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APPENDIX A: IDENTITIES ON THE LOSS FUNCTION

We recall the following known identities, which we will use to analyze the loss ℓ= ραY .

LEMMA A.1. Let α≥ 1. Then, (a+ b)α ≤ 2α−1(aα + bα) for all a, b≥ 0. Let 0< ϵ≤ 1
and α≥ 1. There exists some constant cαϵ > 0 such that (a+ b)α ≤ (1 + ϵ)aα + cαϵ b

α for all
a, b≥ 0, and cαϵ ≤

(
4α
ϵ

)α.

PROOF. The first identity is classical. A proof of the second one can be found for example
in [4] (Lemma 2.3) where they obtain cαϵ =

(
1 + 1

(1+ϵ)1/α−1

)α
≤
(
4α
ϵ

)α
.
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APPENDIX B: PROOFS OF SECTION 4

B.1. Proof of Theorem 4.1. In this section, we prove that for any δ > 0, the (1 +
δ)C1NN learning rule is optimistically universal for the noiseless setting. The proof fol-
lows the same structure as the proof of the main result in [1] which shows that 2C1NN is
optimistically universal. We first focus on the binary classification setting and show that the
learning rule (1 + δ)C1NN is consistent on functions representing open balls.

PROPOSITION B.1. Fix 0 < δ ≤ 1. Let (X ,B) be a separable Borel space constructed
from the metric ρX . We consider the binary classification setting Y = {0,1} and the ℓ01
binary loss. For any input process X ∈ SMV, for any x ∈ X , and r > 0, the learning rule
(1 + δ)C1NN is consistent for the target function f∗ = 1BρX (x,r).

PROOF. We fix x̄ ∈ X , r > 0 and f∗ = 1B(x̄,r). We reason by the contrapositive and sup-
pose that (1+ δ)C1NN is not consistent on f∗. Then, η := P(LX((1+ δ)C1NN,f∗)> 0)>
0. Therefore, there exists 0< ϵ≤ 1 such that P(LX((1 + δ)C1NN,f∗)> ϵ)> η

2 . Denote by
A := {LX((1+ δ)C1NN,f

∗)> ϵ}. this event of probability at least η
2 . Because X is separa-

ble, let (xi)i≥1 a dense sequence of X . We consider the same partition (Pi)i≥1 ofB(x̄, r) and
the partition (Ai)i≥0 of X as in the original proof of [1], but with the constant cϵ := 1

2·228/(ϵδ)

and changing the construction of the sequence (nl)l≥1 so that for all l≥ 1

P
[
∀n≥ nl, |{i, Pi(τl)∩X<n ̸= ∅}| ≤ ϵδ

210
n

]
≥ 1− δ

2 · 2l+2
and nl+1 ≥

29

ϵδ
nl.

Last, consider the product partition of (Pi)i≥1 and (Ai)i≥0 which we denote Q. Similarly,
we define the same events El,Fl for l ≥ 1. We aim to show that with nonzero probability, X
does not visit a sublinear number of sets of Q.

We now denote by (tk)k≥1 the increasing sequence of all (random) times when (1 +
δ)C1NN makes an error in the prediction of f∗(Xt). Because the event A is satisfied,
Lx((1+ δ)C1NN,f∗)> ϵ, we can construct an increasing sequence of indices (kl)l≥1 such
that tkl

< 2kl

ϵ . For any t≥ 2, we will denote by ϕ(t) the (random) index of the representative
chosen by the (1 + δ)C1NN learning rule. Now let l ≥ 1. Consider the tree G where nodes
are times T := {t≤ tkl

} within horizon tkl
, where the parent relations are given by (t, ϕ(t))

for t ∈ T \ {1}. In other words, we construct the tree in which the parent of each new input
is its representative. Note that by construction of the (1 + δ)C1NN learning rule, each node
has at most 2 children.

B.1.1. Step 1. In this step, we consider the case when the majority of input points on
which (1 + δ)C1NN made a mistake belong to B(x̄, r), i.e., |{k ≤ kl, Xtk ∈B(x̄, r)}| ≥ kl

2 .
We denote H1 this event. Let us now consider the subgraph G̃ given by restricting G only to
nodes in the ball B(x̄, r)—which are mapped to the true value 1—i.e., on times T := {t ≤
tkl
, Xt ∈B(x̄, r)}. In this subgraph, the only times with no parent are times tk with k ≤ kl

and Xtk ∈B(x̄, r), and possibly time t= 1. Therefore, G̃ is a collection of disjoint trees with
roots times {tk, k ≤ kl, xtk ∈B(x̄, r)}, and possibly t= 1 if X1 ∈B(x̄, r). For a given time
tk with k ≤ kl and Xtk ∈B(x̄, r), we denote by Tk the corresponding tree in G̃ with root tk.
We now introduce the notion of good trees. We say that Tk is a good tree if Tk ∩Dtkl

+1 ̸= ∅,
i.e., the tree survived until the last dataset. Conversely a tree is bad if all its nodes were
deleted before time tkl

+ 1. We denote the set of good and bad trees by G = {k : Tk good}
and B = {k : Tk bad}. In particular, we have |G|+ |B|= |{k ≤ kl,Xtk ∈B(x̄, r)}| ≥ kl/2.
We aim to upper bound the number of bad trees. We now focus on trees Tk which induced
a future first mistake, i.e., such that {l ∈ Tk|∃u ≤ tkl

: ϕ(u) = l, ρX (Xl, x̄) ≥ r and ∀v <
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u,ϕ(v) ̸= l} ≠ ∅. We denote the corresponding minimum time lk =min{l ∈ Tk | ∃u ≤ tkl
:

ϕ(u) = l, ρX (Xl, x̄) ≥ r,∀v < u,ϕ(v) ̸= l}. The terminology first mistake refers to the fact
that the first time which used l as representative corresponded to a mistake, as opposed to
l already having a children Xu ∈ B(x̄, r) which continues descendents of l within the tree
Tk. Note that bad trees necessarily induce a future first mistake—otherwise, this tree would
survive. For each of these times lk two scenarios are possible.

1. The value Ulk was never revealed within horizon tkl
: as a result lk ∈Dtkl

+1.
2. The value Ulk was revealed within horizon tkl

. Then, Ulk we revealed using a time t for
which lk was a potential representative. This scenario has two cases:
a) ρX (Xt, x̄) < r. If used as representative ϕ(t) = lk, then lk would not have induced a

mistake in the prediction of Yt.
b) ρX (Xt, x̄)≥ r. If used as representative ϕ(t) = lk, then lk would have induced a mis-

take in the prediction of Yt.

In the case 2.a), if the point is used as representative ϕ(t) = lk and if the correspond-
ing tree Tk was bad, at least another future mistake is induced by Tk—otherwise this
tree would survive. We consider times lk for which the value was revealed, which cor-
responds to the only possible scenario for bad trees. We denote the corresponding set
K := {k : Ulk revealed within horizon tkl

}. We now consider the sequence ka1 , . . . k
a
α con-

taining all indices of K for which scenario 2.a) was followed, ordered by chronological order
for the reveal of Ulka

i
, i.e., Ulka

1
was the first item of scenario 2.a) to be revealed, then Ulka

2

etc. until Ulka
α

. Similarly, we construct the sequence kb1, . . . k
b
β of indices in K corresponding

to scenario 2.b), ordered by order for the reveal of Ulkb
i

. We now consider the events

B :=

{
α+ β ≤ kl

2
− klδ

32

}
, C :=


min(α,⌈kl/8⌉)∑

i=1

Ulka
i
≥ klδ

16

 ,

D :=


min(β,⌈kl/8⌉)∑

i=1

Ulkb
i

≥ klδ

16

 .

We now show that for l > 16, under the event

Mkl
:=H1 ∩ [B ∪ ({α≥ ⌈kl/8⌉} ∩ C)∪ ({α< ⌈kl/8⌉} ∩D)] ,

we have that |G| ≥ klδ
32 . Suppose that Mkl

is met. First note that because a bad tree can only
fall into scenarios 2.a) or 2.b) we have |B| ≤ α+ β. Hence |G| ≥ kl

2 −α− β because of H1.
Thus, the result holds directly if B is satisfied. We can now suppose that Bc is satisfied, i.e.,
α+ β > kl

2 − klδ
32 . Now suppose that α≥ ⌈kl/8⌉ and C are also satisfied. For all indices such

that Ulka
i
= 1, i.e., we fall in case 2.a) and lka

i
is used as representative, the corresponding

tree Tka
i

would need to induce at least an additional mistake to be bad. Recall that in total
at most kl/2 mistakes are induced by points of T . Also, by definition of the set K , α + β
mistakes are already induced by the times tk for k ∈K . These corresponded to the future
first mistakes for all times {lk : k ∈K}. Hence, we obtain

|G| ≥
α∑

i=1

Ulka
i
−
(
kl
2
− α− β

)
≥ klδ

16
− klδ

32
=
klδ

32
.

Now consider the case where H1, Bc, α< ⌈kl/8⌉ and D are met. In particular, because l > 16
we have kl > 16 hence kl

2 − klδ
32 ≥ 2⌈kl/8⌉. Thus, because of Bc we have β > kl

2 − klδ
32 −α≥
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⌈kl/8⌉. Now observe that for all indices such that Ulkb
i

= 1, the time lk induced two mistakes.
Therefore, counting the total number of mistakes we obtain

kl
2
≥ α+ β +

β∑
i=1

Ulkb
i

≥ kl
2
− klδ

32
+
klδ

16

which is impossible. This ends the proof that under Mkl
we have |G| ≥ klδ

32 .
We now aim to lower bound the probability of this event. To do so, we first upper bound the

probability of the event {α ≥ ⌈kl/8⌉} ∩ Cc. We introduce a process (Zi)
⌈kl/8⌉
i=1 such that for

all i≤max(α, ⌈kl/8⌉), Zi = Ulka
i
− δ and Zi = 0 for α< i≤ ⌈kl/8⌉. Because of the specific

ordering chosen ka1 , . . . , k
a
α, this process is a sequence of martingale differences, with values

bounded by 1 in absolute value. Therefore, for l > 16 the Azuma-Hoeffing inequality yields

P

⌈kl/8⌉∑
i=1

Zi ≤−klδ
16

≤ e
− k2

l
δ2

2·162(kl/8+1) ≤ e−
klδ

2

27 .

But on the event {α≥ ⌈kl/8⌉} ∩ Cc we have precisely

⌈kl/8⌉∑
i=1

Zi =

min(α,⌈kl/8⌉)∑
i=1

Ulka
i
− ⌈kl/8⌉δ ≤

klδ

16
− ⌈kl/8⌉δ ≤−klδ

16
.

Therefore P[Cc ∩ {α ≥ ⌈kl/8⌉}]≤ P
[∑⌈kl/8⌉

i=1 Zi ≤−klδ
16

]
≤ e−klδ2/27

. Similarly we obtain

P[Dc ∩ {β ≥ ⌈kl/8⌉}]≤ e−klδ2/27

. Finally we write for any l > 16,

P[H1 \Mkl
] = P[H1 ∩Bc ∩ ({α< ⌈kl/8⌉} ∪ Cc)∩ ({α≥ ⌈kl/8⌉} ∪Dc)]

= P[H1 ∩Bc ∩ [({α< ⌈kl/8⌉} ∩Dc)∪ ({α≥ ⌈kl/8⌉} ∩ Cc)]]

≤ P[Cc ∩ {α≥ ⌈kl/8⌉}] + P[Dc ∩ {α< ⌈kl/8⌉} ∩ Bc]

≤ P[Cc ∩ {α≥ ⌈kl/8⌉}] + P[Dc ∩ {β ≥ ⌈kl/8⌉}]

≤ 2e−
klδ

2

27 .

In particular, we obtain

P
[{

|G| ≥ klδ

32

}
∩H1

]
≥ P[Mkl

]≥ P[H1]− 2e−
klδ

2

27 .

B.1.2. Step 2. We now consider the opposite case, when a majority of mistakes are made
outside B(x̄, r), i.e., |{k ≤ kl, Xtk ∈ B(x̄, r)}| < kl

2 , which corresponds to the event Hc
1.

Similarly, we consider the subgraph G̃ given by restricting G only to nodes outside the ball
B(x̄, r), i.e., on times T := {t ≤ tkl

, ρX (Xt, x̄) ≥ r)}. Again, G̃ is a collection of disjoint
trees with roots times {tk, k ≤ kl, ρX (Xtk , x̄)≥ r)}—and possibly t= 1. For a given time
tk with k ≤ kl and ρX (Xtk , x̄)≥ r, we denote by Tk the corresponding tree in G̃ with root tk.
Similarly to the previous case, Tk is a good tree if Tk ∩ Dtkl

+1 ̸= ∅ and bad otherwise. We
denote the set of good and bad trees by G= {k : Tk good}. We can again focus on trees Tk
which induced a future first mistake, i.e., such that {l ∈ Tk|∃u≤ tkl

: ϕ(u) = l, ρX (Xl, x̄)<
r and ∀v < u,ϕ(v) ̸= l} ̸= ∅ and more specifically their minimum time lk = min{l ∈ Tk |
∃u ≤ tkl

: ϕ(u) = l, ρX (Xl, x̄) < r,∀v < u,ϕ(v) ̸= l}. The same analysis as above shows
that

P
[{

|G| ≥ klδ

32

}
∩Hc

1

]
≥ P[Hc

1]− 2e−
klδ

2

27 .
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Therefore, if G denotes more generally the set of good trees (where we follow the corre-
sponding case 1 or 2) we finally obtain that for any l > 16,

P
[
|G| ≥ klδ

32

]
≥ 1− 4e−

klδ
2

27 .

