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APPENDIX A: IDENTITIES ON THE LOSS FUNCTION

We recall the following known identities, which we will use to analyze the loss £ = p;.

LEMMA A.1. Let o> 1. Then, (a+b)® <29 Y(a® +b®) for all a,b>0. Let 0 < e < 1
and o > 1. There exists some constant ¢ > 0 such that (a + b)* < (1 + €)a® + c¢¢b* for all
a,b>0, and c& < (470‘)&.

PROOF. The first identity is classical. A proof of the second one can be found for example

«
in [4] (Lemma 2.3) where they obtain c2 = (1 + W) < (4)". O
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APPENDIX B: PROOFS OF SECTION 4

B.1. Proof of Theorem 4.1. In this section, we prove that for any § > 0, the (1 +
J)CINN learning rule is optimistically universal for the noiseless setting. The proof fol-
lows the same structure as the proof of the main result in [1] which shows that 2CINN is
optimistically universal. We first focus on the binary classification setting and show that the
learning rule (1 + §)CINN is consistent on functions representing open balls.

PROPOSITION B.1.  Fix 0 <0 < 1. Let (X,B) be a separable Borel space constructed
from the metric py. We consider the binary classification setting ) = {0,1} and the (o
binary loss. For any input process X € SMV, for any x € X, and r > 0, the learning rule
(14 8)CINN is consistent for the target function f* =1p, ().

PROOF. We fix z € X, r >0 and f* = 1p(z,). We reason by the contrapositive and sup-
pose that (1 + ¢)CINN is not consistent on f*. Then, n :=P(Lx((14+J)C1NN, f*) > 0) >
0. Therefore, there exists 0 < € < 1 such that P(Lx((1 + d)C1NN, f*) > €) > 2. Denote by
A:={Lx((1+)CINN, f*) > €}. this event of probability at least 5. Because X’ is separa-
ble, let (z°);>1 a dense sequence of X'. We consider the same partition (P;);>1 of B(Z,r) and
the partition (A4;);>0 of X’ as in the original proof of [1], but with the constant ¢ :=

2.228/(c8)
and changing the construction of the sequence (n;);>; so that for all [ > 1
, €l 0 29
P Vnan, HZ) -P’L(Tl)ﬂx<n7é®}|§ﬁn Zl—m and nl+125nl.

Last, consider the product partition of (P;);>1 and (A;);>o which we denote Q. Similarly,
we define the same events &, F; for [ > 1. We aim to show that with nonzero probability, X
does not visit a sublinear number of sets of Q.

We now denote by (tx)r>1 the increasing sequence of all (random) times when (1 +
J)CINN makes an error in the prediction of f*(X;). Because the event A is satisfied,
Lo((1+0)CINN, f*) > €, we can construct an increasing sequence of indices (k;);>; such
that ¢, < QT]‘” For any ¢ > 2, we will denote by ¢(¢) the (random) index of the representative
chosen by the (1 4 6)CINN learning rule. Now let [ > 1. Consider the tree G where nodes
are times 7 := {t < ty, } within horizon tj,, where the parent relations are given by (¢, ¢(¢))
fort € T\ {1}. In other words, we construct the tree in which the parent of each new input
is its representative. Note that by construction of the (1 + §)CINN learning rule, each node
has at most 2 children.

B.1.1. Step 1. In this step, we consider the case when the majority of input points on
which (1 4 0)CINN made a mistake belong to B(z,r), i.e., |[{k < ki, Xy, € B(z,r)}| > %
We denote H; this event. Let us now consider the subgraph G given by restricting G only to
nodes in the ball B(Z,r)—which are mapped to the true value 1—i.e., on times 7 := {t <
tr,, Xt € B(z,r)}. In this subgraph, the only times with no parent are times ¢, with k < k;
and X;, € B(Z,r), and possibly time ¢ = 1. Therefore, G is a collection of disjoint trees with
roots times {tx, k < ki, x, € B(Z,r)}, and possibly t =1 if X; € B(z,r). For a given time
ty with k < k; and X;, € B(z,r), we denote by T the corresponding tree in G with root t.
We now introduce the notion of good trees. We say that Ty is a good tree if T, N Dy, 1 # 0,
i.e., the tree survived until the last dataset. Conversely a tree is bad if all its nodes were
deleted before time t;, + 1. We denote the set of good and bad trees by G = {k : T}, good}
and B = {k : T, bad}. In particular, we have |G|+ |B| = [{k < k;, X, € B(Z,r)}| > ki /2.
We aim to upper bound the number of bad trees. We now focus on trees 7 which induced
a future first mistake, i.e., such that {l € T;|Fu < ty, : ¢(u) =1, px(X;,7) > rand Vv <
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u, p(v) # 1} # 0. We denote the corresponding minimum time [, = min{l € 7 | Ju < 1y, :
o(u) =1, px(X1,&) > 1Yo < u,p(v) # l}. The terminology first mistake refers to the fact
that the first time which used [ as representative corresponded to a mistake, as opposed to
[ already having a children X,, € B(Z,r) which continues descendents of [ within the tree
Tr. Note that bad trees necessarily induce a future first mistake—otherwise, this tree would
survive. For each of these times [;, two scenarios are possible.

1. The value Uj, was never revealed within horizon ¢y, : as a result I, € Dy, 1.
2. The value U, was revealed within horizon ¢;,. Then, U;, we revealed using a time ¢ for
which [, was a potential representative. This scenario has two cases:
a) px(X:,x) <r.If used as representative ¢(t) = I, then [, would not have induced a
mistake in the prediction of Y;.
b) px (X, @) > r. If used as representative ¢(t) = I, then I would have induced a mis-
take in the prediction of Y;.

In the case 2.a), if the point is used as representative ¢(t) = [ and if the correspond-
ing tree 7 was bad, at least another future mistake is induced by 7i—otherwise this
tree would survive. We consider times [;, for which the value was revealed, which cor-
responds to the only possible scenario for bad trees. We denote the corresponding set
K := {k : Uj, revealed within horizon t, }. We now consider the sequence kf,...k% con-
taining all indices of K for which scenario 2.a) was followed, ordered by chronological order
for the reveal of Ulk ., 1.e., Ulk was the first item of scenario 2.a) to be revealed, then Ulkg

etc. until Uy, . Slmllarly, we construct the sequence k: . kzg of indices in K corresponding
to scenario 2. b), ordered by order for the reveal of U ) We now consider the events

min(a,[k;/8])

k ki ko
F= {a+5—21_312} = > Uw=gg e
=1
min(B,[k:/87)
ki
D .= Z Ulkb > —
P 16

We now show that for [ > 16, under the event
M, :==HiN[BU({a>[k/81}NC)U({a< [k/8]}ND)],

we have that |G| > k“s . Suppose that My, is met. First note that because a bad tree can only
fall into scenarios 2.a) or 2.b) we have | B| < « + 3. Hence |G| > % — a — 3 because of H;.
Thus, the result holds directly if B is satisfied. We can now suppose that 3¢ is satisfied, i.e.,
at+p>h k 5 . Now suppose that « > [k;/8] and C are also satisfied. For all indices such
that Ulka =1, 1e we fall in case 2.a) and [« is used as representative, the corresponding
tree 77& would need to induce at least an additional mistake to be bad. Recall that in total
at most k;/2 mistakes are induced by points of 7. Also, by definition of the set K, o +
mistakes are already induced by the times ¢; for k¥ € K. These corresponded to the future
first mistakes for all times {/j, : k € K }. Hence, we obtain

k6 ks kb
> — _— = _—— = —,
Gl = ZU““ ( @ ﬁ) =16 32 32

Now consider the case where H1, B¢, o < [k;/8] and D are met. In particular, because [ > 16
we have k; > 16 hence % — % > 2[k;/8]. Thus, because of B¢ we have 3 > % — % —a>
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[k1/8]. Now observe that for all indices such that U; , = 1, the time /;, induced two mistakes.
Therefore, counting the total number of mistakes we obtain

ki ko ko
i _ ko

O‘+5+ZUZW—2 32 16

which is impossible. This ends the proof that under My, we have |G| > %

We now aim to lower bound the probability of this event. To do so, we first upper bound the
probability of the event {cv > [k;/8]} N C¢. We introduce a process (Z. )[ 1/ 81 such that for
all i <max(a, [k;/8]), Z; = U —6and Z; =0fora <i < [k;/8]. Because of the specific

ordering chosen k{, ..., k%, this process is a sequence of martingale differences, with values
bounded by 1 in absolute value. Therefore, for [ > 16 the Azuma-Hoeffing inequality yields
[k1/8] 2,42
ki§ S 52
]P) ; ZZ S _1[76 S e 2.162(Ikl/8+1) S 6_%.

But on the event {or > [k;/8]} N C¢ we have precisely

[ki/8] min(a,[k;/8]) ]{,‘16 ]{315
Z Z;= Z U — [k1/8]6 < 16~ [ki/816 < 16
=1

Therefore P[C¢ N {a > [k;/8]} <P [Z /81 7. < — "“ } < e k9%/2" Similarly we obtain
P[D¢N{B > [k;/8]}] < e *9°/2"_ Finally we write for any [ > 16,

PHIA My, | =PH1N BN ({a < [k/8]}UC) N ({a > [k/8]}UD?)]
=PHiNB N [({a < [k/81}NDY)U({a = [k/8]}NC)]]
<PlC°Nn{a>[k/8]}+PD° N{a< [k/8]}NB
<PlC*n{a=[k/8}]+P[D°N{5 = [ki/8]}]
<2e” éiz.

In particular, we obtain

k52

P H|G > ’;l;} mHl] > P[My,] > P[Hy] — 2¢~ 57

B.1.2. Step 2. We now consider the opposite case, when a majority of mistakes are made
outside B(z,r), i.e., [{k < ki, Xy, € B(z,r)}| < %, which corresponds to the event H§.
Similarly, we consider the subgraph G given by restricting G only to nodes outside the ball
B(z,r), i.e., on times T := {t < tx,, px(X:,Z) > r)}. Again, G is a collection of disjoint
trees with roots times {t, k < k;, px(X;,,T) > r)}—and possibly ¢ = 1. For a given time
ty with k < k; and px (X4, ,Z) > r, we denote by 7}, the corresponding tree in G with root t.
Similarly to the previous case, Ty is a good tree if Ty, N Dy, 11 # () and bad otherwise. We
denote the set of good and bad trees by G = {k : T good}. We can again focus on trees Ty,
which induced a future first mistake, i.e., such that {I € Ti|Ju <ty : ¢(u) =1, px (X}, Z) <
rand Vv < u,¢(v) # 1} # () and more specifically their minimum time l;, = min{l € Ty |
Ju <ty, : p(u) =1,px(X;,Z) <71,V < u,p(v) # }. The same analysis as above shows
that

k852

P [{\G! > ’;25} rmg] > PHS] — 2e~ 5
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Therefore, if G denotes more generally the set of good trees (where we follow the corre-
sponding case 1 or 2) we finally obtain that for any [ > 16,

2
k52

k6
[!G|> ZQ] >1—4de 5.

We denote by M %, this event. By Borel-Cantelli lemma, almost surely, there exists [ such

that for any [ > [, the event My, is satisfied. We denote M := J;=; (Ny=; M, this event
of probability one. The aim is to show that on the event AN M N ﬂlZl_ (& N Fp), which

has probability at least 7, X disproves the SMV condition. In the following, we consider a
specific realization z of the process X falling in the event AN M N ()5, (& N Fy)—a is not
random anymore. Let [ be the index given by the event M such that for any [ > I, My, holds.

We consider [ > [ and successively consider different cases in which the realization  may
fall.

