖‖w‖
. (1)

If no bill having the same number exists in the entire range of Congresses we consider, we

simply guess that the bill comes from the Congress of the year the lobbying report was filed.

3. Congress Propagation: If we successfully find a match for a Congress, it may be propa-

gated to the other bills mentioned in the lobbying report, since, being scheduled on a quarterly

basis, lobbying report will almost always only mention legislation from a single Congress. If

different bills in a lobbying report disagree on the best-matching Congress, a majority vote

may be taken, but this rarely occurs in practice.

4. Bill Title Search: Bills are sometimes only referred to by titles or alternate names. To

account for this, we clean and tokenize the specific issue sections of the lobbying report, and

perform a text matching operation against a table of bill titles. For instance, this operation

would identify “Safe Data Act” in our previous example, even if the bill number H.R. 2577

were not mentioned.

5. Bill Range Expansion: It is also common for bills with nearby numbers to be related,

and for lobbying reports to refer to ranges of bills when lobbying all of them at once. For

2



instance, a lobbying report filed by Mattel, Inc. in 2002 contains the following text:

“H.R.3009, Trade Act of 2002. Certain miscellaneous tariff bills to suspend the rates of
duty on certain toy-related articles (H.R.4182-4186; S.2099-2103). WTO market access
negotiations for non-agricultural products Port and border security measures”

Figure 2: Midyear Report by Mattel, Inc. in 2002

Therefore, if we find two bill numbers that are close (by default, we take this to mean that

they share the same prefix and their numbers differ by at most 10), then we consider all

other bills with numbers in between as also being lobbied in the same report. For instance,

the pattern “H.R. 4182-4186” in the excerpt shown in Figure 2 would be expanded into bills

H.R. 4182, H.R. 4183, H.R. 4184, H.R. 4185, and H.R. 4186, all of which we would consider

lobbied on by Mattel, Inc.

3 Technical Details

This document concerns the code in the /trade/code/database directory of our repository, which

sets up and provides access to a system of databases (running on SQLite and the Whoosh text

indexing library) that store relationships between bills, their lobbiers, and various other related

pieces of data.

3.1 Dependencies

The table below is a summary of the packages on which the database depends, along with a short

summary of the functionalities that they provide (further information and documentation can be

easily found on their PyPI (Python Package Index) pages). The packages are roughly grouped

by their function (database, parsing, etc). For the purposes of actual deployment, the file that

manages these packages is database/REQUIREMENTS.

3



Package Description

SQLAlchemy Basic Python bindings and model representations for SQL-type

databases.

Elixir Higher-level abstractions for dealing with SQL-type databases, extend-

ing the functionality that SQLAlchemy makes available.

Whoosh A library for creating full-text index databases that are searchable with

reasonable efficiency (if in the future better efficiency here is needed,

there are non-Python packages that can do a better job). SQL is not

good, generally speaking, for full-text search, hence the necessity of this

for the bill CRS summaries and lobbying report specific issue texts.

BeautifulSoup Convenient library for parsing XML and HTML data into Python ob-

jects, although when speed becomes an issue there are faster but less

convenient (and more code-verbose) alternatives, such as xml.etree in

the core Python library.

nltk The “natural language toolkit” for Python, providing tools for tokenizing

and statistically analyzing English-language texts.

path.py Convenience tools to make dealing with the filesystem easier from

Python.

python-dateutil Convenience tools for dealing with datetimes and time ranges.

Before going any further, you will need to install all of these packages, which can be conveniently

done through the REQUIREMENTS file, by running the following command in the shell (you will need

the pip utility for Python package management):

> pip install -r REQUIREMENTS

Also, there are a few subpackages to install for the nltk package. In a Python interpreter, run

the following:

>>> import nltk

>>> nltk.download()

That will open up an interface for downloading extras/packages for nltk. Then, you should go

into the Corpora tab and install the packages stopwords and wordnet. If no errors arise during

this installation procedure, it is safe to proceed to the next steps.

4



4 Getting Started

4.1 Configuration

All of the necessary configuration for the database system can be done by modifying the variables

in general.py. The variables are listed below along with the effect that they have on the database

creation process. Realistically speaking, to get things working locally you should just change

DATA DIR to something that is not Della-specific. Everything else should be (more or less) good to

go, assuming no large repository reorganizations have happened.

Variable Description

TEST MODE Intended as a testing mode for bill detection and related

algorithms, but this is not yet complete, so avoid setting

this to True before taking a look at the testing code.