We denote by M̃kl
this event. By Borel-Cantelli lemma, almost surely, there exists l̂ such

that for any l ≥ l̂, the event M̃kl
is satisfied. We denote M :=

⋃
l≥1

⋂
l′≥l M̃kl

this event
of probability one. The aim is to show that on the event A ∩ M ∩

⋂
l≥1(El ∩ Fl), which

has probability at least η
4 , X disproves the SMV condition. In the following, we consider a

specific realization x of the process X falling in the event A∩M∩
⋂

l≥1(El ∩Fl)—x is not
random anymore. Let l̂ be the index given by the event M such that for any l≥ l̂, Mkl

holds.
We consider l ≥ l̂ and successively consider different cases in which the realization x may
fall.

• In the first case, we suppose that a majority of mistakes were made in B(x̄, r), i.e., that
we fell into event H1 similarly to Step 1. Because the event M̃kl

is satisfied we have
|G| ≥ klδ

25 . Now note that trees are disjoint, therefore,
∑

k∈G |Tk| ≤ tkl
< 2kl

ϵ . Therefore,∑
k∈G

1|Tk|≤ 27

ϵδ

= |G| −
∑
k∈G

1|Tk|> 27

ϵδ

> |G| − ϵδ

27

∑
k∈G

|Tk| ≥
klδ

25
− klδ

26
=
klδ

26
.

We will say that a tree |Tk| is sparse if it is good and has at most 27

ϵδ nodes. With S :=

{k ∈G, |Tk| ≤ 27

ϵδ } the set of sparse trees, the above equation yields |S| ≥ klδ
26 . The same

arguments as in [1] give

|{i, Ai ∩x≤tkl
̸= ∅}| ≥ |S| ≥ klδ

26
≥ ϵδ

27
tkl
.

The only difference is that we chose cϵ so that 22·
27

ϵδ
−1 ≤ 1

4cϵ
as needed in the original

proof.
• We now turn to the case when the majority of input points on which (1 + δ)C1NN made

a mistake are not in the ball B(x̄, r), similarly to Step 2. Using the same notion of sparse
tree S := {k ∈G, |Tk| ≤ 27

ϵδ }, we have again |S| ≥ klδ
26 . We use the same arguments as in

the original proof. Suppose |{k ∈ S, ρX (xpk
d(k)
, x̄)> r}| ≥ |S|

2 , then we have

|{i, Ai ∩x≤tkl
̸= ∅}| ≥ |{k ∈ S, ρX (xpk

d(k)
, x̄)> r}| ≥ |S|

2
≥ klδ

27
≥ ϵδ

28
tkl
.

B.1.3. Step 3. In this last step, we suppose again that the majority of input points
on which (1 + δ)C1NN made a mistake are not in the ball B(x̄, r) but that |{k ∈
S, ρX (xpk

d(k)
, x̄)> r}|< |S|

2 . Therefore, we obtain

|{k ∈ S, ρX (xpk
d(k)
, x̄) = r}|= |S| − |{k ∈ S, ρX (xpk

d(k)
, x̄)> r}| ≥ |S|

2
≥ klδ

27
≥ ϵδ

28
tkl
.

We will now make use of the partition (Pi)i≥1. Because (nu)u≥1 is an increasing sequence,
let u≥ 1 such that nu+1 ≤ tkl

≤ nu+2 (we can suppose without loss of generality that tk0
>

n2). Note that we have nu ≤ ϵδ
29nu+1 ≤ ϵδ

29 tkl
. Let us now analyze the process between times

nu and tkl
. In particular, we are interested in the indices T = {k ∈ S, ρX (xpk

d(k)
, x̄) = r} and

times Uu = {pkd(k) : nu < pkd(k) ≤ kl, k ∈ T}. In particular, we have

|Uu| ≥ |{k ∈ S, ρX (xpk
d(k)
, x̄) = r}| − nu ≥

ϵδ

28
tkl

− ϵδ

29
tkl

=
ϵδ

29
tkl
.
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Defining T ′ := {k ∈ T, r− r
2u+3 ≤ ρX (xϕ(tk), x̄)< r}, the same arguments as in the original

proof yield

|{i, Pi ∩x≤tkl
̸= ∅}| ≥ |T ′| ≥ |Uu| − |{i, Pi(τu)∩xUu

̸= ∅}| ≥ ϵδ

29
tkl

− ϵδ

210
tkl

=
ϵδ

210
tkl
.

B.1.4. Step 4. In conclusion, in all cases, we obtain

|{Q ∈Q, Q∩x≤tkl
̸= ∅}| ≥max(|{i, Ai ∩x≤tkl

̸= ∅}|, |{i, Pi ∩x≤tkl
̸= ∅}|)≥ ϵδ

210
tkl
.

Because this is true for all l ≥ l̂ and tkl
is an increasing sequence, we conclude that x

disproves the SMV condition for Q. Recall that this holds whenever the event A ∩ M ∩⋂
l≥1(El ∩Fl) is met. Thus,

P[|{Q ∈Q, Q∩X<T }|= o(T )]≤ 1− P

A∩M∩
⋂
l≥1

(El ∩Fl)

≤ 1− η

4
< 1.

This shows that X /∈ SMV which is absurd. Therefore (1+ δ)C1NN is consistent on f∗. This
ends the proof of the proposition.

Using the fact that in the (1+ δ)C1NN learning rule, no time t can have more than 2 chil-
dren, as the 2C1NN rule, we obtain with the same proof as in [1] the following proposition.

PROPOSITION B.2. Fix 0< δ ≤ 1. Let (X ,B) be a separable Borel space. For the binary
classification setting, the learning rule (1+δ)C1NN is universally consistent for all processes
X ∈ SMV.

Finally, we use a result from [2] which gives a reduction from any near-metric bounded
value space to binary classification.

THEOREM B.3 ([2]). If (1 + δ)C1NN is universally consistent under a process X for
binary classification, it is also universally consistent under X for any separable near-metric
setting (Y, ℓ) with bounded loss.

Together with Proposition B.2, Theorem B.3 ends the proof of Theorem 4.1.

B.2. Proof of Theorem 4.3. Let 0< ϵ≤ 1. We first analyze the prediction of the learn-
ing rule f ϵ· . In the rest of the proof, we denote ℓ̄(Ŷt(ϵ), Yt) :=

∑
y∈Yϵ

P(Ŷt(ϵ) = y)ℓ(y,Yt) the
immediate expected loss at each iteration. The learning rule was constructed so that we per-
form exactly the classical Hedge / exponentially weighted average forecaster on each cluster

of times C(t) = {u≤ t : u
ϕ∼ t}. As a result [3] (Theorem 2.2), we have that for any t≥ 1,

1

ℓ̄

∑
u∈C(t)

ℓ̄(Ŷu(ϵ), Yu)≤
1

ℓ̄
min
y∈Yϵ

∑
u∈C(t)

ℓ(y,Yu) +
ln |Yϵ|
ℓ̄ηϵ

+
|C(t)|ℓ̄ηϵ

8

≤ 1

ℓ̄
min
y∈Yϵ

∑
u∈C(t)

ℓ(y,Yu) +

√
ln |Yϵ|
8Tϵ

(Tϵ + |C(t)|)

≤ 1

ℓ̄
min
y∈Yϵ

∑
u∈C(t)

ℓ(y,Yu) +
ϵ

ℓ̄
max(Tϵ, |C(t)|)
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Now consider a horizon T ≥ 1, and enumerate all the clusters C1(T ), . . . ,Cp(T )(T ) at horizon
T , i.e. the classes of equivalence of ϕ among the times {t≤ T}. Note that if a cluster i≤ p
has |Ci(T )|< Tϵ, then either it must contain a time t ∈N which is a leaf of the tree formed
by ϕ until time T , or it is a cluster of duplicates of an instance Xu which has already had
Tϵ

ϵ occurrences. As a result, the times falling into such clusters of duplicates with less than
Tϵ members form at most a proportion ϵ of the total T times. Denote by Ai := {t≤ T : t ∈
N , |{u ≤ T : ϕ(u) = t}| = i} times which have excactly i children for i ∈ {0,1,2}. Note
that no time can have more than 2 children. In particular A0 is the set of leaves. Then, by
summing the above equations we obtain

T∑
t=1

ℓ̄(Ŷt(ϵ), Yt)≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + ϵmax(Tϵ, |Ci(T )|)


≤

p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + ϵT + Tϵ|{1≤ i≤ p : |Ci(T )|< Tϵ}|

≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + ϵT + Tϵ|A0|+ ϵTϵ,

where in the last inequality we used the fact that all clusters with |Ci(T )| < Tϵ contain a
leaf from A0, which is therefore distinct for each such cluster. Now note that by counting the
number of edges of the tree structure we obtain 1

2(3|A2|+2|A1|+ |A0|−1) = T−1 = |A0|+
|A1|+ |A2| − 1, where the −1 on the left-hand side accounts for the root of this tree which
does not have a parent. Hence we obtain |A0|= |A2|+ 1. Further, |A2| ≤ |{t≤ T : Ut = 1}|
which follows a binomial distribution B(T, δϵ). Therefore, using the Chernoff bound, with
probability 1− e−Tδϵ/3 we have

T∑
t=1

ℓ̄(Ŷt(ϵ), Yt)≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + 2ϵT + Tϵ(1 + 2Tδϵ)

≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + Tϵ + 3ϵT.

We now observe that the sequence {ℓ(Ŷt(ϵ), Yt) − ℓ̄(Ŷt(ϵ), Yt)}T≥1 is a sequence of mar-
tingale differences bounded by ℓ̄ in absolute value. Hence, the Hoeffding-Azuma inequality
yields that for any T ≥ 1, with probability 1− 1

T 2 − e−Tδϵ/3,

T∑
t=1

ℓ(Ŷt(ϵ), Yt)≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + Tϵ + 3ϵT + 2ℓ̄
√
T lnT .

Because
∑

T≥1
1
T 2 + e−Tδϵ/3 <∞ the Borel-Cantelli lemma implies that with probability

one, there exists a time T̂ such that

∀T ≥ T̂ ,

T∑
t=1

ℓ(Ŷt(ϵ), Yt)≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + Tϵ + 2ℓ̄
√
T lnT + 3ϵT.

We denote by Eϵ this event. We are now ready to analyze the risk of the learning rule f ϵ· . Let
f :X →Y a measurable function to which we compare the prediction of f ϵ· . By Theorem 4.1,
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the rule (1+ δϵ)C1NN is optimistically universal in the noiseless setting. Therefore, because
X ∈ SOUL we have in particular

1

T

T∑
t=1

ℓ((1 + δϵ)C1NNt(X≤t−1, f(X≤t−1),Xt), f(Xt))→ 0 (a.s.),

i.e., almost surely, 1
T

∑
t≤T,t∈N ℓ(f(Xϕ(t)), f(Xt))→ 0 — the times corresponding to du-

plicate instances incur a 0 loss by memorization. We denote by Fϵ this event of probability
one. Using Lemma A.1, we write for any u= 1, . . . , Tϵ − 1,∑

t≤T,t∈N
ℓ(f(Xϕu(t)), f(Xt))

≤ 2α−1
∑

t≤T,t∈N
ℓ(f(Xϕu−1(t)), f(Xt)) + 2α−1

∑
t≤T,t∈N

ℓ(f(Xϕl(t)), f(Xϕu−1(t)))

≤ 2α−1
∑

t≤T,t∈N
ℓ(f(Xϕu−1(t)), f(Xt))

+ 2α−1
∑

t≤T,t∈N
ℓ(f(Xϕ(t)), f(Xt)) · |{l≤ T : ϕu−1(l) = t}|

≤ 2α−1
∑

t≤T,t∈N
ℓ(f(Xϕu−1(t)), f(Xt)) + 2α+u−2

∑
t≤T,t∈N

ℓ(f(Xϕ(t)), f(Xt))

where we used the fact that times have at most 2 children. Therefore, iterating the above
equations, we obtain that on Fϵ, for any u= 1, . . . , Tϵ − 1

1

T

∑
t≤T,t∈N

ℓ(f(Xϕu(t)), f(Xt))≤

(
u∑

k=1

2α+k−2+(α−1)(u−k)

)
1

T

∑
t≤T,t∈N

ℓ(f(Xϕ(t)), f(Xt))

≤ 2uα

T

∑
t≤T,t∈N

ℓ(f(Xϕ(t)), f(Xt))→ 0.

