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Shortage of bikes and docks is a common issue in bike sharing systems. To tackle this problem, operators

use a fleet of vehicles to redistribute bikes across the network. We propose a model that captures success-

ful user trips in the system, and a new mixed integer programming formulation that solves the dynamic

redistribution problem by producing routes and pick-up/drop-off decisions for the vehicles. In order to scale

to large instances, we develop a decomposition method based on proper station grouping, accompanied by

an optimization with partial information approach, where relevant information for each group (routing and

redistribution options) is modeled using piecewise linear concave functions and explicitly included in the

model. We test our methods on both synthetic and real-world data, and show that our algorithms can scale

to large real-world systems, with short running times that allow for real-time information to be taken into

account. Furthermore, since accurate estimation of user demand is essential for efficient redistribution, we

also develop data-driven and optimization-based approaches to consider lost and shifted demand. Our meth-

ods are general and not tied to the specific application domain; for instance, the optimization with partial

information can be applied to any pick-up and delivery vehicle routing problem.
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1. Introduction

Early precursors of vehicle sharing systems started emerging more than half a century ago, pre-

senting limited success at first, but slow growth, which led to the worldwide phenomenon that is

observed in the present years. Millions of people have acknowledged the benefits of these systems
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and shown their support by substituting a smaller or larger part of their everyday commute with

some form of ridesharing. The most common types of vehicles that are met worldwide are cars and

bicycles, with recent advances in technology, such as electric vehicles, being gradually incorporated

as well.

The idea behind vehicle sharing systems is simple; commuters are offered the benefit of a short-

period vehicle rental in order to perform one-way or round trips. Vehicles can be picked-up and

returned at specific locations, which are spread across the cities in order to increase the range of

service. The charge depends on the duration of the trip, as well as the type of membership selected

by the user. Operators usually offer monthly and annual memberships, which are ideal for regular

users, as well as daily or short-period memberships designed to facilitate visitors and casual users.

The main purpose of this research is to provide the operator of a vehicle sharing system with

an approach to manage major operations that are required for the smooth functioning of the

system, by utilizing historic and real-time data. In this work, we assume that the system is already

functional, in the sense that we do not consider strategic decisions that need to be made while the

system is being constructed. These include the locations and capacity of stations, the number of

vehicles, etc., and thorough planning is required in order to ensure that the system specifications

are adequate to cover most of the customer demand.

After a system launches, the operator faces many daily challenges in order to keep the service

at a high level and meet the expectations of the users. Let us now focus on the particular case

of the bike sharing systems, which will allow us to provide more details about specific operations.

In a typical bike sharing system, users can pick up a bike from any station with available bikes

and return it to any station with an empty dock. However, large flows of riders from residential

to industrial and commercial areas in the morning and opposite flows in the evening, as well as

many one-way trips, can render the system highly unbalanced in many instances during the day.

In particular, very often there are phenomena of starvation, when customers wish to pick up a

bike from a station that is empty, and congestion, when customers want to return their bikes to a

station with no empty docks.
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In order to deal with this problem, companies deploy a fleet of trucks which perform the rebal-

ancing of the network: they pick up bicycles from stations with a surplus of bikes and drop them

off at stations that currently require them. Efficient rebalancing is of crucial importance to the

operating company. If a customer repeatedly fails to find a bike or is not able to drop it off at

their desired destination, they will eventually seek alternative modes of transportation, leading to

significant losses for the company and endangering the viability of the system.

The goal of this work is to generate a complete plan of actions for the operating crew that will

cover all daily rebalancing operations. An important factor for the success of this project is the

plethora of data that is regularly gathered by the operators. Historic data, such as past trips and

system statistics, will be used to accurately estimate the user demand, which can in turn be used to

generate strategies that optimize the system’s performance. At the same time, real-time tracking

of all components of the system allows to dynamically readjust daily plans, based on the currently

realized scenarios.

The motivation and significance of this research might be obvious from the view of the operator.

However, the impact of a viable vehicle sharing system is much greater than that. If users can rely

on such a system covering their transportation needs, vehicle ownership statistics will be reduced,

decreasing the consumption of valuable natural resources that a vehicle manufacturing requires.

Car sharing can solve problems that big cities often face, such as lack of parking spaces. In addition,

a transition to using bike sharing systems can contribute significantly to dealing with the problem

of congestion, and, at the same time, reduce harmful gas emissions in the atmosphere. A success in

the operation of the existing vehicle sharing systems will likely motivate more and more cities to

adopt similar transport behaviors, turning them from energy consumers and pollution generators

into more eco-friendly transportation networks.

From a theoretical perspective, this topic raises many interesting research questions. The high

dimensionality of the system - large number of stations, time intervals of interest, options of routing

- renders it intractable for real-life instances. The answer to this type of questions is relevant to
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many systems, whose operation requires matching demand and supply, especially in the context

of a dynamic environment. This might refer to resources that need to travel to various locations

in order to serve customers requests, as well as many flexible transportation systems that have

currently emerged or been planned for the near future.