* In the first case, we suppose that a majority of mistakes were made in B(Z,r), i.e., that
we fell into event #H; similarly to Step 1. Because the event My, is satisfied we have
|G| > % Now note that trees are disjoint, therefore, >, . |Ti| < ty, < 2£t. Therefore,

ko ko ki
D ez =161 =3 g > 1G] = Z Tel =2 55 = 56 = 55
keG keG keG

We will say that a tree |7y| is sparse if it is good and has at most f—; nodes. With § :=
{keG, Tk < %} the set of sparse trees, the above equation yields |.S| > %‘s. The same
arguments as in [1] give

ko _ €
(i, Ai @<, # 0} 2152 55 = Zt.
The only difference is that we chose ¢, so that 22'571 < 4%‘ as needed in the original
proof. /
* We now turn to the case when the majority of input points on which (1 + ¢)CINN made
a mistake are not in the ball B(z, ), similarly to Step 2. Using the same notion of sparse

tree S:={ke G, |Ti| < %} we have again | S| > %9, We use the same arguments as in
z)> r}\ > ‘ L, then we have

ki _ €
2T = 98 kv

the original proof. Suppose |[{k € S, pX(xps(k

i, ANy, 0} 2 | (k€ 5. prlayy, 2) > = ) >

pd (x)’
B.1.3. Step 3. In this last step, we suppose again that the majority of input points
on which (1 + §)CINN made a mistake are not in the ball B(z,r) but that |{k €

_ S .
S, px(mp:;(k),x) >r} < % Therefore, we obtain

_ S| ki _ e
{k €S, px(ay, 2)=r}=|S| ~|{k €S, px(uy >>fH>B|—27—28

We will now make use of the partition (F;);>1. Because (nu)uzl is an increasing sequence,
let u > 1 such that 1,41 <, < ny12 (we can suppose without loss of generality that ¢, >
n9). Note that we have n, < ;—gnuﬂ < ;—gtkl. Let us now analyze the process between times
n, and tg,. In particular, we are interested in the indices 7' = {k € S, px(z Z)=r}and

tg,-

PZ(k)’
times U, = {pg(k) PNy < ps(k) < ki, k € T'}. In particular, we have

_ €d € )
‘u |>|{k€S pX( pdk) x)zr}‘_HUZ?tkl_?tklzﬁtk
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Defining 7" :={k € T, r — gi5s < px(Tg(t,), ) < 7}, the same arguments as in the original
proof yield

. €d €
[, Piw<e,, # 02 [T > [l — 16, Pi(ra) N, # 0} > Sqts, — ot = st
B.1.4. Step 4. In conclusion, in all cases, we obtain
6

{Qe€Q QNacy, # 0} > max(|{i, AiN@<y, # 0}, {7, Pinz<y, #0}]) >

— 210

Because this is true for all [ > [ and g, 1S an increasing sequence, we conclude that x
disproves the SMV condition for Q. Recall that this holds whenever the event A N M N
Mi>1(& N Fy) is met. Thus,

P{Qe Q QNXer}[=o(T)] <1—P [ANMAN[)(ENF) §1_Z<1_
>1

This shows that X ¢ SMV which is absurd. Therefore (1 + §)C1NN is consistent on f*. This
ends the proof of the proposition. O

Using the fact that in the (1 4 0)CINN learning rule, no time ¢ can have more than 2 chil-
dren, as the 2C1NN rule, we obtain with the same proof as in [1] the following proposition.

PROPOSITION B.2.  Fix 0 < § < 1. Let (X, B) be a separable Borel space. For the binary

classification setting, the learning rule (14 0)CINN is universally consistent for all processes
XeSmv.

Finally, we use a result from [2] which gives a reduction from any near-metric bounded
value space to binary classification.

THEOREM B.3 ([2]). If (1 + §)CINN is universally consistent under a process X for
binary classification, it is also universally consistent under X for any separable near-metric
setting (Y, £) with bounded loss.

Together with Proposition B.2, Theorem B.3 ends the proof of Theorem 4.1.

B.2. Proof of Theorem 4.3. Let 0 <e < 1. We first analyze the prediction of the learn-
ing rule f¢. In the rest of the proof, we denote £(Y;(¢), Y;) := > ye. P(Y;(e) = y)l(y, Y;) the
immediate expected loss at each iteration. The learning rule was constructed so that we per-
form exactly the classical Hedge / exponentially weighted average forecaster on each cluster

of times C(t) ={u<t:u 2 t}. As aresult [3] (Theorem 2.2), we have that for any ¢ > 1,

LS o< bup 3 dv + B2 LOVR

b ec Y wec(t) (e 8
1 In|Y|
<m in Ezc:t)ﬁ .Y, ’T (Te +1C(t)])

S%Hén Z Uy, Y) + Fmax(T,, [C(0))
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Now consider a horizon T' > 1, and enumerate all the clusters C1(T'), ..., Cpr)(T) at horizon
T, i.e. the classes of equivalence of ¢ among the times {t < T'}. Note that if a cluster i < p
has |C;(T")| < T, then either it must contain a time ¢ € N which is a leaf of the tree formed
by ¢ until time 7', or it is a cluster of duplicates of an instance X, which has already had
% occurrences. As a result, the times falling into such clusters of duplicates with less than
T. members form at most a proportion € of the total 7" times. Denote by A; :={t <T:t €
N, {u <T:¢(u) =t} =i} times which have excactly 4 children for i € {0,1,2}. Note
that no time can have more than 2 children. In particular Ay is the set of leaves. Then, by
summing the above equations we obtain

T
> I(Yi(e), Y2) <Z min Z 0(y, Yy) + emax(T., |C;(T))|)
t=1 uEC
p(T)
<> min > Ly, Vo) + T+ TH1<i<p:|Ci(T)| < T}

€Ve
i=1 Y e

<me Z Uy, Yy) + €T + Te|Ag| + €T,
“ueC;(T)

where in the last inequality we used the fact that all clusters with |C;(T)| < T¢ contain a
leaf from A, which is therefore distinct for each such cluster. Now note that by counting the
number of edges of the tree structure we obtain 3 (3| Az| +2[ A |+ |Ag| — 1) =T —1 = |Ag| +
|A1| + | Az| — 1, where the —1 on the left- hand side accounts for the root of this tree which
does not have a parent. Hence we obtain | Ag| = | A2| + 1. Further, |As| < [{t <T:U; =1}|
which follows a binomial distribution B(7, d.). Therefore, using the Chernoff bound, with
probability 1 — e~79/3 we have

T p(T)
ZEY; ),Y) <Zm§1 0(y,Yy,) + 2€T + T.(1 4 2T°6,)
t=1 i=1 Y wéem)

p(T)
< i 0(y,Y,) +T. + 3¢T.
—Zf}élﬁ Z (y,Yy) + T + 3e
i=1 ueC;(T)

We now observe that the sequence {0(Yi(e),Y:) — £(Yi(e),Y:) }r>1 is a sequence of mar-
tingale differences bounded by ¢ in absolute value. Hence, the Hoeffding-Azuma inequality
yields that for any 7" > 1, with probability 1 — % — e T0:/3,

T

> i(Yi(e), Vi) <me Z ey, )+ T. 4 3¢T 4+ 20v/TInT.

t=1 uEC

~T5./3

Because ZT21 7z + € < oo the Borel-Cantelli lemma implies that with probability

one, there exists a time T such that

T
VT >T, ) U(Yi(e), V) <me Z zy, )+ T, 4 20v/TInT + 3¢T.
t=1

uGC

We denote by &, this event. We are now ready to analyze the risk of the learning rule f€. Let
f & = Y ameasurable function to which we compare the prediction of f¢. By Theorem 4.1,
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the rule (1 + J.)CINN is optimistically universal in the noiseless setting. Therefore, because
X € SOUL we have in particular

T
Z (1 +0)CINN;(X<p1, f(X<po1), Xp), f(Xy)) =0 (a.s.),

’ﬂ \

i.e., almost surely, = > i<t ien L (X)) f(Xi)) — 0 — the times corresponding to du-
plicate instances incur a 0 loss by memorization. We denote by F. this event of probability

one. Using Lemma A.1, we write forany u=1,..., 7T, — 1,

> U (Kgewy), F(X0)

t<TteN

<27 N U (K pemr) F(X) 42970 Y U (X ge)s [ (X))
t<TteN t<TteN
VY U (X ), F(XD))
t<TteN
+2070 Y U (X)), S(Xe) IS T2 71 (1) = 8}

t<TteN

<270 N U(f (X)), F(X)) + 207072 (X)), F(X0))

t<TteN t<T teN

where we used the fact that times have at most 2 children. Therefore, iterating the above

equations, we obtain that on F,, foranyu=1,...,7T, — 1
Z of X¢z t) ), f(X)) < (Z gatk—2+(a—1)(u—k) ) Z of X¢(t F(X)))
t<T teN k=1 t<T,teN
< — Uf(Xpw), f[(Xe) =0
t<T,teN

In the rest of the proof, for any y € ), we will denote by y© a value in the e—net ), such
that £(y,y°) < e. We now pose pre = min{0 < u < 1:¢j < 4 } if the corresponding set

is non-empty and pe = 1 otherwise. Note that because ¢ is non -increasing in u, we have

o
tte —re—0 0. Now let 0 < o < 1. pu:= e=+1. Finally, for any cluster C;(T"), let ¢; = min{u €
T)}. Putting everything together, on the event £ N F, for any T' > T, we have

(
T
> U(Yi(e), Yr) <me > Uy.Ya)+ T+ 20VTInT + 3T
t=1

“ueC;(T)
<2 Z Yo) + Tl + 20T InT + 3€T
=1 uel;(
p(T)
SZ Z ) (X)) + (60,200 (Xe,), f(Xu))
i=1 ueC,(

+ (1 + 1) 0(F (X)), Yo)] + Tl + 20T In T + 3€T
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< (I4p)*) Uf(X),Y 52TZ D (X f(Xgen)

u=1 t<T teN

+ Tl +20VTInT + (3+ ¢ )eT

[M]=

~~
Il
.

T e—
<N TUF(X). V) + - > Cf(Xe), f(Xpu@ry)
t=1

+ Tl +20VTInT + (3 + ecy + 3pue) T,

where in the third inequality we used Lemma A.1 twice, and in the fourth inequality we used
the fact that clusters contalmng distinct instances have at most == T duplicates of each instance.
Hence, for any € < (c§) 2, on the event & N F,, we obtain

limsup — ZEYt ),Ye) — L(f(Xy), Yt)<36+ec + 31t < 3€ + Ve + 3e,

T—o0 t 1

where e —¢_0 0. We now denote &, := 2¢ + /€ + 3 and ig = [211;151] We now turn
to the final learning rule and show that by using the predictions of the rules f for ¢ > 0, it

achieves zero risk. First, by the union bound, on the event (), &, N F, of probability one,

T
1 N
lim sup D U(Vi(ei), Ye) — L(F(Xy),Yy) < 6c,, Vi >o.

T—oo —1

Now define H the event probability one according to Lemma 4.2 such that there exists £ for
which

¢ ¢
VtEViel, Y (YY) <Y L(Vi(e),Yy) + (24 L+ P)Viint.
s=t; s=t
In the rest of the proof we will suppose that the event H N ﬂizo &, N Fe, is met. Let ¢ > i.
For any T > max(%,t;), we have

T T

%Ze(ﬁ,m—e(f(xt) TZ Z (V2. Y2) — £(f(X), V)
< z d Y v X).Y: 2470 E2 \/ﬁ
_f ; t(€i),Ye) —L(f(Xe), V) + (2+ £+ £7) R
Jly (X)) + iy 240 F\/ﬁ
_Tg (F(X0).Y0) + 0+ @+ L+ Py =

Therefore we obtain lim sup;_, ., = Zt:l (Y, Y;) — 0(f(X,),Y;) <4 . Because this holds
for any i > i on the event H N();~( &, N Fe, of probability one, and J., — 0 for i — oo, we
have -

lim sup — Zzyt,yt ) —U(f(Xy),Y:) <0.

T—oo

This ends the proof of the theorem.
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B.3. Proof of Lemma 4.2. We first introduce the following helper lemma which can be
found in [3].

LEMMA B.4 ([3]). Forall N >2, forall 3> a > 0andforalldy,...,dy > 0 such that
N —ad;
Zz‘zl € i>1,
Zﬁvz1 e < B—a
ZiNﬂ e~Pdi
We are now ready to compare the predictions of the learning rule f. to the predictions of

the rules f*€.
For any ¢ > 0, we define the instantaneous regret r;; = ¢; — ¢(Y;(e;), Y:). We first note

that |ry;| < . We now define w] ,,; := ¢™(le-1i=Li-1i)  We also introduce Wi =
Y ier,wi—1i and Wiy =37 c; w; ;. We denote the index k; € I; such that Loy, —

Ly, = max;eq, Lt ; — Ly ;. Then we write

Wt—1 ki1 1 ’wt’kt _ < 1 1 ) In Wt 1 Wt/wt ks

In N.