In the rest of the proof, for any y ∈ Y , we will denote by yϵ a value in the ϵ−net Yϵ such
that ℓ(y, yϵ) ≤ ϵ. We now pose µϵ = min{0 < µ ≤ 1 : cαµ ≤ 1√

ϵ
} if the corresponding set

is non-empty and µϵ = 1 otherwise. Note that because cαµ is non-increasing in µ, we have

µϵ −→ϵ→0 0. Now let 0< µ≤ 1. µ := ϵ
1

α+1 . Finally, for any cluster Ci(T ), let ti =min{u ∈
Ci(T )}. Putting everything together, on the event Eϵ ∩Fϵ, for any T ≥ T̂ , we have

T∑
t=1

ℓ(Ŷt(ϵ), Yt)≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y,Yu) + Tϵ + 2ℓ̄
√
T lnT + 3ϵT

≤
p(T )∑
i=1

∑
u∈Ci(T )

ℓ(f(Xti)
ϵ, Yu) + Tϵℓ̄+ 2ℓ̄

√
T lnT + 3ϵT

≤
p(T )∑
i=1

∑
u∈Ci(T )

[cαµϵ
ℓ(f(Xti)

ϵ, f(Xti)) + (cαµϵ
)2ℓ(f(Xti), f(Xu))

+ (1 + µϵ)
2ℓ(f(Xu), Yu)] + Tϵℓ̄+ 2ℓ̄

√
T lnT + 3ϵT
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≤ (1 + µϵ)
2

T∑
t=1

ℓ(f(Xt), Yt) + (cαµϵ
)2
Tϵ
ϵ

Tϵ−1∑
u=1

∑
t≤T,t∈N

ℓ(f(Xt), f(Xϕu(t)))

+ Tϵℓ̄+ 2ℓ̄
√
T lnT + (3+ cαµϵ

)ϵT

≤
T∑
t=1

ℓ(f(Xt), Yt) +
(cαµϵ

)2Tϵ

ϵ

Tϵ−1∑
u=1

∑
t≤T,t∈N

ℓ(f(Xt), f(Xϕu(t)))

+ Tϵℓ̄+ 2ℓ̄
√
T lnT + (3ϵ+ ϵcαµϵ

+ 3µϵ)T,

where in the third inequality we used Lemma A.1 twice, and in the fourth inequality we used
the fact that clusters containing distinct instances have at most Tϵ

ϵ duplicates of each instance.
Hence, for any ϵ < (cα1 )

−2, on the event Eϵ ∩Fϵ, we obtain

limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt(ϵ), Yt)− ℓ(f(Xt), Yt)≤ 3ϵ+ ϵcαµϵ
+ 3µϵ ≤ 3ϵ+

√
ϵ+ 3µϵ,

where µϵ −→ϵ→0 0. We now denote δϵ := 2ϵ +
√
ϵ + 3µϵ and i0 = ⌈2 ln c

α
1

ln 2 ⌉. We now turn
to the final learning rule and show that by using the predictions of the rules f ϵi· for i≥ 0, it
achieves zero risk. First, by the union bound, on the event

⋂
i≥0 Eϵi ∩Fϵi of probability one,

limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt)≤ δϵi , ∀i≥ i0.

Now define H the event probability one according to Lemma 4.2 such that there exists t̂ for
which

∀t≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷt, Yt)≤
t∑

s=ti

ℓ(Ŷt(ϵi), Yt) + (2 + ℓ̄+ ℓ̄2)
√
t ln t.

In the rest of the proof we will suppose that the event H∩
⋂

i≥0 Eϵi ∩Fϵi is met. Let i≥ i0.
For any T ≥max(t̂, ti), we have

1

T

T∑
t=1

ℓ(Ŷt, Yt)−ℓ(f(Xt), Yt)≤
ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

≤ ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) + (2 + ℓ̄+ ℓ̄2)

√
lnT

T

≤ 1

T

T∑
t=1

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) +
2ti
T
ℓ̄+ (2+ ℓ̄+ ℓ̄2)

√
lnT

T
.

Therefore we obtain limsupT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤ δϵi . Because this holds

for any i≥ i0 on the event H∩
⋂

i≥0 Eϵi ∩Fϵi of probability one, and δϵi → 0 for i→∞, we
have

limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤ 0.

This ends the proof of the theorem.
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B.3. Proof of Lemma 4.2. We first introduce the following helper lemma which can be
found in [3].

LEMMA B.4 ([3]). For all N ≥ 2, for all β ≥ α≥ 0 and for all d1, . . . , dN ≥ 0 such that∑N
i=1 e

−αdi ≥ 1,

ln

∑N
i=1 e

−αdi∑N
i=1 e

−βdi

≤ β − α

α
lnN.

We are now ready to compare the predictions of the learning rule f· to the predictions of
the rules f ϵ· .

For any t ≥ 0, we define the instantaneous regret rt,i = ℓ̂t − ℓ(Ŷt(ϵi), Yt). We first note
that |rt,i| ≤ ℓ̄. We now define w′

t−1,i := eηt−1(L̂t−1,i−Lt−1,i). We also introduce Wt−1 =∑
i∈It wt−1,i and W ′

t−1 =
∑

i∈It−1
w′
t−1,i. We denote the index kt ∈ It such that L̂t,kt

−
Lt,kt

=maxi∈It L̂t,i −Lt,i. Then we write

1

ηt
ln
wt−1,kt−1

Wt−1
− 1

ηt+1
ln
wt,kt

Wt
=

(
1

ηt+1
− 1

ηt

)
ln

Wt

wt,kt

+
1

ηt
ln
Wt/wt,kt

W ′
t/w

′
t,kt

+
1

ηt
ln
wt−1,kt−1

w′
t,kt

+
1

ηt
ln

W ′
t

Wt−1
.

By construction, we have ln Wt

wt,kt
≤ ln |It| ≤ ln(1 + ln t). Further, we have that

1

ηt
ln
Wt/wt,kt

W ′
t/w

′
t,kt

=
1

ηt
ln

∑
i∈It+1

eηt+1(L̂t,i−Lt,i−L̂t,kt+Lt,kt )∑
i∈It e

ηt(L̂t,i−Lt,i−L̂t,kt+Lt,kt )

=
1

ηt
ln

∑
i∈It+1

wt,i∑
i∈It wt,i

+
1

ηt
ln

∑
i∈It+1

eηt+1(L̂t,i−Lt,i−L̂t,kt+Lt,kt )∑
i∈It+1

eηt(L̂t,i−Lt,i−L̂t,kt+Lt,kt )

≤ 1

ηt
ln

∑
i∈It+1

wt,i∑
i∈It wt,i

+
1

ηt

(
ηt − ηt+1

ηt+1

)
ln |It+1|

≤ |It+1| − |It|
ηt
∑

i∈It wt,i
+

(
1

ηt+1
− 1

ηt

)
ln(1 + ln(t+ 1)),

where in the first inequality we applied Lemma B.4. We also have
1

ηt
ln
wt−1,kt−1

w′
t,kt

= (L̂t−1,kt−1
−Lt−1,kt−1

)− (L̂t,kt
,Lt,kt

).

Last, because |rt,i| ≤ ℓ̄ for all i ∈ It, we can use Hoeffding’s lemma to obtain

1

ηt
ln

W ′
t

Wt−1
=

1

ηt
ln
∑
i∈It

wt−1,i

Wt−1
eηtrt,i ≤ 1

ηt

(
ηt
∑
i∈It

rt,i
wt−1,i

Wt−1
+
η2t (2ℓ̄)

2

8

)
=

1

2
ηtℓ̄

2.

Putting everything together gives

(1)
1

ηt
ln
wt−1,kt−1

Wt−1
− 1

ηt+1
ln
wt,kt

Wt
≤ 2

(
1

ηt+1
− 1

ηt

)
ln(1 + ln(t+ 1)) +

|It+1| − |It|
ηt
∑

i∈It wt,i

+ (L̂t−1,kt−1
−Lt−1,kt−1

)− (L̂t,kt
−Lt,kt

) +
1

2
ηtℓ̄

2.
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First suppose that we have
∑

i∈It wt,i ≤ 1. Then either kt ∈ It+1 \ It in which case L̂t,kt
−

Lt,kt
= 0, or we have directly

L̂t,kt
−Lt,kt

≤ 1

ηt+1
ln

[∑
i∈It

wt,i

]
≤ 0.

Otherwise, let t′ =min{1≤ s≤ t : ∀s≤ s′ ≤ t,
∑

i∈Is′ ws′,i ≥ 1}. We sum equation (1) for
s= t′, . . . , t which gives

1

η1
ln
wt′−1,kt′−1

Wt′−1
− 1

ηt+1
ln
wt,kt

Wt
≤ 2

ηt+1
ln(1 + ln(t+ 1)) +

|It+1|
ηt

+ (L̂t′−1,kt′−1
−Lt′−1,kt′−1

)− (L̂t,kt
−Lt,kt

) +
ℓ̄2

2

t∑
s=t′

ηs.

Note that we have wt,kt

Wt
≤ 1 and

wt′−1,k
t′−1

Wt′−1
≥ 1

|It′−1| ≥
1

1+ln t . Also, assuming t′ ≥ 2, since∑
i∈It′−1

wt′−1,i < 1, we have for any i ∈ It′−1 that L̂t′−1,i−Lt′−1,i ≤ 0, hence L̂t′−1,kt′−1
−

Lt′−1,kt′−1
≤ 0. If t′ = 1 we have directly L̂0,k0

− L0,k0
= 0. Finally, using the fact that∑t

s=1
1√
s
≤ 2

√
t, we obtain

L̂t,kt
−Lt,kt

≤ ln(1 + ln(t+ 1))

(
1 + 2

√
t+ 1

ln(t+ 1)

)
+ (1+ ln(t+ 1))

√
t

ln t
+ ℓ̄2

√
t ln t

≤ (3/2 + ℓ̄2)
√
t ln t,

for all t ≥ t0 where t0 is a fixed constant. This in turn implies that for all t ≥ t0 and i ∈
It, we have L̂t,i − Lt,i ≤ (3/2 + ℓ̄2)

√
t ln t. Now note that |ℓ(Ŷt, Yt) − ℓ̂t| ≤ ℓ̄. Hence, we

can use Hoeffding-Azuma inequality for the variables ℓ(Ŷt, Yt)− ℓ̂t that form a sequence of

martingale differences to obtain P
[∑t

s=ti
ℓ(Ŷs, Ys)> L̂t,i + u

]
≤ e−

2u2

tℓ̄2 . Hence, for t ≥ t0

and i ∈ It, with probability 1− δ, we have
t∑

s=ti

ℓ(Ŷs, Ys)≤ L̂t,i + ℓ̄

√
t

2
ln

1

δ
≤ Lt,i + (3/2 + ℓ̄2)

√
t ln t+ ℓ̄

√
t

2
ln

1

δ
.

Therefore, since |It| ≤ 1+ ln t, by union bound with probability 1− 1
t2 we obtain that for all

i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ys)≤ Lt,i+(3/2+ ℓ̄2)
√
t ln t+ ℓ̄

√
t

2
ln(1 + ln t)+ ℓ̄

√
t ln t≤ (2+ ℓ̄+ ℓ̄2)

√
t ln t,

for all t≥ t1 where t1 ≥ t0 is a fixed constant. The Borel-Cantelli lemma implies that almost
surely, there exists t̂≥ 0 such that

∀t≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ys)≤ Lt,i + (2+ ℓ̄+ ℓ̄2)
√
t ln t.

This ends the proof of the lemma.
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APPENDIX C: PROOFS OF SECTION 5

C.1. Proof of Theorem 5.1. We start by checking that with the defined loss (N, ℓ) is
indeed a metric space (N, ℓ). We only have to check that the triangular inequality is satisfied,
the other properties of a metric being directly satisfied. By construction, the loss has values
in {0, 12 ,1}. Now let i, j, k ∈N. The triangular inequality ℓ(i, j)≤ ℓ(i, k)+ ℓ(k, j) is directly
satisfied if two of these indices are equal. Therefore, we can suppose that they are all distinct
and as a result ℓ(i, j), ℓ(i, k), ℓ(k, j) ∈ {1

2 ,1}. Therefore

ℓ(i, j)≤ 1≤ ℓ(i, k) + ℓ(k, j),

which ends the proof that ℓ is a metric.
Now let (X ,B) be a separable metrizable Borel space. Let X /∈ CS. We aim to show that

universal online learning under adversarial responses is not achievable under X. Because
X /∈ CS, there exists a sequence of decreasing measurable sets {Ai}i≥1 with Ai ↓ ∅ such that
E[µ̂X(Ai)] does not converge to 0 for i→∞. In particular, there exist ϵ > 0 and an increasing
subsequence (il)l≥1 such that E[µ̂X(Ail)]≥ ϵ for all l≥ 1. We now denote Bl :=Ail \Ail+1

for any l≥ 1. Then {Bl}l≥1 forms a sequence of disjoint measurable sets such that

E

µ̂X

⋃
l′≥l

Bl′

≥ ϵ, l≥ 1.

Therefore, for any l ≥ 1 because E
[
µ̂X

(⋃
l′≥lBl′

)]
≤ P

[
µ̂X

(⋃
l′≥lBl′

)
≥ ϵ

2

]
+ ϵ

2 we ob-
tain

P

µ̂X

⋃
l′≥l

Bl′

≥ ϵ

2

≥ ϵ

2
.

Now because µ̂ is increasing we obtain

P

µ̂X

⋃
l′≥l

Bl′

≥ ϵ

2
,∀l≥ 1

= lim
L→∞

P

µ̂X

⋃
l′≥l

Bl′

≥ ϵ

2
,1≤ l≤ L


= lim

L→∞
P

µ̂X

⋃
l′≥L

Bl′

≥ ϵ

2

≥ ϵ

2
.

We will denote by A this event in which for all l ≥ 1, we have µ̂X

(⋃
l′≥lBl′

)
≥ ϵ

2 . Under

the event A, for any l, t0 ≥ 1, there always exists t1 > t0 such that 1
t1
∑t1

t=1 1
⋃

l′≥l Bl′
(Xt)≥

3ϵ
8 . We construct a sequence of times (tp)p≥1 and indices (lp)p≥1, (up)p≥1 by induction as

follows. We first pose u0 = t0 = 0. Now assume that for p≥ 1, the time tp−1 and index up−1

are defined. We first construct an index lp > up−1 such that

P

X≤tp−1
∩

⋃
l≥lp

Bl

 ̸= ∅

≤ ϵ

2p+3
.

