Virtual Private Networks

Jonathan Reed
jdreed@mit.edu
MIT IS&T VPN Release Team

Overview

• Basic Networking Terms
• General Concepts
• How the VPN works
• Why it’s useful
• What to watch out for
• Q&A

Networking 101

• OSI seven layer model
 1. Physical (copper/fiber)
 2. Data Link (MAC/network card)
 3. Network (routing)
 4. Transport (protocol)
 5. Session (connections)
 6. Presentation (encoding/platform independence)
 7. Application (program itself)
 8. Money
 9. Politics
 10. Religion
Layer 3 protocols

- IP - Internet Protocol (IPv4)
 - provides addressing for packets
 - provides fragmentation and reassembly of packets that exceed MTU (maximum transmission unit - how big a packet can be - typically 1500 bytes)
- ICMP - Internet Control Message Protocol
 - allows for reporting errors, congestion, timeouts, no such host, etc - used by “ping”

Layer 4 protocols

- TCP - Transmission Control Protocol
 - allows for streams, reliability, full-duplex
 - packets guaranteed to be received in order sent
- UDP - User Datagram Protocol
 - connectionless
 - send a packet and hope for the best
 - packets can be received out of order (zephyr, streaming media)

Packets

- IP packets
 - time to live
 - protocol
 - source address
 - destination address
 - checksum
 - data
Packets, cont

- UDP: all of IP packet info, plus:
 - source and dest. ports
 - checksum
- TCP: all of IP packet info, plus:
 - source and dest. ports
 - sequence and acknowledgement numbers
 - checksum
 - window (amount of data that can be sent before the receipt is acknowledged)

Services

- Services listen on a port (TCP or UDP)
- When a packet arrives, kernel checks port number
 - if a service is listening on that port (i.e.: sshd, apache), decode packet and send to service
 - if not, return ICMP "port unreachable" message

Port Blocking/Firewalls

- kernel can check for user-specified info (port num, source addr, dest. addr, etc)
 - return ICMP unreachable (appears as if no service on that port)
 - drop packet on floor (wait for remote machine to timeout)
 - return other ICMP message (protocol not allowed, host doesn't exist, prohibited, etc)
NAT

- static NAT (what most people use)
 - 1 “real” IP address
 - 1 or more private IP addresses
- security only through obscurity
- can also act as firewall
- breaks any protocols that rely on knowing the source IP address (krb4, FTP, etc)

Tunneling

- the idea that some element of data can be encapsulated in a larger element of data
- in simplest form, IP-IP tunnels
 - one IP packet wrapped in another IP packet
 - only works for IP networks (not Netware (IPX), AppleTalk, etc)
 - offers no more and no less security than a regular network

Tunneling Abstraction

Regular Packet
To: www.google.com
From: mymachine.mit.edu
Port: 80
Data: “school” “science” +Cambridge

Tunneled Packet
To: vpn-public.mit.edu
From: mymachine.mit.edu
Port: 12345
Data: www.google.com
From: mymachine.mit.edu
Port: 80
Data: “school” “science” +Cambridge
Layer 2 VPNs (L2TP, L2F, PPTP)

- Both based on the idea that layer 2 protocols can be encapsulated in IP
- Basically, extends PPP over the internet
- Uses existing PPP authentication (which has vulnerabilities)
- PPTP encryption is also cryptographically weak (RC4)
- Requires routers to understand protocols

VPN Abstraction

Layer 3 VPN: IPSec

- IP Security: suite of protocols for securing IP packets
- Protect Data (ESP)
- Key exchange protocols (IKE)
- Authentication of packets (AH)
- Can provide either authentication or authentication + encryption (most common use)
- Backwards compatible with existing networks
Negotiation

• authenticate nodes to each other
 – pre-shared keys
 – X.509 Certificates with RSA signature
• set up tunnel
 – establish “security associations”
 – assign client IP address for VPN
• renegotiate (“re-key”) periodically to ensure security

Cisco’s Implementation

• pre-shared keys
 – In this case, the “group name”, and “group key” (stored in MITnet-VPN.pcf file)
• XAUTH - external authentication
 – use other methods, such as RADIUS, to authenticate users
• Determined to be insecure, Cisco plans new version
 – man-in-the-middle attack

Security

• Layer 3 and above security **between client and VPN server only**
• Security between VPN server and eventual dest. is user’s responsibility
• Once packet leaves server in W92, it’s no different than any packet from any other machine on MITnet
How it bypasses port blocking

- The actual port numbers are encrypted, so firewalls don’t see them
- Appears to just be one connection to one machine (the VPN server) on one specific port (or set of several ports)
- ISPs can disallow VPN connections by blocking those ports

How it solves krb4 issues

- Assigns your machine a new IP address
- krb4 (and FTP, and other things) use that IP address
- local machine temporarily “forgets” about its other IP addresses (ie: address assigned by Comcast)

How is it different from HTTPS or SSH?

- Those are layer 7 protocols.
 - Anyone can view those packets and tell what machine you’re talking to and what the port numbers are, and what the protocol is, it’s just the data that’s encrypted
- VPN encrypts the entire packet
 - attackers monitoring the VPN stream can’t tell what machine you’re talking to or what protocol you’re using
When to use it?

• work around port-blocking (ie: Verizon SMTP)
• solve the krb4 NAT problem
• assign you a net-18 IP address (restricted library resources, etc)

When not to use it

• on-campus – will hide you from those on your subnet, but nothing else
• to hide your websurfing – once the packet leaves W92, it’s clear text
• to send passwords/credit card numbers in e-mail – once the packet leaves W92, it’s clear text
• example: FileMaker databases

What goes wrong

• krb4 tickets already obtained will no longer work
• established zephyr/discuss/kerberized IMAP sessions fail – Quit all applications before connecting
• your MTU changes (PPPoE/DSL customers might care)
Known Issues

- You lose advanced IP/routing control
 - Cisco clients only - design choice
- various OS issues
 - VPN has to insert itself between kernel core and networking drivers
 - libpcap gets confused on Linux
 - OS X’s KEM/configd doesn’t work, if you use the Kicker, it won’t notice (correct behavior)
 - MTU silently reset on OS X even when VPN not running

Cisco VPN Client

- Available from http://web.mit.edu/software/
- Product Front Door: http://itinfo.mit.edu/product?name=vpn
- Supported on: Windows, Mac, Linux (Red Hat Enterprise)
- Linux client will work on other distributions (4.6 is LSB/FHS compliant)

Open Source VPN Client

- http://www.unix-ag.uni-kl.de/~massar/vpnc/
- Still in testing, but functional on Linux (x86, ppc, arm), *BSD (x86), Solaris
- Runs entirely in “userland”
 - no kernel module required
 - uses native OS IPSec support
- Completely unsupported by IS&T
‘Native’ VPN clients

- XP and OS X
- will not work with MIT VPN server
- L2TP over IPSec or PPTP client only

Wrap-Up

- Questions?
 - vpn-release@mit.edu
- More info:
 - http://vpn.shmoo.com
 - http://www.vpnc.org/ietf-ipsec/
 - Virtual Private Networks, 2nd Ed. (O’Reilly)
 (somewhat dated, but useful)