M+1 e

1
—In — — In 1
ur Wi m+1 Wi wt,kt W} jwh, &

71 Wi— 1,k 1 Wt/
Ul Wi, Wt 1

By construction, we have In w‘;V; <In|I;| <In(1 + Int). Further, we have that

el +1(£ i—L ,i*L e Lt k)
1 Wt/wt ke 71 ZlEIﬁ+1 ’ ' ' ok ke
WI/ t et Mt ZiEIt ent(Lt,i*Lt,i*Lt,kt‘i’Lt,kt)
. Lii—L:—L ke +Ltk,)
1 Dien, Wi 1 Dlier emi(bei=Lei=bont Lok,
= — 1n L + R ln ¢ t+1

Mt Zielt Wi Nt Zie[ » ent(Lt,i_Lt,i_Lt,kt +L¢ k)
t

1 ZieIH.l Wi 1 (g — e
< —nlSme g (R
M Der,Wei M\ T4l

T I 1 1
_ Ml -1 +< _) In(1 +In(t + 1)),
Nt ZiEL, Wt 3 Mi+1 Tt

where in the first inequality we applied Lemma B.4. We also have

(i:/t_17kt—l - Lt—l,kt—l) - (‘ttakt7Lt7kt)’

)t

Wt — 1kt 1

—1
Tt tk‘t

Last, because ]rt,i] < {for all i € I;, we can use Hoeffding’s lemma to obtain

1 ’U}t 1,4 wt 12 ?(2@)2 1 )
— 71 77t’l"t < _ i — g X
E <77t g T, B 3 = 277t

TIt zeIt N i€l

Putting everything together gives

1, w1k, 1 Wi 1 1 [Ie1| — |14
(1) —Ipcbhen 1, ’t§2<>ln1+lnt+1 y e
ul Wi n+1 Wi Me+1 Mt ( ( ) Nt ier, Wi

. A 1
+ (L1 g,y — L1, ) — (L, — Lig,) + 5%22-
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First suppose that we have Eie 1, Wi < 1. Then either k; € I;41 \ I; in which case it,kt —
Ly x, = 0, or we have directly

S 1
Lik, — Lty, < ——1In Zwm <0.
Nt+1 ey

Otherwise, let ¢ =min{l < s <t:Vs < <t,3,.; wy; > 1} We sum equation (1) for
s=1t',...,t which gives

I, w1k, , 1 Wik 2 | Tt41]
—In ’ — In —== < In(l1+In(t+1)) + ——
m Wy N1 Wi = mia ( ( ) Mt
ot
+ Ly 1k — Le—1k, ) — (L, — Lik,) + 5 2;775-
—

’ .
tT—lkyr g 1 1

Wo_1 = T > 1w
Zz‘elt/,l wy—1,; <1, wehave forany i € Iy _y that Ly 1 ; — Ly 1, <0,hence Ly 1, , —
Ly_1g, , <0.1If t' =1 we have directly Lok, — Lok, = 0. Finally, using the fact that

Zizl % < 24/t, we obtain

w
Note that we have wlfv—’:t <1 and Also, assuming t' > 2, since

. t+1 o
Lig, — Lip, <In(1+In(t+1 142y | ———— 1+1In(t+1 — +*Vitint
ke = L, <1+ In(t+ >>< - ln(m))ﬂ FIn(t+ 1)/ o + 2Vin

< (3/2+)Vtint,

for all ¢ >ty where ¢y is a fixed constant. This in turn implies that for all ¢ > ¢9 and i €
I;, we have Ly; — Ly ; < (3/2+ 7%)\/tInt. Now note that |[((Y;,Y;) — £4] < £. Hence, we
can use Hoeffding-Azuma inequality for the variables E(Yt, Vi) — 4 that form a sequence of

2u

martingale differences to obtain P [Z';:t E(YS, Ys) > im- + u} < e~ % . Hence, for ¢t > t,
and ¢ € I, with probability 1 — J, we have

t
N N _ 1 - 1
ZE(YS,YS) SLt,i—I-f\/%lng §Lt,i—|—(3/2—|—l72)vtlnt—|—€\/%lng.

S:tqj

1

Therefore, since |I;| < 1 + Int, by union bound with probability 1 — ;7 we obtain that for all

iEIt,

t
D Y., Ys) < L+ (3/2+ P)Vielnt + £ /%111(1 +1Int) +0VtInt < (2+£+2)Vtint,
S:ti

for all ¢ > t; where t1 > tg is a fixed constant. The Borel-Cantelli lemma implies that almost
surely, there exists ¢ > 0 such that

t
vt >i.Viel, ZE(YS,YS) <Lii+ 2+ 0+ 2)Vtnt,

S:ti

This ends the proof of the lemma.
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APPENDIX C: PROOFS OF SECTION 5

C.1. Proof of Theorem 5.1. We start by checking that with the defined loss (N, ) is
indeed a metric space (N, £). We only have to check that the triangular inequality is satisfied,
the other properties of a metric being directly satisfied. By construction, the loss has values
in {0,2,1}. Now let , j, k € N. The triangular inequality £(i, j) < £(i, k) + £(k, j) is directly
satisfied if two of these indices are equal. Therefore, we can suppose that they are all distinct
and as a result £(i,5),£(i, k), £(k,j) € {%, 1}. Therefore

(i, j) <1< L(i, k) + Uk, j),

which ends the proof that ¢ is a metric.

Now let (X, B) be a separable metrizable Borel space. Let X ¢ CS. We aim to show that
universal online learning under adversarial responses is not achievable under X. Because
X ¢ CS, there exists a sequence of decreasing measurable sets { A; };>1 with A4; | () such that
E[fix(A;)] does not converge to 0 for ¢ — oco. In particular, there exist e > 0 and an increasing
subsequence (7;);>1 such that E[fix(A;,)] > € for all | > 1. We now denote B; := A4;, \ A
for any [ > 1. Then {B;};>; forms a sequence of disjoint measurable sets such that

7:I,+1

= lim P |jx | | Br z% 2%.

L—oo

We will denote by A this event in which for all [ > 1, we have fix (Ul’zl Bl/) > g Under

the event A, for any [,t° > 1, there always exists t' > ¢ such that - Zi;l 1y,., By (X3) >

3¢ We construct a sequence of times (t,),>1 and indices (I)p>1, '(up)pzl by ir}duction as
follows. We first pose ug = to = 0. Now assume that for p > 1, the time ¢,,_; and index u,_1
are defined. We first construct an index [, > u,_1 such that

€
op+3°

P X<, , N UBl £0| <

>,
We will denote by &, the complementary of this event. Note that finding such in-
dex I, is possible because the considered events {X<; , N (UlleBl/> # ()} are de-

creasing as [ > w,-1 increases and we have [, {th%l N (Ul’zl Bl,) #@} =
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{thpfl N (ml>up_1 Ui Bl/) # (Z)} = (). We then construct ¢, > ¢,_; such that

3
P AU U { Z Ul>zp 8} 21_210%'

tp1<t<t,

This is also possible because A C (o5, {% St 1y,., B,(Xu) > %} Last, we can
€ - ='pP
now construct u, > l,, such that

t
1 Z € €
]P AC U U {t I[Ulpﬁlﬁup By (Xu) Z 4} Z 1 o 2}7?’
u=1

tp—1<t<t,

which is possible using similar arguments as above. We denote F;, this event. This ends the
recursive construction of times ¢, and indices [, for all p > 1. Note that by construction,
P[ES], P[F,] < 557 Hence, by union bound, the event AN (),51(Ep N Fp) has probablhty

PlAN,51(Ep NFp)] = PIA] — § > §. To simplify the rest of the proof, we denote B, =
Ulpglgup By for any p > 1. Also, for any t1 < to, we denote by

N,y (t1,t9) = Z]L

t=t,

the number of times that set B, has been visited between times #; and t.
We now fix a learning rule f. and construct a process Y for which consistency will not be
achieved on the event AN(),5 (& N Fp). Precisely, we first construct a family of processes

Y® indexed by a sequence of binary digits b = (b;);>1. The process Y’ is defined such that
forany p > 1, and forall t,_1 <t <t,,

e, + 4up(t) + 20, (0) + Vipu,ye1 i Xe € By,
thb =9 Ny, + 4tp, + {bi(p/,tp/—l) - bi(p’,l)bi(p’,o)}2 if X; € Bpf,p/ <p,
0 otherwise,

where we denoted wuy,(t) = N,(t,—1 + 1, — 1) and posed for any p > 1 and u > 1:

p'<p
Note in particular that conditionally on X, Y? is deterministic: it does not depends on the
random predictions of the learning rule. Because we always have N, (,— 1+ 1,t—1)<t,
for any ¢ < t,, the process is designed so that we have Y,? € I if X3 e B and £, 1 <t <
tp. Further, for ¢, 1 <t <tp,if Xy €U, ., B
Bernoulli B(3 5) sequence of random bits b independent from the process X—and any learning

rule predictions. We analyze the responses of the learning rule for responses Y?. We first fix a
realization x of the process X, which falls in the event .4 N ﬂle (EpNFp). For any p > 1 we

» then Y IS Jt ,. We now consider an 1.i.d.

define 7, := {t,_1 <t <t,: x; € B,}. For simplicity of notation, for any t € 7, we denote
i(t) = i(p,up(t)). We will also denote Y; := fi(z<s, Y2,,2¢). Last, denote by 7 the possible
randomness used by the learning rule f; at time ¢. For any ¢ € 7,,, we have

Y b\ __ ¥ b
Eb,"'é(}/t’ Yt ) - E{bm(,}/’ur),bi(p/,“/)_*_l,p/Sp,u’Stﬂ}U{rt/,t/gt}g(ytv }/t )

=E Ebz(t)v bi(t)+1 E(Y/taiftb) bi(t’)>bi(t’)+17t/ < t7t, € 7;0; biai < i(p70); "'t’at/ < t]
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= [Ep, iy s, 4% Y2)| V7]
1 3
=Ey |5 > U(Yi,ne, + dup(t) +m)
m=0
3 3

=Ey, IlYf,,¢{mp+4up(1t)+m,0§m§3}UJt,, + Zﬂﬁe{ntp+4up(t)+m,0§m§3} + ZlfﬁeJﬁp

3
> =,
!

where in the last equality, we used the fact that if j € Jy(;) then by construction £(j, ¢, +
duy(t)) = L(j,ne, + dup(t) + 1), £(4,ns, + dup(t) + 2) = €(j,ne, + 4uy(t) + 3), and
{€(j,ne, + 4up(t)), (4, e, + 4up(t) +2)} = {3, 1}. Summing all equations, we obtain for
any tpfl <T< tp,

T
3 3
B |3 Ut Yo 20, V)| 2 5 30 1Ty + ST (< T,
t=1

p'<p

This holds for all p > 1. Let us now compare this loss to the best prediction of a fixed mea-
surable function. Specifically, for any binary sequence b, we consider the following function
forx—-N:

Pla)= M H A+ i) Dipbipo e e By
0 it e ¢ Uy, By
Now let t,_ 1 <t <t, and p> 1. If z; € Up,<pép/ we have fb(z;) = Ytb, hence
0(fb(x),Y}?) = 0. Now if X; € B, by construction we have £(f®(z;),Y?) = 1. Finally,
observe that because the event £, is satisfied by = there does not exist t,_1 <t <t,
such that t € U,,~,, By CUj>, ,, Bi- As aresult, we have 0(f8(x), Y?) = 314e7, for any
tp,—1 <t <t,. Thus, we obtain for any tp—1 <T <tp,

1 1 1
212’7;’|+1‘75“{t§T}’ZE\Eﬂ{tST}\.

p'<p

T
DUV YY) = U2 (X0), )

t=1

Eb,r

Recall that the event F, is satisfied by « for any p > 1. Therefore, there exists a time 7,1 <
T, < t, such that ZtTil 1p (x1) 2 %. Then, note that because the event &, is satisfied, we

have fo:’f 1z () = 0. Therefore, we obtain |7, N {t<T,}| > %, and as a result,

T,
1 €
Epr | > L(Ye, Y2) = 0(f2(X0), Y2) | > —.
o | 75 2 Y — 0¥ | = 5
Because this holds for any p > 1 and as p — oo we have T}, — oo, we can now use Fatou
lemma which yields

€
E > £
br =16

T—o0

T
1 N
limsup — > £(V3,Y}") — £(f°(X0), Y;’)
t=1

This holds for any realization in .A N ﬂp>1 (& N Fp) which we recall has probability at least
. Therefore we finally obtain B

[\

Eb,’r,X >

T
. 1 A
limsup — > £(V3,Y}") — £(f°(X0), Y7')
t=1

T—o0

2[4
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As a result, there exists a specific realization of b which we denote b such that

Erx [limsup — Zﬁ (Ve V) = £(f*(Xe), YY) > 55

T—oo

which shows that with nonzero probability lim supy_, . 7 ST 0V, Y —0(£2(X), YP) >
0. This ends the proof of the theorem. As a remark, one can note that the construction of our
bad example Y? is a deterministic function of X: it is independent from the realizations of
the randomness used by the learning rule.