We will denote by Ep the complementary of this event. Note that finding such in-

dex lp is possible because the considered events {X≤tp−1
∩
(⋃

l′≥lBl′

)
̸= ∅} are de-

creasing as l > up−1 increases and we have
⋂

l>up−1

{
X≤tp−1

∩
(⋃

l′≥lBl′

)
̸= ∅
}

=
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X≤tp−1

∩
(⋂

l>up−1

⋃
l′≥lBl′

)
̸= ∅
}
= ∅. We then construct tp > tp−1 such that

P

Ac ∪
⋃

tp−1<t≤tp

{
1

t

t∑
u=1

1
⋃

l≥lp
Bl
(Xu)≥

3ϵ

8

}≥ 1− ϵ

2p+4
.

This is also possible because A ⊂
⋃

t> 8

ϵ
tp−1

{
1
t

∑t
u=1 1

⋃
l≥lp

Bl
(Xu)≥ 3ϵ

8

}
. Last, we can

now construct up ≥ lp such that

P

Ac ∪
⋃

tp−1<t≤tp

{
1

t

t∑
u=1

1
⋃

lp≤l≤up
Bl
(Xu)≥

ϵ

4

}≥ 1− ϵ

2p+3
,

which is possible using similar arguments as above. We denote Fp this event. This ends the
recursive construction of times tp and indices lp for all p ≥ 1. Note that by construction,
P[Ec

p],P[Fc
p ] ≤ ϵ

2p+3 . Hence, by union bound, the event A ∩
⋂

p≥1(Ep ∩ Fp) has probability
P[A ∩

⋂
p≥1(Ep ∩ Fp)] ≥ P[A]− ϵ

4 ≥ ϵ
4 . To simplify the rest of the proof, we denote B̃p =⋃

lp≤l≤up
Bl for any p≥ 1. Also, for any t1 ≤ t2, we denote by

Np(t1, t2) =

t2∑
t=t1

1B̃p
(Xt)

the number of times that set B̃p has been visited between times t1 and t2.
We now fix a learning rule f· and construct a process Y for which consistency will not be

achieved on the event A∩
⋂

p≥1(Ep ∩Fp). Precisely, we first construct a family of processes
Yb indexed by a sequence of binary digits b = (bi)i≥1. The process Yb is defined such that
for any p≥ 1, and for all tp−1 < t≤ tp,

Y b
t :=


ntp + 4up(t) + 2bi(p,up(t)) + bi(p,up(t))+1 if Xt ∈ B̃p,

ntp′ + 4tp′ + {bi(p′,tp′−1) . . . bi(p′,1)bi(p′,0)}2 if Xt ∈ B̃p′ , p′ < p,

0 otherwise,

where we denoted up(t) =Np(tp−1 + 1, t− 1) and posed for any p≥ 1 and u≥ 1:

i(p,u) = 2
∑
p′<p

tp′ + 2u.

Note in particular that conditionally on X, Yb is deterministic: it does not depends on the
random predictions of the learning rule. Because we always have Np(tp−1 + 1, t− 1) ≤ tp
for any t≤ tp, the process is designed so that we have Y b

t ∈ Itp if Xt ∈ B̃p and tp−1 < t≤
tp. Further, for tp−1 < t ≤ tp, if Xt ∈

⋃
p′<p B̃p′ then Y b

t ∈ Jtp′ . We now consider an i.i.d.
Bernoulli B(12) sequence of random bits b independent from the process X—and any learning
rule predictions. We analyze the responses of the learning rule for responses Yb. We first fix a
realization x of the process X, which falls in the event A∩

⋂
p≥1(Ep∩Fp). For any p≥ 1 we

define Tp := {tp−1 < t≤ tp : xt ∈ B̃p}. For simplicity of notation, for any t ∈ Tp we denote
i(t) = i(p,up(t)). We will also denote Ŷt := ft(x<t,Yb

<t, xt). Last, denote by rt the possible
randomness used by the learning rule ft at time t. For any t ∈ Tp, we have

Eb,rℓ(Ŷt, Y
b
t ) = E{bi(p′,u′),bi(p′,u′)+1, p′≤p,u′≤tp′}∪{rt′ ,t′≤t}ℓ(Ŷt, Y

b
t )

= E
[
Ebi(t),bi(t)+1

ℓ(Ŷt, Y
b
t )
∣∣∣ bi(t′), bi(t′)+1, t

′ < t, t′ ∈ Tp; bi, i < i(p,0); rt′ , t
′ ≤ t

]
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= E
[
Ebi(t),bi(t)+1

ℓ(Ŷt, Y
b
t )
∣∣∣ Ŷt]

= EŶt

[
1

4

3∑
m=0

ℓ(Ŷt, ntp + 4up(t) +m)

]

= EŶt

[
1Ŷt /∈{ntp+4up(t)+m,0≤m≤3}∪Jtp

+
3

4
1Ŷt∈{ntp+4up(t)+m,0≤m≤3} +

3

4
1Ŷt∈Jtp

]
≥ 3

4
.

where in the last equality, we used the fact that if j ∈ Jk(t) then by construction ℓ(j,ntp +
4up(t)) = ℓ(j,ntp + 4up(t) + 1), ℓ(j,ntp + 4up(t) + 2) = ℓ(j,ntp + 4up(t) + 3), and
{ℓ(j,ntp + 4up(t)), ℓ(j,ntp + 4up(t) + 2)}= {1

2 ,1}. Summing all equations, we obtain for
any tp−1 < T ≤ tp,

Eb,r

[
T∑
t=1

ℓ(ft(x<t,Yb
<t, xt), Y

b
t )

]
≥ 3

4

∑
p′<p

|Tp′ |+ 3

4
|Tp ∩ {t≤ T}|.

This holds for all p≥ 1. Let us now compare this loss to the best prediction of a fixed mea-
surable function. Specifically, for any binary sequence b, we consider the following function
f b :X →N:

f b(x) =

{
ntp + 4tp + {bi(p,tp−1) . . . bi(p,1)bi(p,0)}2 if x ∈ B̃p

0 if x /∈
⋃

p≥1 B̃p.

Now let tp−1 < t ≤ tp and p ≥ 1. If xt ∈
⋃

p′<p B̃p′ we have fb(xt) = Y b
t , hence

ℓ(fb(xt), Y
b
t ) = 0. Now if Xt ∈ B̃p by construction we have ℓ(fb(xt), Y b

t ) =
1
2 . Finally,

observe that because the event Ep+1 is satisfied by x there does not exist tp−1 < t ≤ tp
such that t ∈

⋃
p′>p B̃p′ ⊂

⋃
l≥lp+1

Bl. As a result, we have ℓ(fb(xt), Y b
t ) =

1
21t∈Tp

for any
tp−1 < t≤ tp. Thus, we obtain for any tp−1 < T ≤ tp,

Eb,r

[
T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

]
≥ 1

4

∑
p′≤p

|Tp′ |+ 1

4
|Tp ∩ {t≤ T}| ≥ 1

4
|Tp ∩ {t≤ T}|.

Recall that the event Fp is satisfied by x for any p≥ 1. Therefore, there exists a time tp−1 <

Tp ≤ tp such that
∑Tp

t=1 1B̃p
(xt)≥ ϵTp

4 . Then, note that because the event Ep is satisfied, we

have
∑tp−1

t=1 1B̃p
(xt) = 0. Therefore, we obtain |Tp ∩ {t≤ Tp}| ≥ ϵTp

4 , and as a result,

Eb,r

 1

Tp

Tp∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

≥ ϵ

16
.

Because this holds for any p ≥ 1 and as p→∞ we have Tp →∞, we can now use Fatou
lemma which yields

Eb,r

[
limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

]
≥ ϵ

16
.

This holds for any realization in A∩
⋂

p≥1(Ep ∩Fp) which we recall has probability at least
ϵ
4 . Therefore we finally obtain

Eb,r,X

[
limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

]
≥ ϵ2

26
.
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As a result, there exists a specific realization of b which we denote b such that

Er,X

[
limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(f b(Xt), Y

b
t )

]
≥ ϵ2

26
,

which shows that with nonzero probability limsupT→∞
1
T

∑T
t=1 ℓ(Ŷt, Y

b
t )−ℓ(f b(Xt), Y

b
t )>

0. This ends the proof of the theorem. As a remark, one can note that the construction of our
bad example Yb is a deterministic function of X: it is independent from the realizations of
the randomness used by the learning rule.

C.2. Proof of Lemma 5.3. We first construct our online learning algorithm, which is a
simple variant of the classical exponential forecaster. We first define a step η :=

√
2 ln t0/t0.

At time t = 1 we always predict 0. For time step t ≥ 2, we define the set St−1 := {y ∈
N,
∑t−1

u=1 1y=yu
> 0} the set of values which have been visited. Then, we construct weights

for all y ∈N such that

wy,t−1 =

{
eη

∑t−1
u=1 1y=yu , y ∈ St−1

0 otherwise,

and output a randomized prediction independent of the past history such that

P(ŷt = y) =
wy,t−1∑

y′∈Nwy′,t−1
.

This defines a proper online learning rule. Note that the denominator is well defined since
wy,t−1 is non-zero only for values in St−1, which contains at most t− 1 elements. We now
define the expected success at time 1 ≤ t ≤ T as ŝt :=

wyt,t−1∑
y∈Nwy,t−1

1yt∈St
. Note that ŝt =

E[1ft(y≤t−1)=yt
]. We first show that we have

T∑
t=1

ŝt ≥max
y∈N

T∑
t=1

1y=yt
−
√
T lnT.

To do so, we analyze the quantity Wt :=
1
η ln

(∑
y∈St

eη
∑t

u=1(1y=yu−ŝu)
)

. Let 2 ≤ t ≤ T .

Supposing that yt ∈ St−1, i.e., St = St−1, we define the operator Φ : x ∈ R|St−1| 7→
1
η ln

(∑
y∈St−1

eηxy

)
and use the Taylor expansion of Φ to obtain

Wt =
1

η
ln

 ∑
y∈St−1

eη
∑t−1

u=1(1y=yu−ŝu)+η(1y=yt−ŝt)


=Wt−1 +

∑
y∈St−1

(1y=yt
− ŝt)

eη
∑t−1

u=1 1y=yu∑
y′∈St−1

eη
∑t−1

u=1 1y′=yu

+
1

2

∑
y1,y2∈St−1

∂2Φ

∂xy1
∂xy2

∣∣∣∣
ξ

(1y1=yu
− ŝu)(1y2=yu

− ŝu)

=Wt−1 +
1

2

∑
y1,y2∈St−1

∂2Φ

∂xy1
∂xy2

∣∣∣∣
ξ

(1y1=yt
− ŝu)(1y2=yt

− ŝu)

≤Wt−1 +
1

2

∑
y∈St−1

ηeηξy∑
y′∈St−1

eηξy′
(1y=yt

− ŝu)
2
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≤Wt−1 +
η

2
,

for some vector ξ ∈ R|St−1|, where in the last inequality we used the fact |1y=yt
− ŝu| ≤ 1.

We now suppose that yt /∈ St−1 and Wt−1 ≥ 1 +
ln 2+2 ln 1

η

η . In that case, eηWt = eηWt−1 +

eη(1−
∑t−1

u=1 ŝu). Hence, we obtain

Wt =Wt−1 +
ln
(
1 + eη(1−Wt−1−

∑t−1
u=1 ŝu)

)
η

≤Wt−1 +
eη(1−Wt−1)

η
≤Wt−1 +

η

2
.

Now let l =max{1} ∪
{
1≤ t≤ T :Wt < 1 +

ln 2+2 ln 1

η

η

}
. Note that for any l < t ≤ T the

above arguments yield Wt ≤Wt−1 +
η
2 . As a result, noting that W1 ≤ 1, we finally obtain

WT ≤Wl + η
T − l

2
≤ 1 +

ln2 + 2 ln 1
η

η
+ η

T

2
≤ 1 + ln2

√
t0

2 ln t0
+

√
ln t0
2t0

(t0 + T ).

Therefore, for any y ∈ ST , we have

T∑
t=1

(1y=yt
− ŝt)≤WT ≤ 1 + ln2

√
t0

2 ln t0
+

√
ln t0
2t0

(t0 + T ).

In particular, this shows that

T∑
t=1

ŝt ≥max
y∈ST

T∑
t=1

1y=yt
− 1− ln 2

√
t0

2 ln t0
−
√

ln t0
2t0

(t0 + T ).

Now note that if y /∈ ST , then
∑T

t=1 1y=yt
= 0, which yields maxy∈ST

∑T
t=1 1y=yt

=

maxy∈N
∑T

t=1 1y=yt
. For the sake of conciseness, we will now denote by ŷt the prediction of

the online learning rule at time t. We observe that the variables 1ŷt=yt
− ŝt for 1≤ t≤ T form

a sequence of martingale differences. Further, |1ŷt=yt
− ŝt| ≤ 1. Therefore, the Hoeffding-

Azuma inequality shows that with probability 1− δ,

T∑
t=1

(1ŷt=yt
− ŝt)≥−

√
2T ln

1

δ
.

Putting everything together yields that with probability 1− δ,

T∑
t=1

1ŷt=yt
≥

T∑
t=1

ŝt −
√

2T ln
1

δ

≥max
y∈N

T∑
t=1

1y=yt
− 1− ln 2

√
t0

2 ln t0
−
√

ln t0
2t0

(t0 + T )−
√

2T ln
1

δ
.

This ends the proof of the lemma.

