
Coding Problems in LON-CAPA for
Authors/Co-Authors

Originally created by Jonathan Abbott for the benefit of teachers coding

problems in LON-CAPA. Updated by Gerd Kortemeyer September 2012. Feel free

to adapt and copy.

The goal of this tutorial is to provide a set of instructions to coding problems in LON-CAPA. This is largely

a guide to the fundamentals of coding problems.

Overview:
1. Initiate Creating a New Numerical Problem from a Template

2. The Interface for Coding Problems

a. First Representation: “Edit”

b. Second Representation: “EditXML”

c. Third Representation: “View”

3. Necessary Fundamentals to Coding Problems

a. Evaluating the Answer

b. Basics of Coding in Perl

c. Randomization

d. Hints

e. Publishing

4. Other problem types

a. Making Symbolic Problem

5. Errors within LON-CAPA with Interpreting Answers

6. Tips

a. Having hints show up after more than one try

b. Add multiple parts to questions

c. Show something after the question is solved or unsolved.

d. Bold, Italics, horizontal line

7. Link: using&ext()

Initiate Creating a New Numerical Problem from a Template
Let’s go through the process of making a numerical problem from a template so you can experiment

with the interface and coding.

1. After logging in (and, if you have several roles in the system, selecting the role of Author), you

will need to go to the construction space. You can just click construction space in the top left if

not already there. The construction space can be used for any multimedia type (images, web

pages, movies, etc), but for the purposes of this simple tutorial, we limit ourselves to problems.

2. Let’s make a new problem, so use the dropdown as shown in the figure below. Be sure to

provide a filename for your problem and then click Go. It is recommended to not use special

characters in the filename, as it later translates into a URL, where special characters make for a

long, awkward address. Click Continue on the next screen.

3. Now you should see a screen with many problem templates. These templates are not problem

types, but in fact just starting points for your problems. LON-CAPA problems are constructed

from functional elements that can be combined extremely flexibly. Over time, you will become

more familiar with them, but let’s stick to numerical response down in the bottom right as

shown in the figure below. Click Continue.

4. Now you are at the representation of the template problem the students see. Click on “Edit” or

“EditXML” to switch to the other views.

The Interface for Coding Problems
Sooner or later you will actually have to code your own problems. Fortunately, you can easily start with

other problems as a template. Using a template is a good start and a great time saver, but let’s begin by

previewing the interface where you will code problems.

Below you see three “representations” of the same problem. One representation is colorful with a

bunch of boxes, the second representation is simply code, and the last representation is the final display

of how the student sees the problem.

In practice, you will need to use all three representations, so let’s quickly go over each view.

First Representation: “Edit”

LON-CAPA calls the colorful representation with boxes as simply “Edit.” Each colorful box is each a

functional element or group of functional elements with their relevant inputs. For instance:

 The Script is where you can define variables and do computations.

 The Text Block is where you can directly add text to the problem.

 The Response is where you can ask for and then evaluate the student’s response.

Second Representation: “EditXML”

The second representation is simply XML code, but you can see how it matches the first representation.

 The code starts with <problem> and then ends with </problem>.

 In-between <script> and </script>, you can define variables and do computations.

o Note: the language used in this area is a mix between LON-CAPA and Perl. (We’ll talk

about more code shortly).

 In-between <startouttext /> and <endouttext />, you can directly add text to the problem.

 In-between <numericalresponse answer="$c"> and </numericalresponse>, you can ask for and

then evaluate the student’s response, as well as add settings (“parameters”).

Third Representation: “View”

 You should not see anything from the code in “script” as that was all computer computation.

 You just see the problem text and an answer box.

 Since you are an instructor, you also enter information about the correct answer and what

range of student answers will be considered acceptable.

Necessary Fundamentals to Coding Problems
Evaluating the Answer

Let’s go over how to adjust how LON-CAPA judges the student’s answer. The correct answer simply

needs to be given in the “Answer” field, and can be number of a variable. The physical unit of the

answer should be given in the “Unit” field; LON-CAPA will accept any student answer that has the right

dimension and do the unit conversions automatically. The “Format” field can be used to provide

appropriate computer answer display – for example, entering “3s” would display the computer answer

with three significant digits. Again, the blue help symbols get you a window with relevant information.