C.2. Proof of Lemma 5.3. We first construct our online learning algorithm, which is a
simple variant of the classical exponential forecaster. We first define a step 7 := /21Inty/to.
At tlme t = 1 we always predict 0. For time step ¢ > 2, we define the set S;_1 := {y €
N E 1y—y, > 0} the set of values which have been visited. Then, we construct weights
for all y 6 N such that

eTIZF 1,= vu ooy c St—l
Wy t—1 = .
0 otherwise,

and output a randomized prediction independent of the past history such that

N Wy, t—1
P =y) = —=—2——.
(yt y) Zy’EN wy’,tfl

This defines a proper online learning rule. Note that the denominator is well defined since
wy,t—1 is non-zero only for values in S;_1, which contains at most ¢ — 1 elements. We now
define the expected success at time 1 <t < 7T as § := Zw“’t’l 1,,es,. Note that 5, =

E[14,(y_, )=y)- We first show that we have

yeN Wy t—1

T T
Z S¢>max » L,—y — VTInT.
t=1

To do so, we analyze the quantity W, := %ln (ZyESt e"Zi=1(1y:yiL*§“)>. Let2<t<T.
Supposing that y; € S;_1, i.e., Sy = Sy;—1, we define the operator ¢ : x € RIS-1l

% In Zye s, , €™ ) and use the Taylor expansion of ¢ to obtain

1 -1 . .
Wt =_"ln 677 u:l(]l’y=!lu 75u)+"7(1y=yt75t)
LIS

YyES_1
enzf | 1 Ly=y,
—Wt 1 + Z Y=y 5
¢ et B
yESt L Zy,GSf 1677211. 1 7Y =Yu
1 0*®
+5 Y | L=y = 80 (T, — 80)
2y17y265t71 0y, 0y, ¢
1 0?® . .
=Wi1+ 5 Z W (lylzyt - SU)(]lyzzyt - SU)
Y1,Y2€5 1 o vz lg

1 nengy 9
<Wia+ = (Iy=y, — 5u)
2 Ezst: 1 Zy €81 ey
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< Wt—l + gv

for some vector £ € RI¥-1l, where in the last inequality we used the fact |1,—,, — 3,| < 1.

In2+42In
We now suppose that y;, ¢ S;—1 and W1 > 1+ f" In that case, et = "1

t—1 4 .
e"1=22.2134)  Hence, we obtain

t—1 4

In (14 en1- Wi 6) (=W, 1)
<Wiq+

Wi=Wi 1+
Ui

In24+2In
Nowletl:mam{l}u{1§t§T:VVt<1+Jrn’7 . Note that for any [ < ¢ < T the

above arguments yield W; < W;_1 4 2. As a result, noting that W, < 1, we finally obtain

T—1 In2+2mnt o \/mto
W < W, <1 Ui —<1+1n2 to+T).
r=Witn— =it n BT R VTR 2t0(0+ )

Therefore, for any y € St, we have

T
t Int
Z(ﬂy:yt§t)§WT§1+ln2\/ 0 +\/no(t0+T)‘

—1 2In to 2t0

In particular, this shows that

T T t Int

~ 0 O

- T, y, —1—In2 —\/ 5 o+ 1)
;st_ynel%);; y=y. . \/21nt0 \/Qto(OJr )

Now note that if y ¢ Sp, then Zthl 1y—y, = 0, which yields max,cg, Zthl 1y—y, =
maxXyen Zthl 1,—y,. For the sake of conciseness, we will now denote by g the prediction of
the online learning rule at time . We observe that the variables 14,—,, — 5; for 1 <¢ < T form
a sequence of martingale differences. Further, |1,—,, — 8¢| < 1. Therefore, the Hoeffding-
Azuma inequality shows that with probability 1 — 4,

- 1

t=1

Putting everything together yields that with probability 1 — 4,

T T 1
Zlgt:ytEZ&—HQTlng
t=1 t=1
T
to Intg 1
> 1,—y, —1—1In2 — A/ 5 (to+T)—4/2TIn—.
_r?iléjfg](t:1 o ! \/2111750 \/2t0(0+ ) 3

This ends the proof of the lemma.

C.3. Proof of Theorem 5.4. We use a similar learning rule to the one constructed in
Section 4 for totally-bounded spaces. We only make a slight modification of the learning
rules f€. Precisely, we pose for 0 < e <1,

24.32(1+1nd)
T.:= {62 and 6 := i
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Then, let ¢ be the representative function from the (1 + §.)CINN learning rule. Similarly as
for the e—approximation learning rule from Section 4, we consider the same equivalence rela-

tion 2 on times to define clusters. The learning rule then performs its prediction based on the
values observed on the corresponding cluster using the learning rule from Lemma 5.3 using

to = Te. Precisely, let 7. := /2InT, /T, and define the weights w, ; = enezu«:uft 1u=y)
forallye S:={y eN: ZKM& 1(Y, =) > 0} and wy; = 0 otherwise. The learning
rule ff(X<;—1,Y<;1,X¢) outputs a random value in N independent of the past history such

that
~ Wy ¢
P(Yi=y)==—"— yeN
Zy’ en Wyt
The final learning rule f. is then defined similarly as before from the learning rules f€ for
€ > 0. Therefore, Lemma 4.2 still holds. Also, using the same notations as in the proof of
Theorem 4.3, Lemma 5.3 implies that for any ¢ > 1, we can write for any £ > 1 on the cluster

C(t):{u<t:ugt},

oA . Te InT,
> ln(Yale), Ya) < i > €01(y,Yu)+1+1H2\/2lnTe + \/ ST, (Te +1C(@)])
wel(t) weC(t)

< mi lor (.Y,
<min Y Lor(yYa) +

(1 In2 2T,
ueC(t)

— oy ne . [ene T..|C(t
Tt At VT )m“((”

. € € €
< min Z o1 (y, Yu) + (g T3t g) max (7, |C(t)|)
Y= wec
“min 3 foa(y, %) + emax(T, [00)
u€eC(t)

Therefore, the same proof of Theorem 4.3 holds by replacing all e—nets ), directly by N.
The martingale argument still holds since the learning rule used is indeed online. This ends
the proof of this theorem.

C4. Proof of Theorem 5.5. We first need the following simple result which intuitively
shows that we can assume that the predictions of the learning rule for mean estimation g<,
are unrelated fort =1,...,%,. a

LEMMA C.1. Let (Y,¢) satisfying F-TiME. For any n > 0, there exists a horizon time

Ty, > 1, an online learning rule g<T, such that for any y := (yt)fil of values in Y and any
value y € Y, we have

T,
1
TE Zg(gt(ygtfl)vyt)_g(yayt) <n,
T =1

and such that the random variables g;(y<,_,) are independent.

PROOF. Fix 1> 0, T;, > 1 and g<r, such that this online learning rule satisfies the con-
dition from F-TiME for 1 > 0. We consider the following learning rule g.. For any ¢ > 1 and
yeY,

Gt(Y<i—1) = g;(ygtfl)a
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where (g') are i.i.d. samples of the learning rule g.. By construction, we still have that for
any sequence yg, € VIn,

T, T,
1 N 1 -
?E Zg(gt(ygt—l)a yr) — Ly, ye) | = ?E Ze(gt(ygt—l)a ye) — Ly ye) | <.
T lt=1 T t=1
This ends the proof of the lemma. O

From now on, by Lemma C.1, we will suppose without loss of generality that the learning
rule ¢g¢ has predictions that are independent at each step (conditionally on the observed val-
ues). For simplicity, we refer to the prediction of the defined learning rule f. (resp. f€) at time
tas Y (resp. Yt(e)). We now show that is optimistically universal for arbitrary responses. By
construction of the learning rule f., Lemma 4.2 still holds. Therefore, we only have to focus
on the learning rules f¢ and prove that we obtain similar results as before. Let 7" > 1 and
denote by A; := {t < T : [{u <T:¢(u) =t}| =i} the set of times which have exactly ¢
children within horizon T for ¢ = 0, 1, 2. Then, we define

Br={t<T:Li=0and |{t<u<T:ult}| >t}

i.e., times that start a new learning block and such that there are at least ¢, future times falling
in their cluster within horizon T'. Note that the function v defines a parent-relation (similarly
to ¢, but defined for all times ¢ > 1). To simplify notations, for any ¢t € By, we denote t* the
yp—children of t at generation u — 1 for 1 < u < t,, i.e., we have % 1(t%) =t for all 1 <
u < t.. In particular ¢t = t'. By construction, blocks have length at most ¢.. More precisely,
the block started at any ¢ € B has had time to finish completely, hence has length exactly
te. By construction of the indices Ly, the blocks {t*,1 < u <t.}, for t € By, are all disjoint.
This implies in particular |Bp|t. < T. We first analyze the predictions along these blocks and

for any t € By and y € ), we pose 0(y) := iZZE:l (Z(fftu,Ytu) —l(y,Y) — e). Now by
construction of the learning rule f¢, we have

t(

tedu(y") =D (g ({Yu}i5)), Vo) = £y Yin)) = et
u=1
Next, for any ¢ < t. and sequence y, ; and value y € Y, we write /(gf(y<;_1),y) :=
E [£(9§(Y<;—1),y)] - Now by hypothesis on the learning rule g<, ,

1t
2) ?2:: (Yeu, Yiu) — £(y", Yiu) <

Now consider the following sequence (E(Ytu , Yiu) — E(Ytu , Yiu))teBy,1<u<s(t)- Because of the
definition of the learning rule, which uses i.i.d. copies of the learning rule ¢¢, if we order the
former sequence by increasing order of t*, we obtain a sequence of martingale differences.
We can continue this sequence by zeros to ensure that it has length exactly T'. As a result, we
obtain a sequence of 7" martingale differences, which are all bounded by ¢ in absolute value.
Now, the Azuma-Hoeffding inequality implies that for § > 0, with probability 1 — §, we have

te te
DN IR DED IO AR +Z,/2T1n%.

teBr u=1 teBr u=1
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Thus, using Eq (2), with probability at least 1 — 4,

Qq\b—l

3) Sty <42

teBr

We also denote 7" = J;cp, {t",1 < u <t} the union of all blocks within horizon 7'. This
set contains all times ¢ < T except bad times close to the last times of their corresponding
cluster {u < T :u 2 t}. Precisely, these are times ¢ such that [{t <u <T :u L th <te—Ly.
As a result, there are at most ¢, such times for each cluster. Using the same arguments as in
the proof of Theorem 4.3, if we consider only clusters of duplicates (i.e., the cluster started
for a specific instance which has high number of duplicates), the corresponding bad times
contribute to a proportion < / < €2 of times. Now consider clusters that have at least 7.

times. Their bad times contribute to a proportion < t < e of times. Last, we need to account
for clusters of size < T, which necessarily contain leaves of the tree ¢: there are at most |.Ap|
such clusters. By the Chernoff bound, with probability at least 1 — e~7%/3 we have

T —|T| < (€ + )T + | Aglte <te+ (24 €4 25:t)T <t + 3€T.
By the Borel-Cantelli lemma, because ) ;4 e T9/3 < 50, almost surely there exists a time

T such that for T > T we have T — |T| < te+ 3€eT. We denote by & this event. Then, on the
event &, for any T > T' and for any sequence of values (y');>1 we have

T te
D V(€)Y < DY Ve, Yeu) + (T = |T])E
t=1

teBr u=1

<ZZ£y Yiu) —|—Zt5t )+ €|Br|te + tel + 3€T

teBru=1 teBr
<ZZ€y Vi) + Y tedi(y') + tel + AeT.
teBr u=1 teBr

Now let f: X — ) be a measurable function to which we compare f¢. By Theorem 4.1,
because (14 . )CINN is optimistically universal without noise and X € SOUL, almost surely

+ Zle 0(f (X)), f(Xt)) — 0. We denote by F this event of probability one. The proof
of Theorem 4.3 shows that on F¢, for any 0 < u <7, — 1 we have

T
%Zf(f(de(t)), f(X) = 0.
t=1

We let y* = f(X;) for all ¢t > 1. Then, recalling that for any t € B, we have t = ¢“~1(t%),
on the event &, for any 7' > T we have

< 37 ST+ (X)) + SN, FK )+ 3 i) + £l + 4T

tGBT u=1 tEBT
T.-1 T

Z (X1) Yt+ca—6225 F(X ) (X)) + Dty (y') +tel + 5eT,

t=1 u=0 t=1 teBr
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where in the first inequality we used Lemma A.1, and in the second inequality we used the
fact that cluster with distinct instance values have at most T? duplicates of each instance.
Next, using Eq (3), with probability 1 — T2 , we have

Z b (y') < 20V/TnT.
teBr

Because ZTzl % < 0, the Borel-Cantelli lemma implies that on an event G, of probability

one, there exists Tg such that for all 7" > Tg theAabone inequality holds. As a result, on the
event & N F. N G, we obtain for any 7' > max(7",T») that

T T T.—-1 T

SO0, Ye) < DT, V) + ST S (X F(X0)

t=1 t=1 u=0 t=1

+20VTInT + tf + 5€T.

where 7 Z ZtT LU(f(Xgu(e))s £(X¢)) — O because the event F. is met. Therefore, we
obtain that on the event & N F. N G, of probability one,

tisup 7 ™ [A(33(60.¥5) — €07 (X0).¥0)] < 5,

T—o0 =1

i.e., almost surely, the learning rule f© achieves risk at most 5¢ compared to the fixed function
f. By union bound, on the event (),5¢ (&, N Fe, N Ge,) of probability one we have that

limsup Z[ (Vilei), Vi) = £/ (X), Y0)| <5ei, Wi > 0.