C.3. Proof of Theorem 5.4. We use a similar learning rule to the one constructed in
Section 4 for totally-bounded spaces. We only make a slight modification of the learning
rules f ϵ· . Precisely, we pose for 0< ϵ≤ 1,

Tϵ :=

⌈
24 · 32(1 + ln 1

ϵ )

ϵ2

⌉
and δϵ :=

ϵ

2Tϵ
.
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Then, let ϕ be the representative function from the (1 + δϵ)C1NN learning rule. Similarly as
for the ϵ−approximation learning rule from Section 4, we consider the same equivalence rela-

tion
ϕ∼ on times to define clusters. The learning rule then performs its prediction based on the

values observed on the corresponding cluster using the learning rule from Lemma 5.3 using
t0 = Tϵ. Precisely, let ηϵ :=

√
2 lnTϵ/Tϵ and define the weights wy,t = e

ηϵ

∑
u<t:u

ϕ
∼t
1(Yu=y)

for all y ∈ S̃ := {y′ ∈ N :
∑

u<t:u
ϕ∼t
1(Yu = y′) > 0} and wy,t = 0 otherwise. The learning

rule f ϵt (X≤t−1,Y≤t−1,Xt) outputs a random value in N independent of the past history such
that

P(Ŷt = y) =
wy,t∑

y′∈Nwy′,t
, y ∈N.

The final learning rule f· is then defined similarly as before from the learning rules f ϵ· for
ϵ > 0. Therefore, Lemma 4.2 still holds. Also, using the same notations as in the proof of
Theorem 4.3, Lemma 5.3 implies that for any t≥ 1, we can write for any t≥ 1 on the cluster

C(t) = {u < t : u
ϕ∼ t},∑

u∈C(t)

ℓ̄01(Ŷu(ϵ), Yu)≤min
y∈N

∑
u∈C(t)

ℓ01(y,Yu) + 1+ ln2

√
Tϵ

2 lnTϵ
+

√
lnTϵ
2Tϵ

(Tϵ + |C(t)|)

≤min
y∈N

∑
u∈C(t)

ℓ01(y,Yu) +

(
1

Tϵ
+

ln2√
2Tϵ lnTϵ

+

√
2 lnTϵ
Tϵ

)
max(Tϵ, |C(t)|)

≤min
y∈N

∑
u∈C(t)

ℓ01(y,Yu) +
( ϵ
3
+
ϵ

3
+
ϵ

3

)
max(Tϵ, |C(t)|)

=min
y∈N

∑
u∈C(t)

ℓ01(y,Yu) + ϵmax(Tϵ, |C(t)|)

Therefore, the same proof of Theorem 4.3 holds by replacing all ϵ−nets Yϵ directly by N.
The martingale argument still holds since the learning rule used is indeed online. This ends
the proof of this theorem.

C.4. Proof of Theorem 5.5. We first need the following simple result which intuitively
shows that we can assume that the predictions of the learning rule for mean estimation gϵ≤tϵ
are unrelated for t= 1, . . . , tϵ.

LEMMA C.1. Let (Y, ℓ) satisfying F-TiME. For any η > 0, there exists a horizon time
Tη ≥ 1, an online learning rule g≤Tη

such that for any y := (yt)
Tη

t=1 of values in Y and any
value y ∈ Y , we have

1

Tη
E

 Tη∑
t=1

ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

≤ η,

and such that the random variables gt(y≤t−1) are independent.

PROOF. Fix η > 0, Tη ≥ 1 and g≤Tη
such that this online learning rule satisfies the con-

dition from F-TiME for η > 0. We consider the following learning rule g̃·. For any t≥ 1 and
y ∈ Yt−1,

g̃t(y≤t−1) = gtt(y≤t−1),
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where (gt· ) are i.i.d. samples of the learning rule g·. By construction, we still have that for
any sequence yTη

∈ YTη ,

1

Tη
E

 Tη∑
t=1

ℓ(g̃t(y≤t−1), yt)− ℓ(y, yt)

=
1

Tη
E

 Tη∑
t=1

ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

≤ η.

This ends the proof of the lemma.

From now on, by Lemma C.1, we will suppose without loss of generality that the learning
rule gϵ has predictions that are independent at each step (conditionally on the observed val-
ues). For simplicity, we refer to the prediction of the defined learning rule f· (resp. f ϵ· ) at time
t as Ŷt (resp. Ŷt(ϵ)). We now show that is optimistically universal for arbitrary responses. By
construction of the learning rule f·, Lemma 4.2 still holds. Therefore, we only have to focus
on the learning rules f ϵ· and prove that we obtain similar results as before. Let T ≥ 1 and
denote by Ai := {t ≤ T : |{u ≤ T : ϕ(u) = t}| = i} the set of times which have exactly i
children within horizon T for i= 0,1,2. Then, we define

BT = {t≤ T : Lt = 0 and |{t < u≤ T : u
ϕ∼ t}| ≥ tϵ},

i.e., times that start a new learning block and such that there are at least tϵ future times falling
in their cluster within horizon T . Note that the function ψ defines a parent-relation (similarly
to ϕ, but defined for all times t≥ 1). To simplify notations, for any t ∈ BT , we denote tu the
ψ−children of t at generation u− 1 for 1 ≤ u ≤ tϵ, i.e., we have ψu−1(tu) = t for all 1 ≤
u ≤ tϵ. In particular t = t1. By construction, blocks have length at most tϵ. More precisely,
the block started at any t ∈ BT has had time to finish completely, hence has length exactly
tϵ. By construction of the indices Lt, the blocks {tu,1≤ u≤ tϵ}, for t ∈ BT , are all disjoint.
This implies in particular |BT |tϵ ≤ T . We first analyze the predictions along these blocks and
for any t ∈ BT and y ∈ Y , we pose δt(y) := 1

tϵ

∑tϵ
u=1

(
ℓ(Ŷtu , Ytu)− ℓ(y,Ytu)− ϵ

)
. Now by

construction of the learning rule f ϵ· , we have

tϵδt(y
t) =

tϵ∑
u=1

(
ℓ(gϵ,tu ({Ytl}u−1

l=1 ), Ytu)− ℓ(yt, Ytu)
)
− ϵtϵ.

Next, for any t ≤ tϵ and sequence y≤t−1 and value y ∈ Y , we write ℓ̄(gϵt(y≤t−1), y) :=

E
[
ℓ(gϵt(y≤t−1), y)

]
. Now by hypothesis on the learning rule gϵ≤tϵ

,

(2)
1

tϵ

tϵ∑
u=1

ℓ̄(Ŷtu , Ytu)− ℓ(yt, Ytu)≤ ϵ.

Now consider the following sequence (ℓ(Ŷtu , Ytu)− ℓ̄(Ŷtu , Ytu))t∈BT ,1≤u≤s(t). Because of the
definition of the learning rule, which uses i.i.d. copies of the learning rule gϵ· , if we order the
former sequence by increasing order of tu, we obtain a sequence of martingale differences.
We can continue this sequence by zeros to ensure that it has length exactly T . As a result, we
obtain a sequence of T martingale differences, which are all bounded by ℓ̄ in absolute value.
Now, the Azuma-Hoeffding inequality implies that for δ > 0, with probability 1− δ, we have∑

t∈BT

tϵ∑
u=1

ℓ(Ŷtu , Ytu)≤
∑
t∈BT

tϵ∑
u=1

ℓ̄(Ŷtu , Ytu) + ℓ̄

√
2T ln

1

δ
.
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Thus, using Eq (2), with probability at least 1− δ,

(3)
∑
t∈BT

tϵδt(y
t)≤ ℓ̄

√
2T ln

1

δ
.

We also denote T =
⋃

t∈BT
{tu,1 ≤ u ≤ tϵ} the union of all blocks within horizon T . This

set contains all times t ≤ T except bad times close to the last times of their corresponding

cluster {u≤ T : u
ϕ∼ t}. Precisely, these are times t such that |{t < u≤ T : u

ϕ∼ t}|< tϵ−Lt.
As a result, there are at most tϵ such times for each cluster. Using the same arguments as in
the proof of Theorem 4.3, if we consider only clusters of duplicates (i.e., the cluster started
for a specific instance which has high number of duplicates), the corresponding bad times
contribute to a proportion ≤ tϵ

Tϵ/ϵ
≤ ϵ2 of times. Now consider clusters that have at least Tϵ

times. Their bad times contribute to a proportion ≤ tϵ
Tϵ

≤ ϵ of times. Last, we need to account
for clusters of size < Tϵ which necessarily contain leaves of the tree ϕ: there are at most |A0|
such clusters. By the Chernoff bound, with probability at least 1− e−Tδϵ/3 we have

T − |T | ≤ (ϵ2 + ϵ)T + |A0|tϵ ≤ tϵ + (ϵ2 + ϵ+ 2δϵtϵ)T ≤ tϵ + 3ϵT.

By the Borel-Cantelli lemma, because
∑

T≥1 e
−Tδϵ/3 <∞, almost surely there exists a time

T̂ such that for T ≥ T̂ we have T − |T | ≤ tϵ+3ϵT . We denote by Eϵ this event. Then, on the
event Eϵ, for any T ≥ T̂ and for any sequence of values (yt)t≥1 we have

T∑
t=1

ℓ(Ŷt(ϵ), Yt)≤
∑
t∈BT

tϵ∑
u=1

ℓ(Ŷtu , Ytu) + (T − |T |)ℓ̄

≤
∑
t∈BT

tϵ∑
u=1

ℓ(yt, Ytu) +
∑
t∈BT

tϵδt(y
t) + ϵ|BT |tϵ + tϵℓ̄+ 3ϵT

≤
∑
t∈BT

tϵ∑
u=1

ℓ(yt, Ytu) +
∑
t∈BT

tϵδt(y
t) + tϵℓ̄+ 4ϵT.

Now let f : X → Y be a measurable function to which we compare f ϵ· . By Theorem 4.1,
because (1+δϵ)C1NN is optimistically universal without noise and X ∈ SOUL, almost surely
1
T

∑T
t=1 ℓ(f(Xϕ(t)), f(Xt))→ 0. We denote by Fϵ this event of probability one. The proof

of Theorem 4.3 shows that on Fϵ, for any 0≤ u≤ Tϵ − 1 we have

1

T

T∑
t=1

ℓ(f(Xϕu(t)), f(Xt))→ 0.

We let yt = f(Xt) for all t≥ 1. Then, recalling that for any t ∈ BT , we have t= ϕu−1(tu),
on the event Eϵ, for any T ≥ T̂ we have

T∑
t=1

ℓ(Ŷt(ϵ), Yt)

≤
∑
t∈BT

tϵ∑
u=1

((1 + ϵ)ℓ(f(Xtu), Ytu) + cαϵ ℓ(f(Xt), f(Xtu))) +
∑
t∈BT

tϵδt(y
t) + tϵℓ̄+ 4ϵT

≤
T∑
t=1

ℓ(f(Xt), Yt) + cαϵ
Tϵ
ϵ

Tϵ−1∑
u=0

T∑
t=1

ℓ(f(Xϕu(t)), f(Xt)) +
∑
t∈BT

tϵδφ(t)(y
t) + tϵℓ̄+ 5ϵT,
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where in the first inequality we used Lemma A.1, and in the second inequality we used the
fact that cluster with distinct instance values have at most Tϵ

ϵ duplicates of each instance.
Next, using Eq (3), with probability 1− 1

T 2 , we have∑
t∈BT

tϵδt(y
t)≤ 2ℓ̄

√
T lnT .

Because
∑

T≥1
1
T 2 < 0, the Borel-Cantelli lemma implies that on an event Gϵ of probability

one, there exists T̂2 such that for all T ≥ T̂2 the above inequality holds. As a result, on the
event Eϵ ∩Fϵ ∩ Gϵ we obtain for any T ≥max(T̂ , T̂2) that

T∑
t=1

ℓ(Ŷt(ϵ), Yt)≤
T∑
t=1

ℓ(f(Xt), Yt) +
cαϵ Tϵ
ϵ

Tϵ−1∑
u=0

T∑
t=1

ℓ(f(Xϕu(t)), f(Xt))

+ 2ℓ̄
√
T lnT + tϵℓ̄+ 5ϵT.

where 1
T

∑Tϵ−1
u=0

∑T
t=1 ℓ(f(Xϕu(t)), f(Xt))→ 0 because the event Fϵ is met. Therefore, we

obtain that on the event Eϵ ∩Fϵ ∩ Gϵ of probability one,

limsup
T→∞

1

T

T∑
t=1

[
ℓ(Ŷt(ϵ), Yt)− ℓ(f(Xt), Yt)

]
≤ 5ϵ,

i.e., almost surely, the learning rule f ϵ· achieves risk at most 5ϵ compared to the fixed function
f . By union bound, on the event

⋂
i≥0(Eϵi ∩Fϵi ∩ Gϵi) of probability one we have that

limsup
T→∞

1

T

T∑
t=1

[
ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt)

]
≤ 5ϵi, ∀i≥ 0.

The rest of the proof uses similar arguments as in the proof of Theorem 4.3. Precisely, let H
be the almost sure event of Lemma 4.2 such that there exists t̂ for which

∀t≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷt, Yt)≤
t∑

s=ti

ℓ(Ŷt(ϵi), Yt) + (2 + ℓ̄+ ℓ̄2)
√
t ln t.

In the rest of the proof we will suppose that the event H∩
⋂

i≥0(Eϵi ∩Fϵi ∩Gϵi) of probability
one is met. Let i≥ 0. For all t≥max(t̂, ti) we have

1

T

T∑
t=1

ℓ(Ŷt, Yt)−ℓ(f(Xt), Yt)≤
ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

≤ ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) + (2 + ℓ̄+ ℓ̄2)

√
lnT

T

≤ 1

T

T∑
t=1

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) +
2ti
T
ℓ̄+ (2+ ℓ̄+ ℓ̄2)

√
lnT

T
.