Since floating point calculations may always have some round-off/calculator error, it’s wise to give

range of input that is considered correct. As shown by Figure 6, you can specify the percent (i.e. +/- 5%)

the student’s answer can deviate from the computer’s answer or you can specify the range (i.e. +/- 1).

You can also see in figure below that you can use require significant figures. Note that 2,4 means the

answer must have between 2 and 4 significant digits.

To insert more “Parameters for a response” just use the insert dropdown in the numerical block. Then

use the “Use template” to add more criteria.

Basics of Coding in Perl

Let’s start covering the basics of the Perl code.

 Put the Perl code in the “Script” box from the Edit screen or in-between <script

type="loncapa/perl"> and </script> on the EditXML screen.

 Write yourself notes in the format #yourtext. Writing meaningful notes inside the code (that the

computer otherwise ignores) will help you to remember what you were trying to do.

 Define variables in the format $variable. Always refer to the variables with the “$”.

o You can define variables using other variables in the form $newvariable=$a+$b;

 End every line of code with a semicolon “;”.

Randomization

To randomize values in Perl use the format $variablename =&random(low,high,interval) as shown

below. Randomization is crucial to preventing cheating and randomization allows for more flexibility

with questions. There are additional randomization routines. In fact, in the colorful representation, the

blue help box “Script Functions” gives you an overview of all functions that are available.

Hints

Hints are very confusing to first learn because they have a lot of options and take a while to input. Let’s

first cover some nomenclature:

 A “hint” that shows up by default is a text box that shows up after a student has attempted a

problem.

 A “hint condition” is where you define criteria (like a specific answer) and LON-CAPA evaluates if

the criteria are true.

 A “conditional hint” and the “Text/HTML Block” are the response and output to the above

criteria being true.

So let’s walk through making a default hint (which shows just when you want text to appear after a

student attempts the problem.

1. Create a numerical response question and get to the “Edit” representation of the problem.

2. Now in the green Response: Numerical box, insert a “hint” using the right dropdown box.

3. N

ow go to the bottom of the page and click “Save and Edit.” When the page reloads you will have

your default hint.

4. Enter what text you want to appear in the text block. If the “show hint even if problem Correct”

dropdown is set to “no,” the text block will only show if the student gets the answer wrong.

5. To delete a hint (or anything else), just set the appropriate dropdown box to true and then click

save and edit.

Let’s now make a conditional hint. This may be slightly tedious and confusing at first so let’s summarize

what we are trying to do: first we make criteria for when the hint will be shown and then we make the

actual hint.

1. From where we let off with the default hint, you will want to now insert from the hint dropdown

box a “Numerical Hint Condition.” Consider also deleting the text block by setting the text block

dropdown to yes. Click “Save and “Edit.”

2. Now go back and insert “Parameters for a Response” in the Numerical Hint Condition

dropdown. Click “Save and

Edit.”

3. Next use the template “Numerical Tolerance” to add appropriate criteria for response. Click

“Save and

Edit.”

4. Then insert a conditional hint.

5. Finally we have everything to make our hint. So let’s decide what we should put as our hint.

6. From this picture you can see some of the “fields” where you need to put information. Let’s

cover them starting with the most important fields.

a. Name the criteria. You have to name each individual criterion first in the Numerical Hint

Condition box and then in the Conditional Hint box.

b. Specify the answer. You need to put in the exact answer. Note: you can use a variable

that you defined in the script section of the code. (This is very helpful if you had

randomization.)

c. Type in the text to display. Note: you can also add in other items such as pictures or

plots by using the insert dropdown for the conditional hint.

d. Note that any number of hint boxes can be triggered by the same criterion. Once a

criterion is named and defined, it can trigger additional functionality later. Hint criteria

can also be logically combined (e.g., “this and that”).