T—oo

The rest of the proof uses similar arguments as in the proof of Theorem 4.3. Precisely, let H
be the almost sure event of Lemma 4.2 such that there exists ¢ for which

t t
Vit viel, Y 6Y,Y) <Y 6Yi(e),Yy) + (24 L+ )Vt
s=t; s=t;
In the rest of the proof we will suppose that the event HN();5((Ee, N Fe, NG, ) of probability
one is met. Let ¢ > 0. For all ¢ > max(f, t;) we have

T
;Ze(ift,m—e(f(xt) TZ T; (V. Ya) — £(f(X0), Y2)
_tig 1y ),Y2) — 0(F(X0), Yo) + (24 0+ )y oL
<l g t(er), Ye) = L(f(Xe), Vo) + 2+ L+ )| =
Ly X))+ iy 240 P\/ﬁ
_fg (F(X0).Y0) + 0+ @+ L+ Py | =

Therefore we obtain limsupy_, . 7 thl 0(Y;,Y;) — £(f(X4),Y:) < 5e;. Because this holds
for any ¢ > 0 we finally obtain

T

: 1 -

limsup - > U(Y;,Yy) —(f(X), ;) <0.
t=1
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As aresult, f. is universally consistent for adversarial responses under all SOUL processes.
Hence, SOLAR = SOUL and f. is in fact optimistically universal. This ends the proof of the
theorem.

C.5. Proof of Lemma 5.7. We first note that with the same horizon time 7;,, we have
that F-TiME implies Property 2. We now show that Property 2 implies F-TiME. Let (), ¢)
satisfying Property 2. We now fix 7 > 0 and let T, g<, such that for any y := (yt)thl of
values in ) and any value y € )/, we have

T

1
E . Z (£<gt(y§t—1)7yt) - g(yvyt)) <.
t=1
We now construct a random time 1 < 7 < T such that P[7 =] = tE[[Tl /t]] forall 1 <t <T.
This indeed defines a proper random variable because Zt 1 tE[[l /t]} = 1. Let Supp(7) :=

{1<t<T:P[r=t] >0} be the support of 7. For any ¢ € Supp(7), we denote by g<t
the learning rule obtained by conditioning g<, on the event {1 =t}, i.e., g%, = g<,|7 = t.
More precisely, recall that 7 only uses the randomness of g;. It is not an online random time.
Hence, a practical way to simulate g%, for all ¢t € Supp(7) is to first draw an i.i.d. sequence
of learning rules (g; <r,)i>1. Then, for each ¢ € Supp() we select the randomness which
first satisfies 7 = t. Specifically, we define the time i, = min{i : 7; = ¢t} for all ¢ € Supp(T).
With probability one, these times are finite for all ¢ € Supp(7). Denote this event £. Then,
letting y € Y be an arbitrary fixed value, for all 1 <¢ < T we pose

. {git,q if £ is met,

9% = teSupp(r) and gi, =g<, t¢& Supp(r).

y<¢  otherwise,
where 7<; denotes the learning rules which always outputs value ¥ for all steps u < ¢. Intu-
itively, g%, has the same distribution as g<, conditioned on the event {7 = ¢}. We are now
ready to define a new learning rule g<z, by g<7 := g; . Noting that for any ¢ ¢ Supp(r) we
have P[7 = t] = 0, we can write

D (@ y<i—1),v) = Ly, ) — ,77]

T t
=) PF=tE [Z (U(GuY<u1)s ) = Uy, 00)) — 0t

f:t]
%:t,g]

D (UGu(Yzur) y) — Uy yu)) =t

teSupp(T) u=1
1 [1 ¢
T E[1/7] Z P[T:t]E 7Z(£(gitvu(y§u—l)ayu) _e(:’%yu)) -n ?:t,S
E[1/7] t
teSupp(T) L u=1
1 1< 7
= m z P[T = t]E E glt, y<u 1) yu) — f(y,yu)) —-n
teSupp(T) u:l ]
1 t
/ Z PT—t z gu y<u 1 yu)_g(y,yu))—n T:t]
teSupp(T)
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N IE[11/7]IE [i > (Ugi(ye—a)sve) — Ly ) — 77] <0.

t=1

where in the second and fourth equality we used the fact that P[] = 1. As a result, there
exists a learning rule g<; such that 1 < 7 < T, and for any Y<r, € VI and y € ) one has

E

> (ay<i—1).ye) — Ly, y0) — 77%] <0.

t=1

We now pose T, = [T,/n] and draw an i.i.d. sequence of learning rules (g% ;. )i>1. Denote
0;=>" j<i 7; with the convention 6; = 0. We are now ready to define a learning rule hST,’, as
follows. For any 1 <t < TT’) and y,; € Vt,

hi(Y<i—1) = Ger—o, (Wi )o,<vr<i—1); 0; <t<0i41,i>1.
In other words, the learning rule performs independent learning rules g<7 and when the
time horizon 7 is reached, we re-initialize the learning rule with a new randomness. Now let
Y<r; € VTi and y € ). We denote by i = max{i > 1,6; < t}, the index of the last learning
rule which had time to finish completely. Then, because 7; < T,

T,
E Z(ﬁ(ht@!gt—l)?yt) — Uy, yt)) — 277T7;
t=1
=B ZZ@@%—& (Yo, <.<t—1)syt) — Ly, yt)) — 77T7; — 77T7; + T,
Li<i t=1
<E Z (Z(e(f]gei (ye,;<~§t—1)ayt) — Uy, yt)) — 777~'i>
Li<i \t=1

We now analyze the last term. First, note that by construction, the sequence

75
Sj = Z Z(ﬁ(gi_gj (yej<~§t—1)73/t) — Uy, yt)) —n7;
§<i \t=1 i>1
is a super-martingale. Now, note that i<1+ T,; since for all 4, 0; = > j<i Ti >1—1.Asa
result, 4 is bounded, is a stopping time for the considered filtration (after finishing period ¢
we stop if and only we exceed time T,;) and we can apply Doob’s optimal sampling theorem
to obtain [E[S;] < 0. Thus, combining the above equations gives

T/

1 n

f;E Z(ﬁ(ht(ygtq),yt)—E(yvyt)) <2n.
t=1

Because this holds for all > 0, F-TiME is satisfied. This ends the proof of the lemma.

C.6. Proof of Theorem 5.8. We first prove that adversarial regression for processes out-
side of CS is not achievable. Precisely, we show that for any X ¢ CS, for any online learning
rule f., there exists a process Y on ), a measurable function f*: X — ) and § > 0 such that
with non-zero probability L v)(f., f*) > 4.
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Because F-TiME is not satisfied by (), ¢), by Lemma 5.7, Property 2 is not satisfied either.
Hence, we can fix 77 > 0 such that for any horizon 7" > 1 and any online learning rule g<
with 1 <7 < T, there exist a sequence y := (yt)thl of values in ) and a value y such that

E % > (Uge(ys1)sve) — f(y,yt))] >,

t=1

as in the assumption of the space (), /). Let X ¢ CS. The proof of Theorem 5.1 shows that

there exist 0 < € < 1, a sequence of disjoint measurable sets {B,},>1 and a sequence of
times (¢,)p>0 with ¢ty = 0 and such that with p := max(1, %

defining the events

t
Ep=19X, , N UBp =0 and Fp:= U {1Z]IBP(Xu)22}a
u=1

p'>p pty 1 <t<t,

), forany p >1,t, > put,_1, and

we have P[0 ~;(&, N Fp)] > 7. We now fix a learning rule f. and construct a “bad” pro-
cess Y recursively. Fix i € ) an arbitrary value. We start by defining the random variables

Ny(t) = Ziztp,l 41 1B, (Xy) for any p > 1. We now construct (deterministic) values y,, and

sequences (yg)i”zl forall p > 1, of values in ). Suppose we have already constructed the val-
ues y, as well as the sequences (y};)t;:l for all ¢ < p. We will now construct y,, and (y;f)i”zl.

Assuming that the event £, N F,, is met, there exists ut,_; <t <t, such that

t t

Np(t)= > 1p,(Xu,) =) 1p,(X,)>

u=t,_1+1 u=1

t,

S

where in the first equality we used the fact that on &, the process X<; _, does not visit Bj,.
In the rest of the construction, we will denote
T — min{put, 1 <t <t,: Ny(t) > §t} if £, N Fpis met.
N tp otherwise.
Now consider the process Y;<¢, (X) defined as follows. For any 1 < ¢ < p we pose

e ift < T, and X, € By,

¥;(X) = Yq %ft>Tq and ),(tGBq, for<t<t,.
Yg' it X, € By, ¢ <q,
Y otherwise,

Similarly, for M > 1 and given any sequence {7;}},, we define the following process
Y, <ust, (X, {8i}1L,) by

Ymin(N, (u),M) 1f Xi € Bp,
Yo (X, A5 HE01) = < v if X; € By, ¢<p,

Y otherwise.

We now construct a learning rule g”". First, we define the event B := (1 (€, N Fy). We will

denote by X = X|B a sampling of the process X on the event 3 which has probability at least
- For instance we draw i.i.d. samplings following the same distribution as X then select the
process which first falls into B. We are now ready to define a learning rule (g%),<, where T
is a random time. To do so, we first draw a sample X which is now fixed for the learning rule
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g”. We define the stopping time as 7 = N,(7},). Finally, for all 1 < u < 7, and any sequence
of values y,,_, we pose

9 (U<u—1) = f1,(u) (thpp(u)—la {YStp_l(X)aYtp,Kung(u)—l (X, {9 Z;Zf)} 7XTp(u)> :

where we used the notation T, (u) := min{t, 1 < t’ <t,: Ny(t) = u} for the time of the
u—th visit of B), which exists because u < 7 = N,(T},) < N)(t,) since the event B is sat-
isfied by X. Note that the prediction of the rule ¢g” is random because of the dependence on

X. Also, observe that the random time 7 is bounded by 1 < 7 <7, <t,. Therefore, by hy-

pothesis on the value space (), ¢), there exists a sequence {yg}ff:l and a value y, € Y such
that

E |- > (U, Ny — E(yp,yﬁ))] > 1.

.
u=1

This ends the recursive construction of the values y, and the sequences (y;f)fle forall p > 1.
We are now ready to define the process Y (X), using a similar construction as before. For any
p > 1 we define

yp? ™ ift < T, and X, € B,,
oW e TadXeen,
Yq if Xy € By, ¢ <p,

Y otherwise,

We also define a function f*: X — ) by

@) = {yp if z € By,

iy  otherwise.

This function is simple hence measurable. From now, we will suppose that the event 3 is met.
For simplicity, we will denote by Y; := fi(X<;—1, Y<;—1, X;) the prediction of the learning
rule at time ¢. For any p > 1, because &, N F), is met, for all 1 < u < Np(Tp), we have
tp—1 < Tp(u) <Tp, and X7, () € By. Hence, by construction, we have }A/Tq () =Yg and we
can write

T, T,
Sz Y vy
t=1 t=t,_1+1

Nu(Tp)

> > Vry ) Y, )

= Zf(pr(u) (Xer (=1, Y<r, ()1, X1, (w)) > Ypy)-

Now note that because the construction was similar to the construction of ¢g”, we have
iyu—1 . > .. .

Yer -1 = {Ygtp,l(X)ayt,,,lqup(u)—l (X A{yi}is) ) ie., Y () coincides with the

prediction gﬁ({y]’g ;f:_ll) provided that g}, precisely used the realization X. Hence, conditioned

on BB for all u < 7, YTP(U) has the same distribution as g} (y,=“"!). Therefore we obtain

= (T o) — o)) | B

T, T
1R - 1
E|-D ViY) = =) Uypyy)|B| 2E
t=1 u=1 u=1
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B[ L3 (=) )

u=1

>1).

We now turn to the loss obtained by the simple function f*. By construction, assuming that
the event B3 is met, we have

T, -
Zg(f*(Xt)v 1+ Z E XT u) yp) Etp*1+ze(ypayg)'
t=1

u=1

Recalling that T}, > pt,—1 > %tp_l and noting that 7 = N,(T},) > {71}, we obtain

B

tya<T<t, 1 =

T
E[ sup EZ(E(ﬁ,E)—ﬁ(f(Xt)th))

T T
T 1 N p—1
t= u=1
€ 1 & 1 < en
> l I _ !
> B =D ALY = = )| Bl — ¢
t=1 u=1
@
- 8
Because this holds for any p > 1, Fatou lemma yields
E |limsup — Ze (Y2, Y2) — £(f(X2), Y3)
T—o0 t 1
>E [hjrpsup Z (0(Y3,Y2) — €(f(X1), Y1) | B| P[B]
—00
ﬂ
- 32

Hence, we do note have almost surely limsupy_,., 7 ST YY) — £(f(Xy), Yr) < 0.
This shows that X ¢ SOLAR, which in turn implies SOLAR C CS. This ends the proof
that SOLAR C CS. The proof that CS C SOLAR and the construction of an optimistically
universal learning rule for adversarial regression is deferred to Section 7 where we give a
stronger result which also holds for unbounded losses. Note that generalizing Theorem 5.2
to adversarial responses already shows that CS C SOLAR and provides an optimistically
universal learning rule when the loss ¢ is a metric o = 1.