The contributions of this work can be summarized along three main axes:

1. We present new models for estimating the actual user demand of bike sharing systems. These

include both the lost demand due to lack of bikes and docks at the stations, as well as the shifted

demand which is the result of users walking to nearby stations in order to find available resources

when none are available at their current location. Both of these aspects are very often not considered

in bike sharing literature, but their effect on the rebalancing efficacy is crucial since redistribution

plans heavily depend on reliable estimation of the demand.

2. We propose a linear programming model that captures the bike flows that result from all

trips that are performed by users throughout the network. This model can be used instead of trip

simulations to evaluate the efficiency of the system. It does not depend on the exact arrival order

of the users, which is often difficult to estimate, as simulation scenarios might, but instead on the

total number of users per time period. Moreover, the fact that this is a linear program makes it

possible to be used as a component of more complex models, thus incorporating user flows with

other problem aspects.

3. We introduce a new mixed integer programming formulation to solve the dynamic rebal-

ancing problem. We suggest decomposition techniques based on appropriate station grouping and

incorporation of partial information for each group to the global rebalancing model. This achieves

smaller model sizes that still contain enough information for each station group, and we manage

to produce rebalancing plans that scale to real-world instances of actual bike sharing systems. The

core ideas of our approach can be extended to dockless bike-sharing (or scooter-sharing) systems

by proper space discretization, as well as be applied to the solution of any pick-up and delivery

vehicle routing problem.
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In the sections that follow, we start by presenting an overview of the literature on bike shar-

ing systems and existing rebalancing approaches. Then, in Section 3, we introduce a model that

accounts for lost and shifted demand given historic data of past trips. Section 4 focuses on modeling

the user trips across the network, and Section 5 studies the rebalancing of the system. Computa-

tional experiments follow in Section 6 to evaluate the efficacy of the methods.

2. Related Work

Research in the area of Bike Sharing Systems (BSS) is relatively recent. DeMaio (2009) presents

a comprehensive history of BSS, and Shaheen et al. (2010) discuss their evolution around the

world, their business models, as well as their social and environmental effects. For a review of

BSS, readers can also refer to Fishman (2015), which includes aspects such as growth, usage, and

impact. Lin and Yang (2011), Martinez et al. (2012) and Nair and Miller-Hooks (2014) focus on BSS

design, identifying the number of stations that are required and their optimal locations across the

city, while Freund et al. (2017) modify already operational systems by reallocating their docks to

increase their efficiency. The sections that follow focus on the specific themes of the BSS literature

that are closer to our work.

Performance Analysis and Decision Support. This first stream of research is peripheral to

our work and mainly focuses on providing insights that help decision making in BSS. Shaheen et al.

(2011) conduct a survey to better understand the early adoption of BSS and users’ travel behavior.

Raviv et al. (2013) model the user behavior in the face of lack of resources and they introduce a

user dissatisfaction measure to evaluate station performance. Tao and Pender (2017) conduct an

analysis on various performance measures for bike distribution across the system, while Vogel and

Mattfeld (2010) study the effect of various levels of redistribution efforts on user satisfaction.

User Demand. Accurate demand modeling is essential for the efficiency of the redistribution

process. Shu et al. (2013) model the number of customers traveling between each pair of stations

at each time period as a Poisson process. A similar approach is employed by Nair and Miller-

Hooks (2011), after they observe that in the dataset of a Singapore car-sharing system they use,
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both the number of vehicles leaving a station and arriving at a station at each time period can

be accurately modeled with Poisson distributions. Vogel et al. (2011) cluster stations with similar

behavior throughout the day and use data from realized trips aggregated per hour to generate

typical customer demand. Finally, Borgnat et al. (2011) and Singhvi et al. (2015) take into account

various parameters, such as information about the weather, special events in the area, taxi usage,

to forecast the number of rentals across the system.

Our work differs from many of these approaches in that we do not focus on modeling demand

based on observed trips or predicting future demand. Instead, we wish to reveal the actual under-

lying user demand of the system by taking into account trips that were not accomplished because

of resource shortages. Lack of resources leads to customers leaving the system or walking to nearby

stations. Considering only the completed trips leads to a misrepresentation of the actual demand,

since this user behavior can affect the resources that are required at each station. O’Mahony and

Shmoys (2015) consider only the first of these two aspects (users that left the system) and obtain an

estimation for this lost demand by examining the usual behavior of the stations. In our approach,

we incorporate an extra dimension, the daily demand trends of each station, and show that this

leads to decreased estimation error in all instances that we examined. Finally, we provide a method

to estimate the shifted demand of the system, and obtain in the end the actual user demand for

each station. This shifted demand is also considered in the recent work by Goh et al. (2019). The

authors propose a rank-based choice model to reveal the primary user demand of the system, which

differs from our work as we follow a linear programming approach to estimate the probability of

walking between stations.