Therefore we obtain limsupT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤ 5ϵi. Because this holds

for any i≥ 0 we finally obtain

limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤ 0.
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As a result, f· is universally consistent for adversarial responses under all SOUL processes.
Hence, SOLAR = SOUL and f· is in fact optimistically universal. This ends the proof of the
theorem.

C.5. Proof of Lemma 5.7. We first note that with the same horizon time Tη , we have
that F-TiME implies Property 2. We now show that Property 2 implies F-TiME. Let (Y, ℓ)
satisfying Property 2. We now fix η > 0 and let T, g≤τ such that for any y := (yt)

T
t=1 of

values in Y and any value y ∈ Y , we have

E

[
1

τ

τ∑
t=1

(
ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

)]
≤ η.

We now construct a random time 1 ≤ τ̃ ≤ T such that P[τ̃ = t] = P[τ=t]
tE[1/τ ] for all 1 ≤ t ≤ T .

This indeed defines a proper random variable because
∑T

t=1
P[τ=t]
tE[1/τ ] = 1. Let Supp(τ) :=

{1 ≤ t ≤ T : P[τ = t] > 0} be the support of τ . For any t ∈ Supp(τ), we denote by gt≤t

the learning rule obtained by conditioning g≤τ on the event {τ = t}, i.e., gt≤t = g≤τ |τ = t.
More precisely, recall that τ only uses the randomness of gt. It is not an online random time.
Hence, a practical way to simulate gt≤t for all t ∈ Supp(τ) is to first draw an i.i.d. sequence
of learning rules (gi,≤τi)i≥1. Then, for each t ∈ Supp(τ) we select the randomness which
first satisfies τ = t. Specifically, we define the time it =min{i : τi = t} for all t ∈ Supp(τ).
With probability one, these times are finite for all t ∈ Supp(τ). Denote this event E . Then,
letting ȳ ∈ Y be an arbitrary fixed value, for all 1≤ t≤ T we pose

gt≤t =

{
git,≤t if E is met,
ȳ≤t otherwise,

t ∈ Supp(τ) and gt≤t = ȳ≤t, t /∈ Supp(τ).

where ȳ≤t denotes the learning rules which always outputs value ȳ for all steps u≤ t. Intu-
itively, gt≤t has the same distribution as g≤τ conditioned on the event {τ = t}. We are now
ready to define a new learning rule g̃≤τ̃ , by g̃≤τ̃ := gτ̃≤τ̃ . Noting that for any t /∈ Supp(τ) we
have P[τ̃ = t] = 0, we can write

E

[
τ∑

t=1

(
ℓ(g̃t(y≤t−1), yt)− ℓ(y, yt)

)
− ητ

]

=

T∑
t=1

P[τ̃ = t]E

[
t∑

u=1

(
ℓ(g̃u(y≤u−1), yu)− ℓ(y, yu)

)
− ηt

∣∣∣∣∣ τ̃ = t

]

=
∑

t∈Supp(τ)

P[τ̃ = t]E

[
t∑

u=1

(
ℓ(g̃u(y≤u−1), yu)− ℓ(y, yu)

)
− ηt

∣∣∣∣∣ τ̃ = t,E

]

=
1

E[1/τ ]
∑

t∈Supp(τ)

P[τ = t]E

[
1

t

t∑
u=1

(
ℓ(git,u(y≤u−1), yu)− ℓ(y, yu)

)
− η

∣∣∣∣∣ τ̃ = t,E

]

=
1

E[1/τ ]
∑

t∈Supp(τ)

P[τ = t]E

[
1

t

t∑
u=1

(
ℓ(git,u(y≤u−1), yu)− ℓ(y, yu)

)
− η

]

=
1

E[1/τ ]
∑

t∈Supp(τ)

P[τ = t]E

[
1

t

t∑
u=1

(
ℓ(gu(y≤u−1), yu)− ℓ(y, yu)

)
− η

∣∣∣∣∣ τ = t

]
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=
1

E[1/τ ]
E

[
1

τ

τ∑
t=1

(
ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

)
− η

]
≤ 0.

where in the second and fourth equality we used the fact that P[E ] = 1. As a result, there
exists a learning rule g̃≤τ̃ such that 1≤ τ̃ ≤ Tη , and for any y≤Tη

∈ YTη and y ∈ Y one has

E

[
τ̃∑

t=1

(
ℓ(g̃t(y≤t−1), yt)− ℓ(y, yt)

)
− ητ̃

]
≤ 0.

We now pose T ′
η = ⌈Tη/η⌉ and draw an i.i.d. sequence of learning rules (g̃i≤τ̃i

)i≥1. Denote
θi =

∑
j<i τ̃i with the convention θ1 = 0. We are now ready to define a learning rule h≤T ′

η
as

follows. For any 1≤ t≤ T ′
η and y≤t ∈ Yt,

ht(y≤t−1) = g̃i≤t−θi((yt′)θi<t′≤t−1), θi < t≤ θi+1, i≥ 1.

In other words, the learning rule performs independent learning rules g̃≤τ̃ and when the
time horizon τ̃ is reached, we re-initialize the learning rule with a new randomness. Now let
y≤T ′

η
∈ YT ′

η and y ∈ Y . We denote by î=max{i≥ 1, θi ≤ t}, the index of the last learning
rule which had time to finish completely. Then, because τ̃î ≤ Tη ,

E

 T ′
η∑

t=1

(ℓ(ht(y≤t−1), yt)− ℓ(y, yt))− 2ηT ′
η


≤ E

∑
i≤î

τ̃i∑
t=1

(ℓ(g̃it−θi(yθi<·≤t−1), yt)− ℓ(y, yt))− ηT ′
η

− ηT ′
η + Tη

≤ E

∑
i≤î

(
τ̃i∑
t=1

(ℓ(g̃it−θi(yθi<·≤t−1), yt)− ℓ(y, yt))− ητ̃i

) .
We now analyze the last term. First, note that by construction, the sequenceSj :=∑

j≤i

 τ̃j∑
t=1

(ℓ(g̃jt−θj
(yθj<·≤t−1), yt)− ℓ(y, yt))− ητ̃j


j≥1

is a super-martingale. Now, note that î ≤ 1 + T ′
η since for all i, θi =

∑
j<i τi ≥ i− 1. As a

result, î is bounded, is a stopping time for the considered filtration (after finishing period î
we stop if and only we exceed time T ′

η) and we can apply Doob’s optimal sampling theorem
to obtain E[Sî]≤ 0. Thus, combining the above equations gives

1

T ′
η

E

 T ′
η∑

t=1

(ℓ(ht(y≤t−1), yt)− ℓ(y, yt))

≤ 2η.

Because this holds for all η > 0, F-TiME is satisfied. This ends the proof of the lemma.

C.6. Proof of Theorem 5.8. We first prove that adversarial regression for processes out-
side of CS is not achievable. Precisely, we show that for any X /∈ CS, for any online learning
rule f·, there exists a process Y on Y , a measurable function f∗ :X →Y and δ > 0 such that
with non-zero probability L(X,Y)(f·, f

∗)> δ.
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Because F-TiME is not satisfied by (Y, ℓ), by Lemma 5.7, Property 2 is not satisfied either.
Hence, we can fix η > 0 such that for any horizon T ≥ 1 and any online learning rule g≤τ

with 1≤ τ ≤ T , there exist a sequence y := (yt)
T
t=1 of values in Y and a value y such that

E

[
1

τ

τ∑
t=1

(
ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

)]
> η,

as in the assumption of the space (Y, ℓ). Let X /∈ CS. The proof of Theorem 5.1 shows that
there exist 0 < ϵ < 1, a sequence of disjoint measurable sets {Bp}p≥1 and a sequence of
times (tp)p≥0 with t0 = 0 and such that with µ := max(1, 8ℓ̄ϵη ), for any p≥ 1, tp > µtp−1, and
defining the events

Ep =

X≤tp−1
∩

⋃
p′≥p

Bp

= ∅

 and Fp :=
⋃

µtp−1<t≤tp

{
1

t

t∑
u=1

1Bp
(Xu)≥

ϵ

4

}
,

we have P[
⋂

p≥1(Ep ∩ Fp)] ≥ ϵ
4 . We now fix a learning rule f· and construct a “bad” pro-

cess Y recursively. Fix ȳ ∈ Y an arbitrary value. We start by defining the random variables
Np(t) =

∑t
u=tp−1+1 1Bp

(Xu) for any p≥ 1. We now construct (deterministic) values yp and

sequences (yup )
tp
u=1 for all p≥ 1, of values in Y . Suppose we have already constructed the val-

ues yq as well as the sequences (yuq )
tq
u=1 for all q < p. We will now construct yp and (yup )

tp
u=1.

Assuming that the event Ep ∩Fp is met, there exists µtp−1 < t≤ tp such that

Np(t) =

t∑
u=tp−1+1

1Bp
(Xu) =

t∑
u=1

1Bp
(Xu)≥

ϵ

4
t,

where in the first equality we used the fact that on Ep, the process X≤tp−1
does not visit Bp.

In the rest of the construction, we will denote

Tp =

{
min{µtp−1 < t≤ tp :Np(t)≥ ϵ

4 t} if Ep ∩Fp is met.
tp otherwise.

Now consider the process Yt≤tp−1
(X) defined as follows. For any 1≤ q < p we pose

Yt(X) =


y
Nq(t)
q if t≤ Tq and Xt ∈Bq,

yq if t > Tq and Xt ∈Bq,

yq′ if Xt ∈Bq′ , q
′ < q,

ȳ otherwise,

tq−1 < t≤ tq.

Similarly, for M ≥ 1 and given any sequence {ỹi}Mi=1, we define the following process
Ytp−1<u≤tp

(
X,{ỹi}Mi=1

)
by

Yu
(
X,{ỹi}Mi=q1

)
=


ỹmin(Np(u),M) if Xt ∈Bp,

yq if Xt ∈Bq, q < p,

ȳ otherwise.

We now construct a learning rule gp· . First, we define the event B :=
⋂

p≥1(Ep ∩Fp). We will
denote by X̃=X|B a sampling of the process X on the event B which has probability at least
ϵ
4 . For instance we draw i.i.d. samplings following the same distribution as X then select the
process which first falls into B. We are now ready to define a learning rule (gpu)u≤τ where τ
is a random time. To do so, we first draw a sample X̃ which is now fixed for the learning rule
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gp· . We define the stopping time as τ =Np(Tp). Finally, for all 1≤ u≤ τ , and any sequence
of values ỹ≤u−1, we pose

gpu(ỹ≤u−1) = fTp(u)

(
X̃≤Tp(u)−1,

{
Y≤tp−1

(X̃),Ytp−1<u≤Tp(u)−1

(
X̃,{ỹi}u−1

i=1

)}
, X̃Tp(u)

)
,

where we used the notation Tp(u) := min{tp−1 < t′ ≤ tp : Np(t) = u} for the time of the
u−th visit of Bp, which exists because u ≤ τ =Np(Tp) ≤Np(tp) since the event B is sat-
isfied by X̃. Note that the prediction of the rule gp· is random because of the dependence on
X̃. Also, observe that the random time τ is bounded by 1≤ τ ≤ Tp ≤ tp. Therefore, by hy-
pothesis on the value space (Y, ℓ), there exists a sequence {yup}

tp
u=1 and a value yp ∈ Y such

that

E

[
1

τ

τ∑
u=1

(
ℓ(gpu(yp

≤u−1), yup )− ℓ(yp, y
u
p )
)]

≥ η.

This ends the recursive construction of the values yp and the sequences (yup )
tp
u=1 for all p≥ 1.

We are now ready to define the process Y(X), using a similar construction as before. For any
p≥ 1 we define

Yt(X) =


y
Np(t)
p if t≤ Tp and Xt ∈Bp,

yp if t > Tp and Xt ∈Bp,

yq if Xt ∈Bq, q < p,

ȳ otherwise,

tp−1 < t≤ tp.

We also define a function f∗ :X →Y by

f∗(x) =

{
yp if x ∈Bp,

ȳ otherwise.

This function is simple hence measurable. From now, we will suppose that the event B is met.
For simplicity, we will denote by Ŷt := ft(X≤t−1,Y≤t−1,Xt) the prediction of the learning
rule at time t. For any p ≥ 1, because Ep ∩ Fp is met, for all 1 ≤ u ≤ Np(Tp), we have
tp−1 < Tp(u)≤ Tp, and XTp(u) ∈ Bp. Hence, by construction, we have ŶTq(u) = yuq and we
can write

Tp∑
t=1

ℓ(Ŷt, Yt)≥
Tp∑

t=tp−1+1

ℓ(Ŷt, Yt)

≥
Np(Tp)∑
u=1

ℓ(ŶTp(u), YTp(u))

=

τ∑
u=1

ℓ(fTp(u)

(
X≤Tp(u)−1,Y≤Tp(u)−1,XTp(u)

)
, yup ).