APPENDIX D: PROOFS OF SECTION 6
D.1. Proof of Theorem 3.6. We first show that there exists £; > 1 such that for any
t > t1, with high probability, for all 7 € I,

¢
Z f(?s,yé) < Li; + 3In%tVt.

S:ti
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For any t > 0, note that we have /; = E[¢(Y},Y;) | Y<;]. We define the instantaneous re-
gret 715 = Uy — £(y",Y;). We now define wy_y ;= eh-1(be—ri=Li1i) and pose W;_1 =
dier, Wi—1i and Wi_y =37, w; ;. ie., which induces the most regret. We also de-
note the index k; € I; such that i/t,kt — Lk, = max;ey, f/t,i — Ly ;. We first note that for any
i,j € It, we have £(y", Y3) — (37, Yy) < £(y?, y°) +£(y°,37) < 2Int. Therefore, we also have
|7+ ;| < 2Int. Hence, we can apply Hoeffding’s lemma to obtain

2(4Int)?
71 Zwt 1,2 ntru<<’l’]tz7"tlwt 1Z t( 8n) :277tln2t.

77t i€l - iel,

The same computations as in the proof of Lemma 4.2 then show that

1 _ 1 1 1 I — |1
@) —Intbker 2 Wk g ( N > In(1 +In(t + 1)) + et =1l
ul Wi mr1 Wi M+l Mt Nt ier, Wi

+ (IA/t—l,kH —Li g, ,)— (ﬁt,kt — Lyg,) +2m In?¢.

First suppose that we have Zie 7, Wi < 1. Similarly to Lemma 4.2, we obtain ﬁt,kt — Ly, <
0. Otherwise, let ' =min{l < s <t:Vs < <t,3 ., we,; > 1}. We sum equation (4)
for s=1t',...,t which gives

1 Wt —1,ky 1 2 ‘It+1|

Wt |
—1In d — In—* < In(1+In(t+1)) +
m Wiy 1 N1 Wi 7 e ( ( ) Ul

t
+ (L1, — Le—1k, ) — (Ltg, — Lig,) +2 Z nsIn’s.
s=t’

wt/—l,kt/

Similarly as in Lemma 4.2, we have M <1, W 1’1 > 1+11nt and lALt/_Lk
< 0. Finally, using the fact that Z

t/—1

Ly 1 < 24/t, we obtain

t/—1 —

s=1 \[
Lig, — Leg, <In(1+1In(t +1))(4 + 8Vt + 1) + 4(1 + In(t + 1))Vt + In® tv/t < 2In? tV/1,

for all ¢ > t; where t is a fixed constant, and as a result, for all t > t¢ and ¢ € I;, we have
f/tﬂ‘ - Lt,i < 21112 t\/{f.

Now note that |£(Y;,Y;) — E[¢(Y;,Y;) | Y]] < 2Int because for all i € I;, we have
£(y",4°) < Int. Hence, we can apply Hoeffding-Azuma inequality to the variables ¢(Y;, Y;) —
/, that form a sequence of differences of a martingale, which yields

t
P [ZE(YS,Ys) > Ly +ul < e~ T

S:tj

Hence, for t >ty and i € I;, with probability 1 — §, we have

t
. ) 1 [ 1
> YY) < Liy +1nt,/21t1n5 < Ly;+ 2% v/t 4 Int 2tIn .

s=t;
Therefore, since |I;| < 1+ Int, by union bound with probability 1 — tQ we obtain that for all
1€ Iy,
t

D UV, Ye) < Ly + 20 v/t + Inty/2tIn(1 + Int) + IntV4t Int < 3In’ v/t

S:ti
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for all t > t1 where t1 > tg is a fixed constant. Now because Zt>1 t% < 00, the Borel-Cantelli
lemma implies that almost surely, there exists > 0 such that

t
Vit > 1,Vi€ I, ZE(YS,YS) < Lii+ 3%Vt

S:ti

We denote by A this event. Now let y € ), € > 0 and consider i > 0 such that (%, y) < .
On the event A, we have for all ¢ > max(¢,t;),

t t

t
D UV Y) < UYL Ye) 43I tVES Y Uy, V) + et + 3In’ V2,

s=t; s=t; s=t;
Therefore, limsup,_, ., St (E(Ys, Ys) — Uy, YS)) < e on A. Because this holds for any

e > 0 we finally obtain limsup,_,. T St (E(YS,Y;) - é(y,Ys)) < 0 on the event A of
probability one, which holds for all y € Y simultaneously. This ends the proof of the theorem.

D.2. Proof of Corollary 6.2. We denote by g. the learning rule on values ) for mean
estimation described in Theorem 3.6. Because processes in X € FS visit only finite number
of different instance points in X almost surely, we can simply perform the learning rule g.
on each sub-process Y. x,—;) separately for any x € X'. Note that the learning rule g. does
not explicitely re-use past randomness for its prediction. Hence, we will not specify that the
randomness used for all learning rules—for each z visited by X—should be independent.
Let us formally describe our learning rule. Consider a sequence x<;_1 of instances in X" and
Y« of values in ). We denote by S;_1 = {z: x<;—1 N {z} # 0} the support of z<;_1.
Further, for any x € S;_1, we denote N;_1(z) = > u<t—1 Lo, = the number of times that the
specific instance = was visited by the sequence x<;_1. Last, for any x € S;_;, we denote
y< N(z) the values Y, <. x,—,) obtained when the instance was precisely x in the sequence
T<¢—1, ordered by increasing time w. We are now ready to define our learning rule f; at time
t. Given a new instance point x;, we pose

gN,,_l(x)+1(ygNt71(x)) if xy € S¢-1,
g1(0) otherwise.

Je(x<t—1,Y<4—1,70) = {

Recall that for any u > 1, g,, uses some randomness. The only subtlety is that at each iteration
t > 1 of the learning rule f., the randomness used by the subroutine call to g. should be inde-
pendent from the past history. We now show that f. is universally consistent for adversarial
regression under all processes X € FS.

Let X € FS. For simplicity, we will denote by Y, the prediction of the learning rule f.
at time t. We denote S = {z : {x} N X # (0} the random support of X. By hypothesis, we
have |S| < oo with probability one. Denote by & this event. We now consider a specific
realization « of X falling in the event £. Then, S is a fixed set. We also denote S := {z €
S i limy_yoo NV (z) = 0o} the instances which are visited an infinite number of times by the
sequence x. Now, we can write for any function f: X — ),

- N, (z)
Z (E(Yt,Yt) — f(f(ggt)’yt» _ Z

t
t=1 z€S w

—~

(]

(E(gu(ygu—l)v YJD) - f(f(l‘), Yu))
1

Ny (z)
<Y Atz lim=al+ )Y (Hgu(YL, 1), Y — £(f (), Ya)) -

seS\S se§ u=l
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Now, because the randomness in g. was taken independently from the past at each iteration,
we can apply directly Theorem 3.6. For all = € S, with probability one, for all y* € ),

. 1 x x x
hmsup ? Z (E(gu(Ygufl)a Yu ) - g(y 7Yu)) < 0.

We denote by &, this event. Then, on the event (1), _g &, of probability one, we have for any
measurable function f: X — ),

limsup% (E(Yt,Yt) - f(f(xt),Yt)>

T—o0
1 N (z)
< S tmsup . 3 (Hou(YE, 1), YE) — (@), Ya)
se€8 u=1
N (z)

(E(gu(Y%u—1)>qu) - E(f(x)ayu)) < 0.

u=1

1
< Zlimsup Ni(2)
ses K

As a result, averaging on realisations of X, we obtain that with probability one, we have
that Lx v)(f., f) <0 for all measurable functions f : X — ). Note that this is stronger than
the notion of universal consistency which we defined in Section 2, where we ask that for all
measurable function f : X — ), we have almost surely L v)(f., f) < 0. In particular, this
shows that FS C SOLAR-U. As result SOLAR-U = FS and f. is optimistically universal.
This ends the proof of the result.

D.3. Proof of Theorem 6.3. We first show that mean-estimation is not achievable. To
do so, let f. be a learning rule. For simplicity, we will denote by Y; its prediction at step ¢.
We aim to construct a process Y on R and a value y* € R such that with non-zero probability
we have

T—oo

T
: 1 .
thUPT E O(fe(Y<p—1),Ye) — £(y", Y2) > 0.
=1

We now pose (3 := 2% > 2. For any sequence b := (b;);>1 in {—1,1}, we consider the
following process Y? such that for any t > 1 we have Ytb = 2ﬁtbt. Let B := (B;):>1 be an
i.i.d. sequence of Rademacher random variables, i.e., such that By =1 (resp. By = —1) with

probability % We consider the random variables e; := 1y, - <0 which intuitively correspond

to flags for large mistakes of the learning rule f. at time ¢. Because f. is an online learning
rule, we have

1

N 1

where the expectation [E£y. refers to the expectation on the randomness of the rule ft- As are-
sult, the random variables e; — % form a sequence of differences of a sub-martingale bounded
by % in absolute value. By the Azuma-Hoeffding inequality, we obtain P [Zle er < %] <
e~ T/8. Because Y o>t e~t/8 < oo, the Borel-Cantelli lemma implies that on an event &£ of
probability one, we have lim supp_, . % Zthl et > i. As aresult, there exists a specific real-
ization b of B such that on an event & of probability one, we have limsupy_, . % Zle ey >



SUPPLEMENT TO “UNIVERSAL REGRESSION WITH ADVERSARIAL RESPONSES” 29

%. Note that the sequence Y? is now deterministic. Then, writing e; = e¢1ly,>0 + et 1y, <g, We
obtain
T
limsup — Z etly,>o +limsup — Z etly, <o >

T—oo T—o0

1

Without loss of generality, we can suppose that lim supy_, ., 7 Zt 11y v <olviso 2 1 . We
now pose y* = 1. In the other case, we pose y* = —1. We now compute for any T' > 1 such
that Y; - Y; <0and Y; > 0,

T T T T—1
00,2°7) —£(1,2%7) 1 :
(Yer1),Y2) — L(y*, V7)) > —= ’ — = 1,-27).
;_1 (fi(Y<t—1), Ye) = Uy, V2)) = T T ;—1 0(1,-2%)

_ %918 <12(a—2>6T> _ a(lsT )
T T

- %2%5”(1 +o(1)).

Because, by construction lim sup;_, % Zthl 1y v <olv,>0 2 %, we obtain

limsup — Z (filY<i1),Yy) =Ly, V7)) =

on the event E of probability one. This end the proof that mean-estimation is not achievable.
Because mean-estimation is the easiest regression setting, this directly implies SOLAR-U =
(). Formally, let X a process on X. and f. a learning rule for regression. We consider the
same processes Y2 where B is i.i.d. Rademacher and independent from X. The same proof
shows that there exists a realization b for which we have almost surely Lx v(f., f* :==y*) =
00, where f* = y* denotes the constant function equal to y* where y* € R is the value
constructed as above. Hence, X ¢ SOLAR-U, and as a result, SOLAR-U = ().

D.4. Proof of Proposition 6.4. Suppose that there exists an online learning rule g. for
mean-estimation. In the proof of Corollary 6.2, instead of using the learning rule for mean-
estimation for metric losses introduced in Theorem 3.6, we can use the learning rule g. to
construct the learning rule f. for adversarial regression on FS instance processes, which sim-
ply performs f. separately on each subprocess Y. x,—, with the same instance z € X’ for
all visited x € X in the process X. The same proof shows that because almost surely X
visits a finite number of different instances, f. is universally consistent under any process
X € FS. Hence, FS C SOLAR-U. Because SOLAR-U C SOUL = FS, we obtain directly
SOLAR-U =FS and f. is optimistically universal.

On the other hand, if mean-estimation with adversarial responses is not achievable, we can
use similar arguments as for the proof of Theorem 6.3. Let f. a learning rule for regression,
and consider the following learning rule g. for mean-estimation. We first draw a process X
with same distribution as X. Then, we pose

9t(Y<i—1) = [ilxci-1,9<4-1, Xo)-
Then, because mean-estimation is not achievable, there exists an adversarial process Y on
(Y, ¢) such that with non-zero probability,

T
. 1 «
lim sup T tEZI (U(gt(Y<t-1),Yz) — €(y", Y1) > 0.