Redistribution without Routing. A different stream of research focuses on the redistribution

procedure. Some studies aim to propose the desired configuration of the system at each time period

based on the anticipated demand and identify the number of vehicles that need to be carried from

one station to the other in order to achieve it. Nair and Miller-Hooks (2011) present a MIP that

involves joint chance constraints to determine the least cost redistribution that will meet most
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of the upcoming demand in the application of car-sharing systems. Shu et al. (2013) formulate

a linear program to estimate the performance of the system and the benefits of redistribution.

Both of these approaches assume that redeployment of vehicles between any two stations is always

possible, which might not be the case in an actual vehicle sharing system. Moreover, since they

do not take into account the exact routing of the carriers, they do not provide a detailed plan for

the execution of the redistribution. This contrasts with our approach which produces a complete

routing and redistribution plan.

Static Redistribution. Another set of studies tackles the problem of static rebalancing with

routing, where the goal is to find the optimal routing of the carriers that will achieve a desired

configuration, considering no customer demand during the redistribution. This is the case of systems

where redistribution is performed only at the end of each day, in order to prepare the system for

the demand of the following day.

Schuijbroek et al. (2017) provide a MIP formulation for the problem, as well as a cluster-first

route-second heuristic to reduce its running time. Raviv et al. (2014) wish to minimize user dis-

satisfaction in conjunction with the cost of repositioning. They introduce multiple formulations

and techniques, such as arc deletion when alternative paths of same cost exist, which allow them

to solve the problem in reasonable time even for larger instances. Rainer-Harbach et al. (2013)

propose a variable neighborhood search approach to generate candidate routes for the carriers,

while Di Gaspero et al. (2013) present a hybrid method that combines constrained programming

with ant colony optimization. Chemla et al. (2013) propose an integer programming formulation

and they use a branch-and-cut algorithm to solve its relaxation and tabu search to obtain an upper

bound on the optimal solution of the problem. A tabu search approach is also proposed by Ho and

Szeto (2014) in order to solve the static rebalancing problem and obtain good quality solutions in

short running times. Dell’Amico et al. (2014) suggest multiple formulations for the problem and a

branch-and-cut solving approach, while Forma et al. (2015) present a 3-step heuristic to obtain a

static repositioning plan for the system.
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The research described in this section differs from our approach on the assumption that the

system is not being used by customers while the rebalancing takes places. In our work, we consider

the system being in full operation during the redistribution procedures, and this complicates the

problem further since user movements keep changing the state of the system and this needs to be

taken into account.

Dynamic Redistribution. In the dynamic problem, redistribution is performed multiple times

during the day and demand is not neglected when rebalancing takes place. Ghosh et al. (2017)

propose a MIP formulation for the problem, which they solve by using Lagrangian Dual Decompo-

sition combined with an abstraction approach in the case of large instances. Contardo et al. (2012)

focus on the peak hours of the day. They formulate the problem and use two decomposition meth-

ods, Dantzig-Wolfe and Benders decomposition, to obtain lower and upper bounds for medium

and large instances. O’Mahony and Shmoys (2015) study the rebalancing problem both for the

(static) overnight version as well as during the rush hour. They propose a matching approach that

matches stations that need bikes with stations that need docks in order to transfer the resources

between them. Caggiani and Ottomanelli (2013) also provide an optimization model to reduce the

redistribution costs which they test on small system instances.

Our work also tackles the dynamic rebalancing of the network. However, our goal is to provide

solutions that can scale to large real-world systems in running times that are fast enough to allow

real-time information to be taken into account. In our experiments, we take this type of information

into account every thirty minutes of the planning horizon, but this can take place in much shorter

time intervals (especially during rush hours) so as the most up-to-date state of the system is always

considered.

3. Demand Estimation

While BSS operators record a variety of data about the system such as outages and past trips data,

an important component remains missing; lost user demand. This demand occurs whenever a user

is unable to complete a desired trip due to either the absence of bikes at the origin station, or the
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absence of docks at the destination, and they decide to leave the system without using it. This

behavior may cause inadequate planning on the system operator’s part, since this user intention is

never recorded, hence leading to instances of underestimating the actual demand.

Another natural consequence of encountering empty and full stations is the shift of demand

towards nearby locations. Overlooking this event results in overestimating the number of unserved

customers, since some of them have actually been satisfied from other locations. Moreover, this

phenomenon causes an artificial demand increase for stations at the receiving end of this shift. This

will manifest in a greater need of resources, misleading the rebalancing operations. Therefore, we

now focus on identifying the extent of this lost and relocated demand, in order to determine the

actual demand of the system.