Now note that because the construction was similar to the construction of gp· , we have
Y≤Tp(u)−1 =

{
Y≤tp−1

(X),Ytp−1<t≤Tp(u)−1

(
X,{yip}u−1

i=1

)}
, i.e., ŶTp(u) coincides with the

prediction gpu({yip}u−1
i=1 ) provided that gpu precisely used the realization X. Hence, conditioned

on B for all u≤ τp, ŶTp(u) has the same distribution as gpu(yp
≤u−1). Therefore we obtain

E

 1

τ

Tp∑
t=1

ℓ(Ŷt, Yt)−
1

τ

τ∑
u=1

ℓ(yp, y
u
p )

∣∣∣∣∣∣B
≥ E

[
1

τ

τ∑
u=1

(
ℓ(gpu(ŶTp(u), y

u
p )− ℓ(yp, y

u
p )
)∣∣∣∣∣B

]
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= E

[
1

τ

τ∑
u=1

(
ℓ(gpu(yp

≤u−1), yup )− ℓ(yp, y
u
p )
)]

≥ η.

We now turn to the loss obtained by the simple function f∗. By construction, assuming that
the event B is met, we have

Tp∑
t=1

ℓ(f∗(Xt), Yt)≤ ℓ̄tp−1 +

Np(Tp)∑
u=1

ℓ(f∗(XTp(u)), y
u
p ) = ℓ̄tp−1 +

τ∑
u=1

ℓ(yp, y
u
p ).

Recalling that Tp > µtp−1 ≥ 8ℓ̄
ϵη tp−1 and noting that τ =Np(Tp)≥ ϵ

4Tp, we obtain

E

[
sup

tp−1<T≤tp

1

T

T∑
t=1

(ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt))

∣∣∣∣∣B
]

≥ E

[
τ

Tp

1

τ

(
T∑
t=1

ℓ(Ŷt, Yt)−
τ∑

u=1

ℓ(yp, y
u
p )

)
− ℓ̄

tp−1

Tp

∣∣∣∣∣B
]

≥ ϵ

4
E

 1

τ

Tp∑
t=1

ℓ(Ŷt, Yt)−
1

τ

τ∑
u=1

ℓ(yp, y
u
p )

∣∣∣∣∣∣B
− ϵη

8

≥ ϵη

8
.

Because this holds for any p≥ 1, Fatou lemma yields

E

[
limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

]

≥ E

[
limsup
T→∞

1

T

T∑
t=1

(ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt))

∣∣∣∣∣B
]
P[B]

≥ ϵ2η

32
.

Hence, we do note have almost surely limsupT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt) − ℓ(f(Xt), Yt) ≤ 0.

This shows that X /∈ SOLAR, which in turn implies SOLAR ⊂ CS. This ends the proof
that SOLAR ⊂ CS. The proof that CS ⊂ SOLAR and the construction of an optimistically
universal learning rule for adversarial regression is deferred to Section 7 where we give a
stronger result which also holds for unbounded losses. Note that generalizing Theorem 5.2
to adversarial responses already shows that CS ⊂ SOLAR and provides an optimistically
universal learning rule when the loss ℓ is a metric α= 1.

APPENDIX D: PROOFS OF SECTION 6

D.1. Proof of Theorem 3.6. We first show that there exists t1 ≥ 1 such that for any
t≥ t1, with high probability, for all i ∈ It,

t∑
s=ti

ℓ(Ŷs, Ys)≤ Lt,i + 3 ln2 t
√
t.
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For any t ≥ 0, note that we have ℓ̂t = E[ℓ(Ŷt, Yt) | Y≤t]. We define the instantaneous re-
gret rt,i = ℓ̂t − ℓ(yi, Yt). We now define w′

t−1,i := eηt−1(L̂t−1,i−Lt−1,i) and pose Wt−1 =∑
i∈It wt−1,i and W ′

t−1 =
∑

i∈It−1
w′
t−1,i, i.e., which induces the most regret. We also de-

note the index kt ∈ It such that L̂t,kt
−Lt,kt

=maxi∈It L̂t,i −Lt,i. We first note that for any
i, j ∈ It, we have ℓ(yi, Yt)−ℓ(yj , Yt)≤ ℓ(yi, y0)+ℓ(y0, yj)≤ 2 ln t. Therefore, we also have
|rt,i| ≤ 2 ln t. Hence, we can apply Hoeffding’s lemma to obtain

1

ηt
ln

W ′
t

Wt−1
=

1

ηt
ln
∑
i∈It

wt−1,i

Wt−1
eηtrt,i ≤ 1

ηt

(
ηt
∑
i∈It

rt,i
wt−1,i

Wt−1
+
η2t (4 ln t)

2

8

)
= 2ηt ln

2 t.

The same computations as in the proof of Lemma 4.2 then show that

(4)
1

ηt
ln
wt−1,kt−1

Wt−1
− 1

ηt+1
ln
wt,kt

Wt
≤ 2

(
1

ηt+1
− 1

ηt

)
ln(1 + ln(t+ 1)) +

|It+1| − |It|
ηt
∑

i∈It wt,i

+ (L̂t−1,kt−1
−Lt−1,kt−1

)− (L̂t,kt
−Lt,kt

) + 2ηt ln
2 t.

First suppose that we have
∑

i∈It wt,i ≤ 1. Similarly to Lemma 4.2, we obtain L̂t,kt
−Lt,kt

≤
0. Otherwise, let t′ = min{1 ≤ s ≤ t : ∀s ≤ s′ ≤ t,

∑
i∈Is′ ws′,i ≥ 1}. We sum equation (4)

for s= t′, . . . , t which gives

1

η1
ln
wt′−1,kt′−1

Wt′−1
− 1

ηt+1
ln
wt,kt

Wt
≤ 2

ηt+1
ln(1 + ln(t+ 1)) +

|It+1|
ηt

+ (L̂t′−1,kt′−1
−Lt′−1,kt′−1

)− (L̂t,kt
−Lt,kt

) + 2

t∑
s=t′

ηs ln
2 s.

Similarly as in Lemma 4.2, we have wt,kt

Wt
≤ 1,

wt′−1,k
t′−1

Wt′−1
≥ 1

1+ln t and L̂t′−1,kt′−1
−

Lt′−1,kt′−1
≤ 0. Finally, using the fact that

∑t
s=1

1√
s
≤ 2

√
t, we obtain

L̂t,kt
−Lt,kt

≤ ln(1 + ln(t+ 1))(4 + 8
√
t+ 1) + 4(1 + ln(t+ 1))

√
t+ ln2 t

√
t≤ 2 ln2 t

√
t,

for all t ≥ t0 where t0 is a fixed constant, and as a result, for all t ≥ t0 and i ∈ It, we have
L̂t,i −Lt,i ≤ 2 ln2 t

√
t.

Now note that |ℓ(Ŷt, Yt) − E[ℓ(Ŷt, Yt) | Y≤t]| ≤ 2 ln t because for all i ∈ It, we have
ℓ(yi, y0)≤ ln t. Hence, we can apply Hoeffding-Azuma inequality to the variables ℓ(Ŷt, Yt)−
ℓ̂t that form a sequence of differences of a martingale, which yields

P

[
t∑

s=ti

ℓ(Ŷs, Ys)> L̂t,i + u

]
≤ e−

u2

8t ln2 t .

Hence, for t≥ t0 and i ∈ It, with probability 1− δ, we have
t∑

s=ti

ℓ(Ŷs, Ys)≤ L̂t,i + ln t

√
2t ln

1

δ
≤ Lt,i + 2 ln2 t

√
t+ ln t

√
2t ln

1

δ
.

Therefore, since |It| ≤ 1+ ln t, by union bound with probability 1− 1
t2 we obtain that for all

i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ys)≤ Lt,i + 2 ln2 t
√
t+ ln t

√
2t ln(1 + ln t) + ln t

√
4t ln t≤ 3 ln2 t

√
t
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for all t≥ t1 where t1 ≥ t0 is a fixed constant. Now because
∑

t≥1
1
t2 <∞, the Borel-Cantelli

lemma implies that almost surely, there exists t̂≥ 0 such that

∀t≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ys)≤ Lt,i + 3 ln2 t
√
t.

We denote by A this event. Now let y ∈ Y , ϵ > 0 and consider i≥ 0 such that ℓ(yi, y)< ϵ.
On the event A, we have for all t≥max(t̂, ti),

t∑
s=ti

ℓ(Ŷs, Ys)≤
t∑

s=ti

ℓ(yi, Ys) + 3 ln2 t
√
t≤

t∑
s=ti

ℓ(y,Ys) + ϵt+ 3 ln2 t
√
t.

Therefore, limsupt→∞
1
t

∑t
s=1

(
ℓ(Ŷs, Ys)− ℓ(y,Ys)

)
≤ ϵ on A. Because this holds for any

ϵ > 0 we finally obtain limsupt→∞
1
t

∑t
s=1

(
ℓ(Ŷs, Ys)− ℓ(y,Ys)

)
≤ 0 on the event A of

probability one, which holds for all y ∈ Y simultaneously. This ends the proof of the theorem.

D.2. Proof of Corollary 6.2. We denote by g· the learning rule on values Y for mean
estimation described in Theorem 3.6. Because processes in X ∈ FS visit only finite number
of different instance points in X almost surely, we can simply perform the learning rule g·
on each sub-process Y{t:Xt=x} separately for any x ∈ X . Note that the learning rule g· does
not explicitely re-use past randomness for its prediction. Hence, we will not specify that the
randomness used for all learning rules—for each x visited by X—should be independent.
Let us formally describe our learning rule. Consider a sequence x≤t−1 of instances in X and
y≤t−1 of values in Y . We denote by St−1 = {x : x≤t−1 ∩ {x} ̸= ∅} the support of x≤t−1.
Further, for any x ∈ St−1, we denote Nt−1(x) =

∑
u≤t−1 1xu=x the number of times that the

specific instance x was visited by the sequence x≤t−1. Last, for any x ∈ St−1, we denote
yx
≤N(x) the values y{u≤t:Xu=x} obtained when the instance was precisely x in the sequence

x≤t−1, ordered by increasing time u. We are now ready to define our learning rule ft at time
t. Given a new instance point xt, we pose

ft(x≤t−1,y≤t−1, xt) =

{
gNt−1(x)+1(y

x
≤Nt−1(x)

) if xt ∈ St−1,

g1(∅) otherwise.

Recall that for any u≥ 1, gu uses some randomness. The only subtlety is that at each iteration
t≥ 1 of the learning rule f·, the randomness used by the subroutine call to g· should be inde-
pendent from the past history. We now show that f· is universally consistent for adversarial
regression under all processes X ∈ FS.

Let X ∈ FS. For simplicity, we will denote by Ŷt the prediction of the learning rule f·
at time t. We denote S = {x : {x} ∩ X ̸= ∅} the random support of X. By hypothesis, we
have |S| <∞ with probability one. Denote by E this event. We now consider a specific
realization x of X falling in the event E . Then, S is a fixed set. We also denote S̃ := {x ∈
S : limt→∞Nt(x) =∞} the instances which are visited an infinite number of times by the
sequence x. Now, we can write for any function f :X →Y ,

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(f(xt), Yt)

)
=
∑
x∈S

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)

≤
∑

s∈S\S̃

ℓ̄|{t≥ 1 : xt = x}|+
∑
s∈S̃

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)
.
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Now, because the randomness in g· was taken independently from the past at each iteration,
we can apply directly Theorem 3.6. For all x ∈ S̃, with probability one, for all yx ∈ Y ,

limsup
t′→∞

1

t′

t′∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(yx, Yu)

)
≤ 0.

We denote by Ex this event. Then, on the event
⋂

x∈S̃ Ex of probability one, we have for any
measurable function f :X →Y ,

limsup
T→∞

1

T

(
ℓ(Ŷt, Yt)− ℓ(f(xt), Yt)

)

≤
∑
s∈S̃

limsup
T→∞

1

T

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)

≤
∑
s∈S̃

limsup
T→∞

1

Nt(x)

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)
≤ 0.

As a result, averaging on realisations of X, we obtain that with probability one, we have
that L(X,Y)(f·, f)≤ 0 for all measurable functions f :X →Y . Note that this is stronger than
the notion of universal consistency which we defined in Section 2, where we ask that for all
measurable function f : X →Y , we have almost surely L(X,Y)(f·, f)≤ 0. In particular, this
shows that FS ⊂ SOLAR-U. As result SOLAR-U = FS and f· is optimistically universal.
This ends the proof of the result.

D.3. Proof of Theorem 6.3. We first show that mean-estimation is not achievable. To
do so, let f· be a learning rule. For simplicity, we will denote by Ŷt its prediction at step t.
We aim to construct a process Y on R and a value y∗ ∈R such that with non-zero probability
we have

limsup
T→∞

1

T

T∑
t=1

ℓ(ft(Y≤t−1), Yt)− ℓ(y∗, Yt)> 0.

We now pose β := 2α
α−1 > 2. For any sequence b := (bt)t≥1 in {−1,1}, we consider the

following process Yb such that for any t≥ 1 we have Y b
t = 2β

t

bt. Let B := (Bt)t≥1 be an
i.i.d. sequence of Rademacher random variables, i.e., such that B1 = 1 (resp. B1 =−1) with
probability 1

2 . We consider the random variables et := 1Ŷt·Yt≤0 which intuitively correspond
to flags for large mistakes of the learning rule f· at time t. Because f· is an online learning
rule, we have

E[et |Y≤t−1] = EŶt

[
EBt

[1Ŷt·Yt≤0 | Ŷt]
]
= EŶt

[
1Ŷt=0 +

1

2
1Ŷt ̸=0

]
≥ 1

2
.

where the expectation EŶt
refers to the expectation on the randomness of the rule ft. As a re-

sult, the random variables et− 1
2 form a sequence of differences of a sub-martingale bounded

by 1
2 in absolute value. By the Azuma-Hoeffding inequality, we obtain P

[∑T
t=1 et ≤

T
4

]
≤

e−T/8. Because
∑

t≥1 e
−t/8 <∞, the Borel-Cantelli lemma implies that on an event E of

probability one, we have limsupT→∞
1
T

∑T
t=1 et ≥

1
4 . As a result, there exists a specific real-

ization b of B such that on an event Ẽ of probability one, we have limsupT→∞
1
T

∑T
t=1 et ≥
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1
4 . Note that the sequence Yb is now deterministic. Then, writing et = et1Yt>0+ et1Yt<0, we
obtain

limsup
T→∞

1

T

T∑
t=1

et1Yt>0 + limsup
T→∞

1

T

T∑
t=1

et1Yt<0 ≥
1

4
.