CONGRESSES The range of congresses that all processes will be concerned

with (note that in Python, the range(x, y) syntax gives

the numbers x, x + 1, . . . , y − 1, not including y).

OUTPUT DIR The directory for generic outputs of analytics scripts.

ROOT DIR The database directory (these directories are given relative

to the trade/code directory).

DATA DIR The directory used for storing databases, which can be to-

tally separate from the code directories. For instance, on

Della it is useful to put this under /tigress since it requires

lots of storage space.

LOBBY REPO DIR The location of the lobby repository (parallel to the trade

repository in the current setup).

CLIENT NAME MATCHES FILE The file containing the client name filtering matches (i.e. the

output of Josh’s script).

4.2 Initialization

Installing the databases is (or should be) very easy, just go to the trade/code directory and run

the command sudo python -m database.setup. This will probably take a very long time to run

from scratch—possibly up to several days.

5



5 Working with the Database

5.1 Starting and Ending Sessions

In order to get started with a database session, navigate to the trade/code directory, and run the

following sequence of commands in the Python interpreter:

>>> import database.general

>>> from database.bills.models import *

>>> from database.lda.models import *

>>> from database.firms.models import *

>>> database.general.init_db()

When finished, the following command will safely close the database without accidentally perma-

nently writing any changes that may have been made to the data:

>>> database.general.close_db(write=False)

If you are in fact correcting errors in the database or otherwise performing operations that cause

changes that you would like permanently registered, then just change the above to instead pass

the argument write=True.

5.2 Basic Database Objects and Relationships

To see what objects are stored in the various databases, look at the models.py files in the directories

bills, lda, and firms (the imports described above are what give you access to all of these classes).

Each class has some fields, where are available to access on any object of the class. The system is

best clarified with an example: consider the case of bill objects, which are represented by the Bill

class. This class, like any other, has an id field that is its primary key, i.e. the value of this field

uniquely identifies a Bill object. For bills, the id is a string of the form 110 HR7311, where 110 is

the number of the congress to which this bill belongs, and HR7311 is the bill number. To retrieve

a particular bill by its id, use the following snippet:

>>> b = Bill.query.get(’110_HR7311’)

Once this command completes, the object b will have all of the fields listed under Bill in the

file bills/models.py. So, for instance, we can get the date that the bill was introduced with

b.introduced, get its CRS summary text with b.summary, and so forth. Any field inside Bill

that is initialized as Field(ABC) where ABC is some text (example possible values are Integer for

integer fields, Unicode(L) for a string field of maximum length L, or DateTime for a date/time

field) is accessed in this straightforward way.

6



Other fields are registered as ManyToMany(ABC), ManyToOne(ABC), or OneToMany(ABC), where

ABC is now the name of some other model. These fields contain references to one or more instances

of some other model. For instance, in Bill, the field definition

titles = OneToMany(’BillTitle’)

indicates that each bill has one or more (hence Many) associated objects of class BillTitle, which

are its titles. In BillTitle, we see the field giving the reverse relation,

bill = ManyToOne(’Bill’)

which indicates that many BillTitle objects can share the same Bill object (for some intuition,

think of a OneToMany field as a “my children” relation, and of a ManyToOne field as a “my parent”

relation).

Thus, if b is a Bill object, then b.titles will give an iterable (effectively a Python list, for all

basic purposes) containing all the titles of b. Conversely, if t is a BillTitle object, then t.bill

is the Bill object to which the title belongs.

The last possibility of these more complex relationships is a ManyToMany field, which as its

name suggests creates a generic relation between two object types (where neither object plays the

“child” or “parent” role). For example, we see in Bill,

terms = ManyToMany(’Term’)

and in Term,

bills = ManyToMany(’Bill’)

which means that for a bill b, looking at b.terms gives all of the terms that that bill is classified

under, and for a term t, looking at t.bills gives all bills under that term.

5.3 Filtering Operations

The more sophisticated and interesting sorts of queries that are possible are those that involve not

just fetching particular bills or other objects and examining their relationships, but also involve

filtering sets of objects by useful criteria.

Example: filter by columns of each Model

>>> reports = LobbyingReport.query.\

filter_by(year=2011)

7



returns all lobbying reports filed in 2011

Example: filter by membership in at least one ManyToMany related table

>>> trade = LobbyingReport.query.\

filter(LobbyingReport.issues.any(LobbyingIssue.code.\

in_([’TRADE (DOMESTIC/FOREIGN)’])))

>>> trade.count()

52418

returns all lobbying reports that at least has ’TRADE (DOMESTIC/FOREIGN)’ as one of issues

lobbied.