3.1. Observed Demand

The observed demand consists of all trips that are completed in a system. For each pair of stations

(i; j) and time periods (t; t0), let dt;t0

i;j denote the number of users picking up a bike from station

i at time t and returning it to station j at time t0. The observed demand is known to the BSS

operators, since the successful trips are recorded in the system data. Using this information, we

can also calculate the observed outgoing (resp. incoming) demand from station i at time t, which is

defined as the total number of users who left (resp. arrived at) station i at time t, dt
out;i =

P
j;t0 d

t;t0

i;j

(resp. dt
in;i =

P
j;t0 d

t0;t
j;i ).

3.2. Lost Demand

Lost demand refers to the users who failed to perform a trip due to lack of bikes at their origin

station or lack of docks at their desired destination. For each pair of stations (i; j) and periods

(t; t0), we use ldt;t0

i;j for the number of users that failed to go from station i at time t to station

j at t0 due to lack of resources at i or at j. The lost outgoing demand ldt
out;i and lost incoming

demand ldt
in;i are defined similarly to the previous section, but using the lost demand instead of

the observed one.
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In the following analysis, we focus on the lost outgoing demand, but the same methods can be

applied for the estimation of the lost incoming demand. Consider a station i which is empty from

time ts to time te on a particular day. Naturally, there is no observed outgoing demand during that

time. However, there is no way to discover with certainty whether this is because there are no users

wanting to depart from that station or whether the lack of bikes prohibits any users to do so. It

turns out that the usual behavior of the station that time of the day (average station behavior) as

well as the behavior around the interval when bikes are available (daily demand trends) can offer

some intuition.

3.2.1. Average Station Behavior. The usual station behavior can be used as an indicator

of the number of users that wish to depart from the station. This is based on the assumption that

days do not differ much from one another, as well as the fact that a station is not empty every day

at the same time. For the outage interval [ts; te] of station i, consider the average observed demand

at [ts; te] at i on the days where i is not empty during [ts; te]. Let that average demand be denoted

by AVG ldts;te
out;i, alternatively referred to as the average station behavior.

3.2.2. Daily Demand Trends. Another aspect to be considered is the daily trend of the

demand. There are days that are slower, for example due to weather conditions, and others that are

busier. By examining the user behavior right before and after the interval, we can get an estimate

of the interpolated demand during the outage.

Definition 1. We define the outgoing demand rate rout;i(t1; t2) as the average number of users

per minute that want to depart from station i during the interval [t1; t2].

rout;i(t1; t2) =
1

t2� t1
�

t2X
t=t1

dt
out;i (1)

We then proceed to provide an estimate for the demand rate rout;i(ts; te) for the outage interval

[ts; te], by using the demand rate the hour right before and after this interval. In particular:

rout;i(ts; te) =
1

2
[rout;i(ts� 60; ts) + rout;i(te; te + 60)] (2)
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Figure 1 Duration of outage events. Most of the intervals of empty and full stations are short, lasting less than

thirty minutes.

Assuming that there is no outage during the intervals [ts � 60; ts] and [te; te + 60], this can be

calculated using (1). The opposite case is addressed later in this section. Then, an estimate of the

lost demand based on the trends TREND ldts;te
out;i for the outage interval [ts; te] can be obtained as:

TREND ldts;te
out;i = rout;i(ts; te) � (te� ts) (3)

Outage duration. One assumption of this approach is that demand does not change drastically

in a very short amount of time. Therefore, a well-founded concern is whether it can work well when

the outage intervals are long, for example lasting a few hours. Computational experiments based

on real data reveal that this is not an issue since the vast majority of outages last less than thirty

minutes, as is illustrated in Figure 1, while many of the longer lasting outages take place during

the night, where demand is already negligible. Note here that empty station intervals during low

operation periods such as nighttime are not considered indicators of lost demand and are not taken

into account.

Arti�cial outage endings. Consider a user returning their bike at an empty station that is

very soon picked up by another customer. This action will cause the outage interval to be split in

two parts, when essentially it is the same event. Thus, before estimating the lost demand, we merge

outage intervals that are a few minutes apart. Any recorded users between the initial intervals are

then deducted from the estimated lost demand of the merged interval.
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Lack of information around the outage. We discussed how the outage demand rate can be

calculated based on the demand rates of the hours preceding and following the event. In case that

we do not have information about the complete hour due to another outage, we can compute the

demand rate based on a shorter time interval or look slightly further in the future or past, where

information becomes available.

3.2.3. Lost Demand Estimation. The lost demand estimate is calculated as a convex com-

bination of the estimates obtained by the average station behavior and the daily demand trends.

ldt
out;i = � � AVG ldt

out;i + (1��) � TREND ldt
out;i (4)

A data-driven approach is followed in order to select the value of � that minimizes the MSE

of the estimated demand. More details and results are presented in the Section 6 as part of the

computational experiments.

The main characteristic of this approach is that we take into account both the average demand

of the station as well as the specific demand trends of the day that encountered the outage. Since

not all days are the same, by using information from the particular day, as well as focusing on the

time periods that are closer to the outage interval, we can better estimate the system behavior

during the outage, as is also illustrated in experiments on real-world datasets in Section 6.