Then, we obtain that with non-zero probability, £<§§ ) > 0. Hence, f. is not universally con-

sistent. Note that the “bad” process Y is not correlated with X in this construction.
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APPENDIX E: PROOFS OF SECTION 7

E.1. Proof of Theorem 7.1. Let (2%);>0 a sequence of distinct points of X'. Now fix a
value yo € )V and construct a sequence of values yk, y,g for k > 1 such that é(yk, yk) > cﬂ’““.
Because £(y}, y2) < col(yo,yi) + cel(yo, yi), there exists i, € {1,2} such that £(yo, y;*) >
2 For simplicity, we will now write 1, := y,zj for all £ > 1. We define

ty = {Zg(yo,yl)J :
=1

This forms an increasing sequence of times because ¢11 — tx > £(yo,yr+1) > 1. Consider
the deterministic process X that visits 2* at time t;, and 20 otherwise, i.e., such that

k .
z ift=t
Xy = w
x” otherwise.

The process X visits X\ {2°} a sublinear number of times. Hence we have for any measur-
able set A:

a 1 ifatea

)]0 otherwise.
As a result, X € CRF. We will now show that universal learning under X with the first mo-
ment condition on the responses is not achievable. For any sequence b := (by);>1 of binary

variables by, € {0, 1}, we define the function f; : X — ) such that

if b, =0

fy@) = {yo EETT k>0 and  fi(x)=yoif e ¢ {ak, k> 0.
Yy  otherwise,

These functions are simple, hence measurable. We will first show that for any binary sequence

b, the function f; satisfies the moment condition on the target functions. Indeed, we note that

for any T' > t1, with k := max{l > 1:t; < T}, we have

k
tk—i-l T+1
Zl (v0, f5 (X)) Z Yo Yk) S~ S

Therefore, limsup;_, ., ST A(wo, fi (X)) < 1. We now consider any online learning
rule f.. Let B = (Bj)r>1 be an i.i.d. sequence of Bernouilli variables independent from the
learning rule randomness. For any k > 1, denoting by Y}, := f;, (X<, 1, f5(X<p—1), X1,)
we have

5 2 f(yo,yk)

In particular, taking the expectation over both B and the learning rule, we obtain

EBkg(ﬁk’fE(th)) =

E

ty
;Z (Fi(X1, fp(Xer1), X0), fB<Xt>>] > St Ze (0, 9x) > 21 :
t=1

As aresult, using Fatou’s lemma we obtain

E

lim sup — ZE fiXai1, f(Xet1), Xo), fB(Xt))]

T—o0 t 1
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> limsupE
T—00

1
>
2¢cy

T
Z (fi X1, fE(X<t-1), Xu), fB(Xt))]

Therefore, the learning rule f. is not consistent under X for all target functions of the form
fi for some sequence of binary variables b. Indeed, otherwise for all binary sequence b =

(bi) =1, we would have Ex [lim SUPTo0 2 SO 0(fi Rty £ (Kr1), Xo), £ (Xt))} -
0 and as a result

EpEx [hmsup ZE ([t R<t—1, fE(X<t-1), Xu), fB(Xt))] =0.

T—o0 t—=1

This ends the proof of the theorem.

E.2. Proof of Lemma 7.3. It suffices to prove that empirical integrability implies the
latter property. We pose €¢; = 27" for any ¢ > 0. By definition, there exists an event &; of
probability one such that on &; we have

T
IM; >0, limsup — zﬁ Y0 YO) Lotyo v >0, < €i-

T—00

As aresult, on ()5 &; of probability one, we obtain

Ve>0,dM := = Mg, 1 >0, hqrﬂnsup ZE (Y0, Yt) Logyy yviy>mr S €
— 00 =1

This ends the proof of the lemma.

E.3. Proof of Theorem 3.1. Let X € SOUL and f*: X — Y such that f*(X) is empir-
ically integrable. By Lemma 7.3, there exists some value yy € ) such that on an event A of
probability one, for all € > 0 there exists M, > 0 such that

T
lim sup — ZE Yo, £ (Xe)) Loy, £+ (x))> M. S €

T—o00 t 1
For any M > 1 we define the function f}, by
fr(@) if L(yo, f*(2)) < M,
frr(z) = :
0 otherwise.

We know that 2C1NN is optimistically universal in the noiseless setting for bounded losses.
Therefore, restricting the study to the output space (By(yo, M), ) we obtain that 2CINN is
consistent for fy, under X i.e.

llqlpsup Ze (2CINNi(Xo_1, fir (X<t 1), Xo), i1 (X) =0 (a.s.).
— 00 t=1

For any t > 1, we denote ¢(t) the representative used by the 2CINN learning rule. We de-
note &y the above event such that lim supy_, ., 7 Zf V3 (Xee))s 37 (Xe)) = 0. We now
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write forany 7'>1and M > 1,

T

1 *

T Z U (Xpwy) f
t=1

T 2 T
Z (fr(Xow)), frr(Xe)) %Z H(X1), far(Xe))

'ﬂ‘&m

T
#7200 (Koo)X

We now note that by construction of the 2CINN learning rule,

T

*Zg ) I (Xo)) = Z(f*( )y P (X)) {u <t <T: 6(t) = uj]

H\H

T
Z Y(Xe), Far (X))

’ﬂ\l\?

Hence, we obtain

T C2 T
DT (X)) < S U (K S52(X0)
t=1 t=1
T
2+Q LS o, X it g-xipoit
t=1

As aresult, on the event A N (),,~; Ea of probability one, for any M > 1, we obtain

limsup — Zﬂ T (Xow), [1(X1))

T—o00

< Cg(2+0g) limsup — Zf yo, (Xt))]lf(yo,f*(Xf,))ZM'

T—o00

In particular, if € > 0 we can apply this result with M := [M.], which shows that
limsupy_, o 7 Zle C(f* (X)), f7 (X)) < ce(2 + co)e. Because this holds for any € > 0
we finally obtain that on the event AN (7,,~; Em we have

lim sup — Z€ A (Xy))=0.

T—o00

This ends the proof of the theorem.

E.4. Proof of Theorem 3.3. We first define the learning rule. Using Lemma 23 of [5],
let 7 C B a countable set such that for all X € CS, A C B we have

f E[ix(GA A
nf Elfx( )=

Now let (3%);>0 be a dense sequence in ). For any k > 0, any indices 1, . ..,l; € N and any
sets Ay, ..., Ag € T, we define the function f, 1,34, 4,1+ X = Y as

max{0<j<k:z€A;}

f{z1 ..... lk},{Ah...,Ak}(z) =Yy
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where Ag = X'. These functions are simple hence measurable. Because the set of such func-
tions is countable, we enumerate these functions as f°, f1... Without loss of generality, we
suppose that f¥ =y°. For any i > 0, we denote k' >0, {l%,...,1;.} and {A4},..., AL} such
that f* was defined as f*:= fyi iy qai,... a1y We now define a sequence of sets (I¢)¢>1 of
indices and a sequence of sets (F3)¢>1 of measurable functions by

I={i<Int: 0y ") <27 Int, VI<p<k'} and F:={f':iel}.

Then, clearly I; is finite and | J,~ Iy = N. For any i > 0, We define t; = min{t:i € I, }. We
are now ready to construct our Tearning rule. Let 7, = e \[
X and (y;)s>1 in Y. At step t > 1, after observing the values x; for 1 <14 <t and y; for
1 <i<t—1, wedefine for any ¢ € I; theloss L;_1; := Zi;i 0(f(xs),ys). Forany M > 1
we define the function ¢;7 : ) — Y such that

y if (y,y°) < M,
b (y) :{ : . )
y” otherwise.

Fix any sequences (z¢);>1 in

We now construct construct some weights w; ; fort > 1 and ¢ € I; recursively in the following
way. Note that [; = {0}. Therefore, we pose wg o = 1. Now let t > 2 and suppose that ws_1 ;
have been constructed for all 1 < s <t — 1. We define

Zjels wS—l,jg(fj ((IZS), ¢2*°‘+1 lns(ys))

by :=
Zje[s Ws—1,5

and for any ¢ € I; we note f}t,u = 22;1 és. In particular, if ¢; =t we have ﬁt,l,i =
Li_1,; = 0. The weights at time ¢ are constructed as w;_1 ; := et (Le—1i=Li-1i) for any ¢ € I;.
Last, let {7 };>1 a sequence of independent random N—valued variables such that

Wt—1,

P(iy =i) = =
(i =1) Zje]twt—laj

, 1€

Finally, the prediction is defined as §j; := f*(z;). The learning rule is summarized in Algo-
rithm 1.

For simplicity, we will refer to the predictions of the learning rule as (Yt)tzl. Now consider
aprocess (X, Y) with X € CS and such that Y is empirically integrable. By Lemma 7.3, there
exists yop € Y such that on an event A of probability one, for any € > 0, there exists M, >
0 with limsupp_, ., 7+ Zt Vo, Ye) Loy viy>m, < €. We will now denote Y the process
defined by Yt = ¢pg-a+11n¢(Yz) for all ¢ > 1. Then, for any ¢ € I;, note that using Lemma A.1
we have

0 < (f (), ¥i) <227 (0(F (), °) + £(°, V) ) <21t

by construction of the set I;. As a result, for any i,j € I;, we obtain [{( filay), Y M) —
0(f3(x) — Y;M)| < 2Int. Hence, we can use the same proof as for Theorem 3.6 and show
that almost surely, there exists ¢ > 1 such that

t
vt >t Vi€, Zé(Z,ZM) < Lii+3Int/t.

s=t;

We denote by B this event. Now let f : X — ) to which we compare the predictions of
our learning rule. For any M > 1, the function ¢js o f is measurable and has values in the
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Input: Historical samples (X¢, ;)7 and new input point X

Output: Predictions Y; for ¢ < T ) )

Construct the sequence of measurable functions {f*,i > 0} with f* = f (i
1

_ LT {ALLL ALY

Iy={i<int (y'n,00) <27 e VL Sp <K Foo= {fLi € Bdome o= 7t 2
ti:min{t:iEIt},iZO

wo,0:=1, ¥1=9"(=f(X0)) // Initialisation
fort=2,...,T do

Lt—lz Zt ; é(fl Xs) ¢2 a+11nt(Ys)) ﬁt—1,i=Z§;%i@s7 x=yn

wy_ lz-—eXP(nt(Lt 1i—Li—14), i€l

Wi—1,4 .
pe(i) = S er, Wi-1, (AL

%twptA() // Function selection
Yy = f'(Xy) ‘

é . Zje]t wtfl,jg(f](Xs)v¢2—a+l1nt(}/t)

b >jer, W15

end

Algorithm 1: A learning rule for adversarial empirically integrable responses under CS
processes.

ball By(yo, M) where the loss is bounded by 2* M. Hence, by Lemma 24 from [5] because
X € C; we have

inf E [fix (¢(dar o £(-), f1())] =

>0

Now for any k > 0, let i; > 0 such that E [x(¢(¢ar o f(0), f%(+)))] < 272, By Markov
inequality, we have

P [fx(C(n o f(), 1)) <27F =1 -27%.

Because ) ;. 27% < 50, the Borel-Cantelli lemma implies that almost surely there exists k

such that for any k£ > k, the above inequality is met. We denote &y this event. On the event
BN &y of probability one, for k > k and any T > max(t;, ,t) we have for any € > 0,

Z (6093, 72) = bl6ar 0 £(X0), ¥0))

T

T
= 5 ST TV — (X0, V) 4 o U (X0),Ti) — our o F(X0), V)
t=1

t=1

T T
1 P -
g (¥ | 3 0¥ ~ L, +;;£(¢Mof(xt),¥t)

T
+ oY U (Xe), dar o F(X))
t=1

N

21Int; 3T o ‘
STpo g M 2 ny T+ 5 DX, dar o (X))

t=1

S \
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2Int;,  3In%T ST
STt et M e i Zﬁy Y0+ 25 ST U (), dar 0 (X)),
t 1

t=1

ﬂ\mg

where in the last inequality we used the inequality £(y°, Y;) < £(y°,Y;) by construction of
Y: = ¢g-a+11n¢(Y;). Now on the event A, we have

Z1 :=limsup — Zﬂy Y;) <29 1(yo,3°) + 2% limsup — ZE (v0,Y?)

T—o0 T—o00

T
< 2a—1€(y0’ ) 4 ool (Ml + limsup — Zf yOaYt)ﬂé(yo Yt)>M1)
T—o0 t 1

<27 M(yo,y%) +2°7 (M +1) < 0.
Thus, on the event AN BN Eyy, for any k > k we have for any € > 0,

Oé

T
1 N~
limsupTE (Y3, Y3) — L a0 f(X0), Ye)) < 2% M +e2% 1zl+2k.