5.4 Full-Text Indices

Two types of data items are duplicated in a separate full-text index database to facilitate more

efficient searching: the CRS summary text of each bill, and the text of each lobbying report

specific issue. The code concerning the creation and access of these indices is found in the files

bills/ix utils.py and lda/ix utils.py, respectively.

The primary useful methods, in turn, for accessing these indices are summary search and

issue search, in the above two files respectively. These both take one required argument, called

queries list, which is a list of the queries (as strings) to make to the full-text index. They also

have two optional boolean arguments, return objects and make phrase, which default to False.

Setting return objects to True will return a collection of Bill or LobbyingSpecificIssue

Python objects rather than just their id values. Setting make phrase to True will make each

query into a phrase that is searched for a single unit, rather than separately searching for each

word (as in the difference when searching Google for red cat running versus “red cat running” in

quotes).

In lda/ix utils.py, there is an additional method exposed for using the index that is called

get bill specific issues by titles, which is a simple special case of issue search that searches

for all of the titles of a particular bill in the specific issues, used in the database construction process

to find the bills mentioned by title in specific issues.

A simple example of using these indices to find bills pertaining to a particular textually-

distinguished subject (trade-related bills in our case) can be found in analytics/lobbied bills data.py.

We define a list of queries on our bills in the following way:

from database.analytics.bill_utils import *

bill_queries = [

u’trade barrier’,

8



u’tariff barrier’,

...

u’uruguay round’,

u’harmonized tariff schedule’

]

Then, to get the id’s of the bills that contain one of these phrases, we do this:

query_bill_ids = database.bills.ix_utils.summary_search(

bill_queries,

make_phrase=True,

return_objects=False

)

This returns a list of id’s as strings. If we wanted the corresponding Bill objects instead, we

could instead pass the argument return objects=True. Note that here it is important that we

use make phrase=True, since otherwise the query ’uruguay round’ would match all bills that

contain both the word uruguay and the word round, not necessarily together, which is not what

we want.

A simple example of using these indices to find lobbying reports that contain a particular

phrase,

from database.analytics.lda_utils import *

reports = lda_issue_search(

[’Free trade agreements with South Korea’]

)

5.5 Calculating Herfindahl Indices for Industry Clients Belong to

We provide a tool to measure the size of each firm in relation to the industry. Herfindahl index

measures the levels of competition among firms (clients) within the same industry.

5.5.1 herfindahl.py (in lobby/code/hfcc)

Given lobbying database containing firm, LDA, and bill information,

1. Pulls firm-level financial and LDA report information from lobbying database

2. Computes Herfindahl indices

3. Outputs rows with firm information (sorted by industry as identified by NAICS2), industry

Herfindahl index, and lobbying information for firm.

9



To run: From lobby/code, type ”python -m hfcc.herfindahl” No additional parameters needed.

5.5.2 herfindadd.py (in lobby/code/hfcc)

Given output (csv) files generated by herfindahl.py,

1. Adds indicator showing whether firm lobbied on at least one trade issue

2. Adds firm-level compustat financial data

3. Generates (in addition) new csv files with industry-level information in rows

To run: Ensure output files from herfindahl.py are in lobby/code From lobby/code, type

“python -m hfcc.herfindadd” On-screen documentation will detail additional parameters that are

needed.

Example

python -m hfcc.herfindadd namerica naics -s 1996 -e 2011

runs the script for the North America files, using NAICS (rather than SIC), starting from 1996

and ending in 2011 (herfindahl.py generates one file per year per classification system (NAICS /

SIC).)

10


	Title Page
	1 Introduction
	2 Identifying Bills and Missing Congress Numbers
	3 Technical Details
	3.1 Dependencies

	4 Getting Started
	4.1 Configuration
	4.2 Initialization

	5 Working with the Database
	5.1 Starting and Ending Sessions
	5.2 Basic Database Objects and Relationships
	5.3 Filtering Operations
	5.4 Full-Text Indices
	5.5 Calculating Herfindahl Indices for Industry Clients Belong to
	5.5.1 herfindahl.py (in lobby/code/hfcc)
	5.5.2 herfindadd.py (in lobby/code/hfcc)