This method implicitly considers various factors that influence biking. For instance, estimated

lost demand in rainy days will probably be lower, since the traffic volume is generally reduced

during these days. On the other hand, for outages that emerge in the middle of a rush hour, if the

preceding observed demand is large, this will be captured in the estimation of the lost demand as

well. Having calculated the number of unserved customers for each outage event, we assume that

their arrival times are uniform over the outage interval and generate the lost demand trips.
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3.3. Shifted Demand

The next step is to identify the extent of relocated demand in the system resulting from station

outages. Let Et denote the set of stations i that are empty at time t. For each station i, we define

its l-neighborhood Ni;l as the set of stations whose distance from i is at most l:

Ni;l = fjjdistance(i; j)� lg; (5)

and its active l-neighborhood at time t as the subset of Ni;l that have the resources to serve relocated

demand from station i at time t (i.e. are not empty in the case of outgoing demand):

N t
i;l = fjjj 2Ni;l; j =2Etg (6)

Shifting probability. We introduce a model for the probability of a user shifting to a different

location. We assume that there is some limit lmax on the distance that users are willing to walk.

So, if there is no station with available bikes close enough, users just leave the system without

using it. In case such a station exists, users select to walk with probability p. More specifically, for

station i and time t, the probability of shifting is given by:

P t
i (user shifts) =

8><>:
0 if N t

i;lmax
= ;

p otherwise

(7)

Shifting coe�cients. If jN t
i;lmax

j> 1, the user has more than one alternative stations to walk

to. In that case, they select each station with probability decreasing with respect to its distance. In

particular, out of the customers that have selected to walk from station i at time t, the probability

of them going to station j is given by:

qt
ij = P t

i (goes to jjuser shifts) =
1

Zt
i � distance(i; j)

; 8i; t; j 2N t
i;lmax

(8)

where Zt
i =

P
j2Nt

i;lmax
1=distance(i; j) is a scaling factor, so that the coefficients sum to 1.

Shifting distance multiplier. In this model, we assume that users can walk to any station

with available resources in the lmax radius. However, when some of the candidate stations are really
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far compared to the others, a rational user will not consider them when selecting a station to walk

to. In order to include this behavior in the model, assume the closest non-empty station to station

i at time t is at distance rt
min;i. A user will then walk only to stations up to distance � �rt

min;i, where

�� 1 is a parameter of the model called shifting distance multiplier. If �= 1, a user can only go

to their closest available station, while if �=1 a user can go to any station of the network within

the allowed walking limit lmax. The integration of the shifting distance multiplier to the model

we described so far requires simply the replacement of lmax with min(lmax; � � rt
min;i) in N t

i;lmax
in

equations (7) and (8).

In this model, users only walk to stations that currently have resources available. This assumes

that users have a prior knowledge of the state of each station, which is true in most real-world

systems since they offer real-time tracking of the stations that can inform users of the availability

of bikes at each one of them.

In order to compute the value of p, we formulate the linear program Shifted Demand (SD). For

each station i that is not empty at time t and has demand dt
out;i > 0, we introduce a variable xt

i

representing the actual outgoing demand that was originally intended for that station, i.e. is not

the result of customer movements from nearby empty stations. We also define for each station the

average value of xt
i over the same time of all remaining days where i is not empty, denoted by x̄i(t).

The model formulation follows.

(SD) : min
X
i;t

jxt
i� x̄i(t)j (9)

s.t. dt
out;i = xt

i +
X

j:i2Nt
j;lmax

p � qt
ji � ldt

out;j 8i; t : dt
out;i > 0 (10)

x̄i(t) = avg(xt
i) 8i; t (11)

0� p� 1 (12)

According to constraint (10), the observed demand dt
out;i at each station consists of the demand

xt
i that was actually intended for that station combined with part of the demand for the nearby
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empty stations. The latter is the lost demand for these empty stations, which is denoted as ldt
out;j

for station j, and can be computed according to the previous Section 3.2. Out of this lost demand,

the probability of users going to station i is given by the probability p of people choosing to walk

(instead of abandoning the system), multiplied by the probability qt
ji that they select the specific

station i to walk to.

Constraint (11) connects x̄i(t) and xt
i, but for simplicity of notation not all details are presented

in the model: Each time t is a timestamp, consisting of a day and a time period, and x̄i(t) is the

average of xt
i that refer to the same time period over all days for which station i is not empty.

The objective function takes x̄i(t) as a reference for each station i and time t, and considers the

absolute differences of each xt
i with the corresponding x̄i(t). The goal is to minimize the sum of

these absolute differences.

Solving (SD) provides a value for p which is the estimated probability that people walked to

nearby stations. We now need to readjust the demand of the stations that received this relocated

demand, since it was originally directed to other locations. For each station i with an observed

demand dt
out;i, the actual demand is given by max(xt

i;0).