T t=1
Let § > 0. Now taking € = m we obtain that on the event AN B N &y, for any
k > k, we have limsupT%EjtT:1 Y, Y1) — Uoar o f(X)), Y1) <6 + ‘2:—: This yields
limsupy_, o Zthl 0(Y3,Y:) — €(éar o f(Xy),Y:)) < 6. Because this holds for any § > 0

we obtain limsupy_, o, %Zthl (Y3, Yy) — U(éar o f(Xy),Yy)) < 0. Finally, on the event
AN BNN37—1 Em of probability one, we have

timsup - 3™ (€03, 70) — foar o F(X0), 7)) <0, ¥M > 1,

where M is an integer. We now observe that on the event A, the same guarantee for o also
holds for 3°. Indeed, let €. For M, := 291 (My-a, + £(3°, y0)) + £(y0,y") we have

T

Z (y°, Y01 £(y°,Y,)> M.

T T
_ 1
<2¢ lf(yo yO)T E ﬂe( 0.Y;)>M, +2a lf g yOaY; (y0,Y;)>M.
t=1 T=1

!

1
<297 ﬁy Y0) Z U(yo,Ys)>2=+1 M —L(yo,y°)
t:l

T

a— 1

+2 Z (Y0, Y1) Lo(yy,vi)>2-o+1 M—£(yo,y°)
T

T
Z (40, Y8) Lo(yo,v,)> M, .

’ﬂ \

Hence, we obtain limsupy_, ., 7 ZT:l 0(3°, Yt)ﬂe(yU,Yt)zMe < e. We now write

T

%Ze(w o f(Xy),Ys) — £(f(X1), V)

t=1
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t=1
T
1
+TZ(€(f(Xt) ) = €(f(X0), Y1) Lagpex,)oy<mr Leqy, o)>2-a+1ne
t=1
1 T
<7D (200°Y)) = 2 T (X0),4") Lagrix g0rzm
t=1

T
1 —a
tT E (200F(X2),4%) — 27T H(°, Y2)) La(r(x) o)< Levi o) 2-0+1 1nt

2a—1
QM2 M

T
2
<D U Y Ly, yoyzaen T

t=1
As aresult, on the event AN BN (3;_; Ear, for any M > 1,

limsup — Zé du o f(X1),Yy) = (f(Xy),Y:) < 2limsup — Zﬁ Y, YY) Loy, yoy>2-om-

T—o0 T—o0

Last, we compute

B

1 . o1

T (g(ffuyt) —K(Yt,yo)) Ly(y, yoy>2-a+1Int

-
Il

1

IN
NI~
(]~

(2%15(?%72/0) + 20‘715(3@,310)) Loy, yoy>2-a+11nt

-
Il

1

IN
NI~
(]~

(hlt + 20‘716(}@7 yO)) ﬂE(Yt,yO)EQ—@‘H Int

20[
T

™= L

IN

K(YZ, yo)]]-Z(Yt,y")EQ*"“rl Int-

t=1
Note that for any e > 0, we have on the event A that for any M > 1,

1
limsup — E€ Yy, y° YLy, o) >2- a+1lnt<hmsup— Z (Y, y )]lg(yw(;)ZM

T—o0 T— 00 t>62°‘ 1a

=limsup — Zf (Ye,o° )Ly, 0>+

T—o00 t 1

Hence, because this holds for any M > 1, if € > 0 we can apply this to the integer M := [MJ
which yields limsupy_, o & 31 £(¥2,5°) Ly(y, yo)>2-a+110¢ < €. This holds for any e > 0.
Hence we obtain on the event A that limsup;_, % Zle E(n,y[))ﬂg(K’yo)ZQ—aﬁ—llnt <0,
which implies that limsupT%oo%Zthl ((Y3,Y;) — £(Y;,Y;) < 0. Putting everything to-
gether, we obtain on AN BN (;;_; Ea that for any M > 1,

lim sup — Zw,n —0(f(X41),Yy) <limsup Zm,n —((Y1,Yy)

T—o00 t 1 T—o00 t 1
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T
Flimsup 1 S A F2) — 6 o F(X0), V)

T—oo —1

T
+ lim sup % Z€(¢M o f(Xt)7i/;f) —U(f(Xe),Y2)
t—1

T—oo

T—oo

T
) 1
< 2lim sup T Z 0y, Yo) Loy, yoy>2-—em-
t=1

Because this holds for all M > 1, we can again apply this result to M := [M,] which
yields limsup;_, . = Z,f:l U(Y;,Y;) — £(f(X;),Y;) < e. This holds for any € > 0. There-
fore, we finally obtain on the event A N B N (\3;_; v of probability one, one has
limsupy_, o 7+ Z?:l 0(Y;,Y;) — £(f(X,),Y;) <0. This ends the proof that Algorithm 1 is
universally consistent under CS processes for adversarial empirically integrable responses.
Now because there exists a ball By(y,r) of (),¢) that does not satisty F-TiME, from The-
orem 5.8, universal learning with responses restricted on this ball cannot be achieved for
processes X ¢ CS. However, these responses are empirically integrable because they are
bounded. Hence, CS is still necessary for universal learning with adversarial empirically
integrable responses. Thus SOLAR = CS and the provided learning rule is optimistically
universal. This ends the proof of the theorem.

E.5. Proof of Theorem 3.2. Fix (X, py) and a value space (), ¢) such that any ball
satisfies F-TIME We now construct our learning rule. Let § € ) be an arbitrary value. For
any M > 1, because By(y, M) is bounded and satisfies F-TiME, there exists an optimistically
universal learning rule f* for value space (By(yo, M),£). For any M > 1, we define the
function ¢ps : Y — ) defined by restricting the space to the ball By(y, M) as follows

i otherwise.

For simplicity, we will denote by Y,M := fM(X<;_1,éar(Y)<t_1, X¢) the prediction of fM
at time ¢ for the responses which are restricted to the ball By(y, M). We now combine these
predictors using online learning into a final learning rule f.. Specifically, we define I; :=
{0 < M <27°t!Int} for all t > 1. We also denote ty; = [e2" 'M] for M > 0 and pose
= 4%/%. For any M € I;, we define

t—1
Lt—l,M = Z e()%gMa(éQ*a*llns(YS))-

s=tn

For simplicity, we will denote by Y the process defined by Y, = $o-an mt(Yy) forall ¢t > 1.
We now construct recursive weights as wp o =1 and for £ > 2 we pose forall 1 <s <t —1

- er ws (VM YY)
lg:= )
ZMGIS Ws—1,M

Now for any M € I; we note L;_1 ps := Zt " s, and pose wy_1 pr i= eMt(Le—1m—Le—iar)

s=tnr
We then choose a random index M; independent from the past history such that
Wt—1,M

P(M, = M) :=
( t ) ZM’EIt U)tfl,M’

, Mel,.
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Input: Historical samples (X¢, ;)7 and new input point X
Optimistically universal learning rule M for value space By(yg, M), ¢), where yg € ) fixed.
Output: Predictions Y; fort <T'

L={0<M<2 e} = W’t> 1

a—1

ty =12 M M>0
woo:=1, Y1 =9"(=rXp)) // Initialisation
fort:2,...,Td0
L1 =Y 1y, LS5 MXcs 1,00 (V)<s-1,Xs) bo-atims(Ys)), Ly 1ar=

t—1 5
ZS:t]M Zs, M e [t
wi_q v =expe(Ly—1 pr — Li—1,m)), MELL

Wi—1,M
pe(M) = ZZ\Welt (Y Mel

Mt"’pt() // Model selection
ft (X 1>¢M( )<t—1,Xt)

5 Yjer, we—1 0 (X100 (V) <0-1,X0) 0g—at1 1, (Ve)
‘ Djer, Wi—1,j

end

Algorithm 2: A learning rule for adversarial empirically integrable responses under SMV
processes for value spaces (), £) such that any ball satisfies F-TiME.

The output the learning rule is fi(X<;—1,Y<;—1, X}) := }A/;Mt. For simplicity, we will denote
by Y, = ft(X<t—1,Y<;1,X}) the prediction of f. at time ¢. This ends the construction of
our learning rule which is summarized in Algorithm 2.

Now let (X,Y) be such that X € SOUL and Y empirically integrable. By Lemma 7.3,
there exists some value yo € ) such that on an event A of probability one, we have
for any e, a threshold M, > 0 with limsupp_, . th 120, Ye) Ly viyonr, < € We
fix a measurable fugctlon f:X—= Y. Also, for any t > 1 and M € I; we have 0 <
UYMY;) <2070V M ) + 29 10(Y;, ) < 21nt. As a result, for any M, M’ € I, we have
0(YMY;) — 6(Y M Y;)| < 2Int. Because |I;| < 1+ Int for all ¢ > 1, the same proof as
Theorem 3.6 shows that on an event B of probability one, there exists > 0 such that

t
Vt=EVM e, Y (YY) < Ze V) 4 3In% v/t

s=tn s=tn

Further, we know that f is Bayes optimistically universal for value space (By(g, M), ¢). In
particular, because X € SOUL and ¢p7 0 f: X — By(y, M), we have

lim sup — Z@ M o (Yy)) — U(par o f(Xe), dar(Y2)) <0 (a.s.).

T—o0

For simplicity, we introduce 6}/ := % Z;‘F LM d0r(Y2)) — (par o f(Xe), dar(Yi)) and
define £y as the event of probablhty one where the above inequality is satisfied, i.e.,
limsupp_, o (5%4 < 0. Because we always have ¢(Y;,7) < 2-o*+ln¢, we can write

T T
1 . . A A
T ;Z(nan) - E(}/},}/t) = T ; (E(i/;h}/t) - Z(n;ﬂ)) 14(%7@)227&«#1 Int

T
Z (20‘ YY) + 277 E(Y}/,yj)) Loy, g)>2-o+11nt
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T
2
=7 Z (Y, 9) Loy, g)>2-o+1 Int-
The proof of Theorem 3.3 shows that on the event A,
hmsup Z@ Y;g, :[lg(yt g)>2-o+llnt > < 0
T—o0 t 1
which implies limsupy_,oo & 3y, (Y2, Ys) — £(Y2, Y:) < 0. Now let M > 1. We write
1 I
DGR ORI GRID)
t=1

ta—1 T

a—1 a—1
< - +Tt:1 (2 Y7, g) + 2974, )) Loy, g)>m
22-'Mgaps 9o L
<t T;M’t, oy, g)>m

Hence, on the event A, we obtain

limsup — Z€ ( 7¢M(Y;))<2“hmsup Z€ Yo, 9) Vet >

T—o0 T—o00

Finally, we compute

T
" H6ar o F(X0). oai(¥0) — LF(X0). )
t=1
1 T
<7 D (€@, Ye) = €(f(X0),Y2)) Lo x )M Levig <

T
+ % D (E(F(Xe),9) — LF(X0),Y0) Lo xgy< v Loy gy=ar

t=1
T T
1 ) M
<2 D UT YD)y pyza-on o ) Lavigsm
t=1 t=1
T
Z (7, Ye) = L(f (X2), Y2)) Logp(x,).90> M Leev, gy<a—om
1 & ¢
szg(y%)ﬂa&f,yw oM T Z (Yo ) Legygp=ma
t=1 t=1

T
1 o _
tr > (2005, Y2) = 27T F (X0, 9)) La(rx )z Leqvigy<a—on
t=1
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T
Z (¥, Y) Loy, gy>2-m + Zg Y, 9) Logy, gy>
—1 T

We now put all these estimates together. On the event AN BN (3;_; Eu, for any M > 1 and
t > max(t,tpr) we can write

WE

T
;;M’Yt) — ). < 7 3 (0. — (7 o)

t

Il
—_

+
Sl T
M=

(e 50 - 5 50) +

’ﬂ \

i (607,75 — (0, 6s (V1)) + 0

o
I

1

(C(@nr o f(Xp), o (V) — £(f(Xi), V7))

+
el
W

o
I

1
T

3’7 1 SMG ?
+ =N (VM V) — e(VM (V7))
| ()

IA
el
[~

(e, v0) — (V2,7 ) +

)
I

T
+07 + = Z (6ar 0 F(Xe), nr (V1)) — L(f(X), V7).

Thus, we obtain on the event AN BN ﬂM:1 Ep, forany M > 1,

limsup — 25 (Y2, Yz) — £(f(X1),Yy) < limsup — 25 (@, Y) Ly, g)>2-—m

T—o0 t 1 T—o00 t 1

T
+ (14 2%) limsup — Zf Y, 1) Logv, g)>m
T—o0 t 1
On the event A, the same arguments as in the proof of Theorem 3.3 show that we
have same guarantees for yo as for g, i.e., for any € > 0, there exists Me such that
limsupy_, o 7 ZtT:l (Y, y) Ly, 5> i1, < € Therefore, for any e > 0, we can apply the
above equation to M := [2%M, + My-a-1.] to obtain

1+4+2¢
limsup — ZﬁYt,Y} K(f(Xt),)/})ge+2%<26.

T—o0 1=

Because this holds for all € > 0, we can in finally get

T
. 1 A
fmsp 73 (072, v0) - e(£(X0), 7)) <0,
on the event ANE N ar>1 - of probability one. This ends the proof of the theorem.
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