7. Remember to click “Save and View” to test out your hint.

Publishing

Once you finish a problem you will need to publish it before you (or anyone else) can use it.

You can either publish the problem when in the construction space of the particular problem or you can

publish a whole directory of problems when in the construction space of the directory.

Usually you will just publish the problem after you have created it. So let’s walk through publishing a

problem.

1. From the construction space of the problem click “Publish this resource.”

2. Then fill out the metadata. Metadata is information about data (in this case it is about the

problem.

a. Some of the most important fields are the title, keywords, copyright distribution, and

source distribution.

b. The title helps when importing the problem in a course. It is the default entry in the

table of contents of a course, and it by default appears in the browser title bar when the

problem is used in a course.

c. The keywords help users search for the problem.

d. The copyright distribution determines who can access the problem.

e. The source distribution determines who can access the code to the problem.

Other Types of Problems
Making Symbolic Problems

Symbolic problems are questions that use algebraic expressions instead of numbers in the answers. For

instance, you use variables such as h for height and t for time instead of specifying 4 feet and 6 seconds

as you would use in numerical problems.

To make a symbolic problem, it is exactly the same as numerical problems, but you have different ways

of testing the response. One way of testing the response is to use Maxima, which is a computer algebra

system.

Sometimes a better approach is random sampling. By plugging in random values for the variables in

both the student’s answer and the computer’s answer, it’s easy to verify that both answers are

equivalent. We’ll cover how to use both Maxima and random sampling below.

Steps to making a symbolic problem:

1. Start by creating a problem (consider using numerical problem template). Replace the values

with symbols.

2. From the Edit representation of the problem, delete the “numerical response” box and add a

“formula response” box. Click Save and Edit.

3. In the “formula response” box, add the correct answer. Here, I typed in w*h*l.

a. You can also try naming a response in the script as a string (i.e. $volume=“w*h*l”;) and

then you can insert this in the answer field. The advantage to this is that the answer can

be customized easier to fit a problem. Ex: maybe you randomize coefficients or ask for

other answers such as surface area.

b. You can put variable names in the answer field. Ex: $coefficient*w*h*l.

4. If you want to use Maxima, just left leave the sample points field blank.

5. if you want random sampling, type the following in the Sample Points field:

a. State all of the variables separated by commas

b. Type @

c. State the range of values you would like to sample the variables in the following format:

i. w_low,h_low,l_low:w_high,h_high,l_high

d. Type #

e. State how many samples you want to test

You can also define single points.

6. As always you can change the parameters for a response.

Tip: if you forget the format for the sample points, just click the circled question mark to the right of the

Sample Points field.

Errors within LON-CAPA with Interpreting Answers
LON-CAPA’s internal engine uses real numbers, not complex numbers. LON-CAPA thus for example

has.difficulty with negative square roots. When sampling, be sure that no expected answers will have

negative square roots. You can see the “mysterious” error in LON-CAPA below:

In these two above pictures LON-CAPA is able to understand the bottom input, but not the top.

Ironically the ratio of 10/14.0976… split between accepting the response and not. Anything more

negative did not work. As you can see from the sampling certain samples would have negative square

roots for the response given.

Tips
Having hints show up after more than one try.

1. In the script box, add $tries=&EXT("user.resource.resource.$external::part.tries");

2. Then make a block condition with the following format:

<block condition="$tries > 1">
<startouttext />This is the hint text<endouttext />
</block >

3. Or, you can allow the course coordinator to adjust this for the whole course by not using a block
condition.

Add multiple parts to questions

Use part tags <part> and </part>

Show something after the questions is solved or unsolved:

Use solved tags: <solved> and </solved>

<unsolved> and </unsolved> works similarly.

Bold, Italics, horizontal line

Use and for bold

Use<i> and </i> for italics

Use <u> and </u> for underline

Use <hr> and </hr> or just <hr/> for a horizontal line.

Link: using &ext()
In LON-CAPA, visit /res/msu/albertel/test/ext_examples.problem to see a large table of useful

parameters you can access within a problem. Many of these are nicely packaged already into functions,

which you can find in the “Script Functions” help window.