The fact that dt
out;i includes some of the users for other stations may have influenced the demand

trends and the average behavior based on which the lost demand was calculated in Section 3.2.

Since dt
out;i might be larger than the actual demand for that station, this might lead to a slight

overestimation of the lost demand. For that reason, one might consider running another iteration of

lost demand estimation, as described in Section 3.2, considering now the actual demand max(xt
i;0),

for each station i and time t.

4. Modeling User Trips

Before presenting our approach for the rebalancing optimization of the network, we propose a linear

program which we use in order to model the user trips that are realized throughout the system.

We assume that users perform a trip only if there is an available bike at their origin station and

a dock at their destination; otherwise they do not wait but leave the system instead. We do not
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Table 1 Notation used in the formulation of the model (UT).

Symbol Interpretation
dt

ij Demand for bikes from node i to node j at time period t
f t

ij Bikes that are moved by customers from node i to node j at time period t
bt

i Number of bikes at station i at the beginning of time period t
Ci Bike capacity of each station i
B Total number of bikes in the system

allow demand shifting (people walking to nearby stations) in this model since we wish to use it to

evaluate the efficiency of our methods and the goal is to eliminate the need for demand shifting

through appropriate placement of resources.

Furthermore, we assume that each trip is completed within a single time period, which we define

to be thirty minutes long. This assumption is not far from reality as 86:77% of trips in a five-month

past trips dataset (May to September 2017 for Capital Bikeshare, Washington DC) that we tested

indeed had duration less than thirty minutes. The model can still be generalized to longer trips by

changing appropriately the indexing of the variables and constraints, which we will not attempt

here for the benefit of simplicity of notation. Finally, we assume that each bike and dock is used by

at most one customer per time period. A relaxation of this assumption is discussed in Appendix

A.

The model notation is provided in Table 1 and the formulation follows.

(UT) : maximize SUCCESSFUL TRIPS(f) (13)

subject to f t
ij � dt

ij 8i; j; t (14)X
j

f t
ij �AVAILABLE BIKES(i; t) 8i; t (15)

X
j

f t
ji �AVAILABLE DOCKS(i; t) 8i; t (16)

bt+1
i = bt

i +
X

j

f t
ji�

X
j

f t
ij 8i; t (17)

bt
i �Ci 8i; t (18)

f t
ij �

dt
ijP

k d
t
ik

bt
i 8i; j; t (19)

X
i

b0
i �B (20)
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f t
ij; b

t
i 2R+; 8i; j; t (21)

According to (14), for each edge and time period the flow of bikes is bounded by the user demand.

(15) and (16) require that a trip is only realized if there are available bikes at the origin station

and available docks at the destination. Constraint (17) is a flow conservation constraint and (18)

a capacity constraint for the bikes of each station. Constraint (19) is a proportionality constraint;

since we do not consider the exact arrival order of users within the same time period, this fairness

constraint ensures that the number of bikes traveling to each destination is proportional to the

corresponding demand (idea based on Ghosh et al. (2017)). In (20) the number of bikes is bounded

by the total bikes in the system B (this can be replaced with equality if all bikes must be used,

otherwise the solution provides the optimal number of bikes in the system). Finally, if an initial

configuration of the system is provided, this is taken into account by setting appropriately the

values of b0
i . In the opposite case, the optimal values of b0

i are calculated by solving the above LP.

Notice that this is a relaxed version of the problem, i.e. the variables are real numbers and not

integers. This is further discussed at the end of the section.

4.1. Available Bikes and Docks

If we assume that each bike and dock can be used only once per time period, then the available

bikes for each period are the ones currently present at the station, and similarly for the docks.

AVAILABLE BIKES(i; t) = bt
i 8i; t (22)

AVAILABLE DOCKS(i; t) =Ci� bt
i 8i; t (23)

This is what will be used for the computational experiments and the remaining sections of this

paper, but since this approach might be considered conservative, we present a way we can relax

this assumption by considering the expected number of arrivals until a station becomes empty or

full in Appendix A.
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4.2. Objective Function

If we maximize the number of successful trips, while respecting constraints (14)-(21), we get a good

representation of the trips that were performed in the system. This is the case because each time

a user is looking for a bike or a dock and they find one available, then they are going to use it.

So, in reality, the number of successful trips is the largest number of trips that can be performed

given demand and availability constraints, as well as the first come first served rule.

As a result, one natural option for the objective function is SUCCESSFUL TRIPS(f) =
P

t;i;j f
t
ij.

However, that would not provide the desired result, since it does not ensure that the arrival order

is being respected. There are cases where the system may prevent users that arrive earlier from

taking a bike if that can be later used in a better way (by serving more trips), as illustrated by the

following example.

Example 1. Assume for simplicity that we have a BSS with three stations, one bike initially

located at station 1, and three periods of demand with d1
12 = 1, d2

13 = 1 , and d3
32 = 1 (recall dt

ij

denotes how many people want to go from i to j at time t). In an actual system with such demand,

the first customer would take the available bike, and customers 2 and 3 would not use the system as

there are no bikes at their origin (see Figure 2). However, the objective of maximizing the number

of people served leads to a solution where user 1 does not take the available bike, but it is instead

used by customers 2 and 3 (see Figure 3). This way, two users travel successfully, but that does

not agree with the first come first served rule.

In order to impose the rule of first come first served, we need to “prioritize” customers. This

prioritization can be achieved by setting weights for each customer, which must be selected appro-

priately, to ensure that solutions like the one in the example will not be optimal for the model.

Proposition 1. The objective function SUCCESSFUL TRIPS(f) =
P

t;i;j 3T�tf t
ij, where T is the

number of time periods, enforces the �rst come �rst served (FCFS) principle for the users.

Proof of Proposition 1. Let the objective function be of the form SUCCESSFUL TRIPS(f) =P
t;i;j w

T�tf t
ij, where the weights w need to be selected. Consider there are enough bikes to cover
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Figure 2 Case I: When the first come first served

principle is satisfied, user 1 takes the

available bike, while users 2 and 3 do

not, leading to one successful trip. (Nor-

mal edges are used for successful trips and

dashed edges for the unsuccessful ones.)

1

1 bike

2

0 bikes

3

0 bikes

Period 1

1

0 bikes

2

0 bikes

3
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1
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2
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Figure 3 Case II: Results of the model without the

first come first served principle. In order

to maximize the total successful trips, the

solution of the model withholds the bike

from user 1, in order to satisfy users 2 and

3.

the demand at station i at time t. Then, a bike may not be used only if it offers greater payoff by

remaining at the same place and being used in later time periods. Similarly, due to the intercon-

nected nature of the resources (bikes and docks), the dock that remained empty at another station

j due to the bike not getting there, can be then used to satisfy future incoming demand.

Let Vuse denote the value that is added to the system if the bike is used at time period t and

Vstay the value in case it remains at station i during period t. Recall that each bike can be used

only once per time period. Vstay obtains its highest value if the specific bike at i as well as the dock

at j are used by customers during all subsequent periods t0, with t < t0 � T . Since each bike and

dock can be used once per time period, each successful use corresponds to a flow of one unit, so:

Vstay �
TX

t0=t+1

wT�t0
+

TX
t0=t+1

wT�t0
= 2

TX
t0=t+1

wT�t0
= 2

wT�t� 1

w� 1
(24)

Vuse is at least as much as the value gained by the user that rents the bike at time t. Of course,

it can be higher if the bike is used by other people in the following time periods.

Vuse �wT�t (25)

It is easy to see that for w� 3, we have:

Vuse �wT�t > 2
wT�t� 1

w� 1
� Vstay (26)
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Vstay <Vuse implies that FCFS is satisfied, since an available bike not being taken by a user cannot

be part of the optimal solution. We thus select w= 3 for solver numerical accuracy purposes. �

4.3. Discussion

The optimal solution of (UT) is not necessarily integral, due to proportionality constraints (19).

However, this is not an issue as our goal is to use this model as a measure of the performance of

the system. A different approach is to perform a simulation of user trips. For that, an arrival order

of the customers needs to be specified, in order to determine which ones are served in case of lack

of resources.

In our method, we take into account only the number of users that arrive at each station during

each time period - for example each half hour - and no specific order within the period is required.

The proportionality constraint (19) then attempts to balance the various demand scenarios that

arise from different arrival orders, by upper-bounding the number of trips to each destination. The

advantage of this approach is that it does not depend on the exact arrival order, which is generally

harder to estimate than just the number of users per period. We can think of the solution we get

as the result of running multiple simulations on different demand scenarios within each period,

and taking an average of their performance. Moreover, even if a similar proportionality approach

is incorporated as part of a simulation procedure, the fact that this is a linear programming model

expands its capabilities, as it can be also incorporated as part of more complicated models that

combine user flows with other problem aspects.

One valid concern is the numerical issues that might arise when solvers are used to get a solution

for the model. If there are many time periods per day, the objective function might obtain very

large values as the objective weights grow exponentially with the number of periods. This issue is

easy to tackle by solving the model in more than one stages. For example, we can solve it for the

first half of the time periods, set the final system configuration as the initial state of the second

run, and then solve the model separately for the second half of the periods. More stages can be

used as well if required, in order to achieve a desired numerical accuracy. A solution for the model
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can be obtained very fast, so introducing more than one stages does not significantly change the

total time that is required.

5. System Rebalancing

5.1. Preliminaries

Redistribution operations are planned based on the current configuration of the system, as well as

the future needs. In this section, we provide a brief description of the main aspects that influence

rebalancing decisions.

Unserved Customers. We first consider the unserved demand if no rebalancing is performed

at the system. This will give an indication about the stations that have the greatest need for

bikes or docks. Given the current configuration of the system, and the demand that is expected

for the remainder of the day, we use the linear program (UT) of Section 4 to find which users

successfully completed their trip. Then, for each station, we calculate the number of extra bikes or

docks that are required to address the unserved outgoing demand UNSERVED DEMAND(out; i; t)

and incoming demand UNSERVED DEMAND(in; i; t) for each station i and time period t.

Unused Resources. Since the rebalancing takes place simultaneously with the user movements,

it should not interfere with their actions. In particular, bikes and docks that are used by customers

cannot participate in the rebalancing during the same time period. So, for each station i and time

t, we compute the number of unused bikes UNUSED BIKES(i; t) and docks UNUSED DOCKS(i; t)

that are available for redistributing.

Rebalancing Needs. At this point, we have calculated the amount of customers that failed

to take a trip, as well as the number of resources that are unused at their current location, and,

thus, can be transferred elsewhere. We are now ready to make suggestions to the trucks regarding

the number of bikes they need to pick up or drop off at each station they may visit. In par-

ticular, if we are currently planning the rebalancing to take place during period t, we can look

at the unserved demand at time t + 1, that is UNSERVED DEMAND(out; i; t + 1) for bikes and

UNSERVED DEMAND(in; i; t+ 1) for docks, which guide the rebalancing targets for the truck. At
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the same time, we look at the available bikes that can be picked up/dropped off at each station

(UNUSED BIKES and UNUSED DOCKS for times t and t+ 1), so that the rebalancing operation is

actually feasible. One drawback of this method is that it is very myopic: it only considers the follow-

ing time period. So, instead, we actually consider the unserved demand and the unused resources

further in the future (for example for the upcoming five or ten time periods) and determine the

value of current resource needs BIKES NEEDED(i; t) and DOCKS NEEDED(i; t) for each station.

5.2. Scalability

In actual systems, the large number of stations often requires multiple vehicles working simul-

taneously to serve various parts of the network. This extends the redistribution capacity of the

operator, but also creates coordination needs that increase the complexity of the problem, mak-

ing it computationally intractable. Moreover, when redistribution is planned for the whole day in

advance, a large number of time periods creates extra challenges for the operator. We will now

discuss some methods to address these issues.

5.2.1. Geographic Segmentation. One common approach towards tackling the multi-

vehicle scenario is to partition the area of service into regions with exactly one vehicle assigned to

them. This is beneficial for drivers, as they can get familiar with the area more quickly, and thus

they can become more efficient. It also ensures that the vehicles are adequately spread out to cover

the rebalancing needs of most parts of the system.

The main challenge consists of identifying regions that achieve geographical proximity of stations

and equally balanced work-load for assigned vehicles. The method that will be used is a variation

of the k-median algorithm with a local search heuristic. There have been similar studies in the

literature both from a theoretical viewpoint, as well as applied in the area of facility location

problems. More on this topic can be found in Kanungo et al. (2014) and Arya et al. (2014).

Let k denote the number of available trucks, which also determines the number of station clusters

that we wish to create. S is the set of all stations, Sl the stations of cluster l, C the set of centers

of the clusters, and cl the station-center of cluster l. At any point, each station is assigned to the

cluster with the closest center. The general outline of the algorithm is the following.
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1. Initialization: Select k stations at random out of S that will serve as the initial centers C for

the k clusters.

2. While the termination criteria have not been met, iterate:

� Randomly pick one center cl 2C and remove it from set of centers: C C n fclg.

� Calculate the clustering cost when cl is replaced by any station s2 S nC.

� Let s� 2 S nC be the station that minimizes the above cost.

� Update the set of centers as C [fs�g.

Clustering Cost. For each cluster, we consider the work-load of its assigned truck. This is a

combination of the expected number of redistributed resources, as well as the distances that it

needs to traverse. We use wi for the expected number of bikes that are required to be picked up

or dropped off for station i, and distij for the distance between stations i and j. Then, we define

the work load of each cluster l as:

WORK LOAD(l) =
X
i2Sl

wi +�
X
i;j

distij
jSlj

(27)

Ideally, all clusters should have the same work load, since we want to ensure that the work is

well distributed among the trucks. In order to achieve that, we can consider the maximum work

load over all clusters, and aim to minimize it, reducing in that way the work of the busiest truck.

The cost of clustering is in that case:

CLUSTERING COST = max
l

WORK LOAD(l) (28)

Termination. At any point, the cost of the clustering solution is equal to the largest work-load

among the vehicles. If this cost can be decreased by swapping a cluster center with some other

station, then this replacement takes place during the iteration step of the algorithm. The cost

is nonincreasing during the execution of the algorithm, and since it cannot improve indefinitely,

a convergence to a local minimum is guaranteed given an adequate number of iterations. The

algorithm terminates either when there has been no improvement for a set number of iterations or

when a time limit, if any, has been reached. Since the execution time is very short, it can potentially

be run multiple times will different random initializations and keep the best solution among them.