Without loss of generality, we can suppose that limsupT→∞
1
T

∑T
t=1 1Ŷt·Yt≤01Yt>0 ≥ 1

8 . We
now pose y∗ = 1. In the other case, we pose y∗ =−1. We now compute for any T ≥ 1 such
that Ŷt · Yt ≤ 0 and Yt > 0,

1

T

T∑
t=1

(ℓ(ft(Y≤t−1), Yt)− ℓ(y∗, Yt))≥
ℓ(0,2β

T

)− ℓ(1,2β
T

)

T
− 1

T

T−1∑
t=1

ℓ(1,−2β
t

).

=
α

T
2(α−1)βT

+O

(
1

T
2(α−2)βT

)
− 2α(1+βT−1)

=
α

T
22αβ

T−1

(1 + o(1)).

Because, by construction limsupT→∞
1
T

∑T
t=1 1Ŷt·Yt≤01Yt>0 ≥ 1

8 , we obtain

limsup
1

T

T∑
t=1

(ℓ(ft(Y≤t−1), Yt)− ℓ(y∗, Yt)) =∞,

on the event Ẽ of probability one. This end the proof that mean-estimation is not achievable.
Because mean-estimation is the easiest regression setting, this directly implies SOLAR-U =
∅. Formally, let X a process on X . and f· a learning rule for regression. We consider the
same processes YB where B is i.i.d. Rademacher and independent from X. The same proof
shows that there exists a realization b for which we have almost surely L(X,Y)(f·, f

∗ := y∗) =
∞, where f∗ = y∗ denotes the constant function equal to y∗ where y∗ ∈ R is the value
constructed as above. Hence, X /∈ SOLAR-U, and as a result, SOLAR-U = ∅.

D.4. Proof of Proposition 6.4. Suppose that there exists an online learning rule g· for
mean-estimation. In the proof of Corollary 6.2, instead of using the learning rule for mean-
estimation for metric losses introduced in Theorem 3.6, we can use the learning rule g· to
construct the learning rule f· for adversarial regression on FS instance processes, which sim-
ply performs f· separately on each subprocess Yt:Xt=x with the same instance x ∈ X for
all visited x ∈ X in the process X. The same proof shows that because almost surely X
visits a finite number of different instances, f· is universally consistent under any process
X ∈ FS. Hence, FS ⊂ SOLAR-U. Because SOLAR-U ⊂ SOUL = FS, we obtain directly
SOLAR-U = FS and f· is optimistically universal.

On the other hand, if mean-estimation with adversarial responses is not achievable, we can
use similar arguments as for the proof of Theorem 6.3. Let f· a learning rule for regression,
and consider the following learning rule g· for mean-estimation. We first draw a process X̃
with same distribution as X. Then, we pose

gt(y≤t−1) := ft(X̃≤t−1,y≤t−1, X̃t).

Then, because mean-estimation is not achievable, there exists an adversarial process Y on
(Y, ℓ) such that with non-zero probability,

limsup
1

T

T∑
t=1

(ℓ(gt(Y≤t−1), Yt)− ℓ(y∗, Yt))> 0.

Then, we obtain that with non-zero probability, L(X̃,Y) > 0. Hence, f· is not universally con-

sistent. Note that the “bad” process Y is not correlated with X̃ in this construction.



30

APPENDIX E: PROOFS OF SECTION 7

E.1. Proof of Theorem 7.1. Let (xk)k≥0 a sequence of distinct points of X . Now fix a
value y0 ∈ Y and construct a sequence of values y1k, y

2
k for k ≥ 1 such that ℓ(y1k, y

2
k)≥ cℓ2

k+1.
Because ℓ(y1k, y

2
k) ≤ cℓℓ(y0, y

1
k) + cℓℓ(y0, y

2
k), there exists ik ∈ {1,2} such that ℓ(y0, yikk ) ≥

2k. For simplicity, we will now write yk := yikk for all k ≥ 1. We define

tk =

⌊
k∑

l=1

ℓ(y0, yl)

⌋
.

This forms an increasing sequence of times because tk+1 − tk ≥ ℓ(y0, yk+1) ≥ 1. Consider
the deterministic process X that visits xk at time tk and x0 otherwise, i.e., such that

Xt =

{
xk if t= tk,

x0 otherwise.

The process X visits X \ {x0} a sublinear number of times. Hence we have for any measur-
able set A:

lim
T→∞

1

T

T∑
t=1

1A(Xt) =

{
1 if x0 ∈A
0 otherwise.

As a result, X ∈ CRF. We will now show that universal learning under X with the first mo-
ment condition on the responses is not achievable. For any sequence b := (bk)k≥1 of binary
variables bk ∈ {0,1}, we define the function f∗b :X →Y such that

f∗b (x
k) =

{
y0 if bk = 0,

yk otherwise,
k ≥ 0 and f∗b (x) = y0 if x /∈ {xk, k ≥ 0}.

These functions are simple, hence measurable. We will first show that for any binary sequence
b, the function f∗b satisfies the moment condition on the target functions. Indeed, we note that
for any T ≥ t1, with k := max{l≥ 1 : tl ≤ T}, we have

1

T

T∑
t=1

ℓ(y0, f
∗
b (Xt))≤

1

T

k∑
l=1

ℓ(y0, yk)≤
tk + 1

T
≤ T + 1

T
.

Therefore, limsupT→∞
1
T

∑T
t=1 ℓ(y0, f

∗
b (Xt)) ≤ 1. We now consider any online learning

rule f·. Let B = (Bk)k≥1 be an i.i.d. sequence of Bernouilli variables independent from the
learning rule randomness. For any k ≥ 1, denoting by Ŷtk := ftk(X≤tk−1, f

∗
B(X≤tk−1),Xtk)

we have

EBk
ℓ(Ŷtk , f

∗
B(Xtk)) =

ℓ(Ŷtk , y0) + ℓ(Ŷtk , yk)

2
≥ 1

2cℓ
ℓ(y0, yk).

In particular, taking the expectation over both B and the learning rule, we obtain

E

[
1

tk

tk∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1),Xt), f

∗
B(Xt))

]
≥ 1

2cℓtk

k∑
l=1

ℓ(y0, yk)≥
1

2cℓ
.

As a result, using Fatou’s lemma we obtain

E

[
limsup
T→∞

1

T

T∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1),Xt), f

∗
B(Xt))

]
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≥ limsup
T→∞

E

[
1

T

T∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1),Xt), f

∗
B(Xt))

]

≥ 1

2cℓ
.

Therefore, the learning rule f· is not consistent under X for all target functions of the form
f∗b for some sequence of binary variables b. Indeed, otherwise for all binary sequence b =

(bk)k≥1, we would have EX

[
limsupT→∞

1
T

∑T
t=1 ℓ(ft(X≤t−1, f

∗
b (X≤t−1),Xt), f

∗
b (Xt))

]
=

0 and as a result

EBEX

[
limsup
T→∞

1

T

T∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1),Xt), f

∗
B(Xt))

]
= 0.

This ends the proof of the theorem.

E.2. Proof of Lemma 7.3. It suffices to prove that empirical integrability implies the
latter property. We pose ϵi = 2−i for any i ≥ 0. By definition, there exists an event Ei of
probability one such that on Ei we have

∃Mi ≥ 0, limsup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥Mi
≤ ϵi.

As a result, on
⋂

i≥0 Ei of probability one, we obtain

∀ϵ > 0,∃M :=M⌈log2
1

ϵ
⌉ ≥ 0, limsup

T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M ≤ ϵ.

This ends the proof of the lemma.

E.3. Proof of Theorem 3.1. Let X ∈ SOUL and f∗ : X →Y such that f∗(X) is empir-
ically integrable. By Lemma 7.3, there exists some value y0 ∈ Y such that on an event A of
probability one, for all ϵ > 0 there exists Mϵ ≥ 0 such that

limsup
T→∞

1

T

T∑
t=1

ℓ(y0, f
∗(Xt))1ℓ(y0,f∗(Xt))≥Mϵ

≤ ϵ.

For any M ≥ 1 we define the function f∗M by

f∗M (x) =

{
f∗(x) if ℓ(y0, f∗(x))≤M,

y0 otherwise.

We know that 2C1NN is optimistically universal in the noiseless setting for bounded losses.
Therefore, restricting the study to the output space (Bℓ(y0,M), ℓ) we obtain that 2C1NN is
consistent for f∗M under X, i.e.

limsup
T→∞

1

T

T∑
t=1

ℓ(2C1NNt(Xt−1, f
∗
M (X≤t−1),Xt), f

∗
M (Xt)) = 0 (a.s.).

For any t ≥ 1, we denote ϕ(t) the representative used by the 2C1NN learning rule. We de-
note EM the above event such that limsupT→∞

1
T

∑T
t=1 ℓ(f

∗
M (Xϕ(t)), f

∗
M (Xt)) = 0. We now
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write for any T ≥ 1 and M ≥ 1,

1

T

T∑
t=1

ℓ(f∗(Xϕ(t)), f
∗(Xt))≤

c2ℓ
T

T∑
t=1

ℓ(f∗M (Xϕ(t)), f
∗
M (Xt))+

c2ℓ
T

T∑
t=1

ℓ(f∗(Xt), f
∗
M (Xt))

+
cℓ
T

T∑
t=1

ℓ(f∗(Xϕ(t)), f
∗
M (Xϕ(t))).

We now note that by construction of the 2C1NN learning rule,

1

T

T∑
t=1

ℓ(f∗(Xϕ(t)), f
∗
M (Xϕ(t))) =

1

T

T∑
u=1

ℓ(f∗(Xu), f
∗
M (Xu))|{u < t≤ T : ϕ(t) = u}|

≤ 2

T

T∑
t=1

ℓ(f∗(Xt), f
∗
M (Xt)).

Hence, we obtain

1

T

T∑
t=1

ℓ(f∗(Xϕ(t)), f
∗(Xt))≤

c2ℓ
T

T∑
t=1

ℓ(f∗M (Xϕ(t)), f
∗
M (Xt))

+
cℓ(2 + cℓ)

T

T∑
t=1

ℓ(y0, f
∗(Xt))1ℓ(y0,f∗(Xt))>M .

As a result, on the event A∩
⋂

M≥1 EM of probability one, for any M ≥ 1, we obtain

limsup
T→∞

1

T

T∑
t=1

ℓ(f∗(Xϕ(t)), f
∗(Xt))

≤ cℓ(2 + cℓ) limsup
T→∞

1

T

T∑
t=1

ℓ(y0, f
∗(Xt))1ℓ(y0,f∗(Xt))≥M .

In particular, if ϵ > 0 we can apply this result with M := ⌈Mϵ⌉, which shows that
limsupT→∞

1
T

∑T
t=1 ℓ(f

∗(Xϕ(t)), f
∗(Xt)) ≤ cℓ(2 + cℓ)ϵ. Because this holds for any ϵ > 0

we finally obtain that on the event A∩
⋂

M≥1 EM we have

limsup
T→∞

1

T

T∑
t=1

ℓ(f∗(Xϕ(t)), f
∗(Xt)) = 0.

This ends the proof of the theorem.

E.4. Proof of Theorem 3.3. We first define the learning rule. Using Lemma 23 of [5],
let T ⊂ B a countable set such that for all X ∈ CS,A⊂B we have

inf
G∈T

E[µ̂X(G△A)] = 0.

Now let (yi)i≥0 be a dense sequence in Y . For any k ≥ 0, any indices l1, . . . , lk ∈N and any
sets A1, . . . ,Ak ∈ T , we define the function f{l1,...,lk},{A1,...,Ak} :X →Y as

f{l1,...,lk},{A1,...,Ak}(x) = ymax{0≤j≤k: x∈Aj}
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where A0 = X . These functions are simple hence measurable. Because the set of such func-
tions is countable, we enumerate these functions as f0, f1 . . . Without loss of generality, we
suppose that f0 = y0. For any i≥ 0, we denote ki ≥ 0, {li1, . . . , liki} and {Ai

1, . . . ,A
i
ki} such

that f i was defined as f i := f{li1,...,lik},{Ai
1,...,A

i
k}. We now define a sequence of sets (It)t≥1 of

indices and a sequence of sets (Ft)t≥1 of measurable functions by

It := {i≤ ln t : ℓ(yl
i
p , y0)≤ 2−α+1 ln t, ∀1≤ p≤ ki} and Ft := {f i : i ∈ It}.

Then, clearly It is finite and
⋃

t≥1 It = N. For any i≥ 0, we define ti =min{t : i ∈ It}. We
are now ready to construct our learning rule. Let ηt = 1

ln t
√
t
. Fix any sequences (xt)t≥1 in

X and (yt)t≥1 in Y . At step t ≥ 1, after observing the values xi for 1 ≤ i ≤ t and yi for
1≤ i≤ t− 1, we define for any i ∈ It the loss Lt−1,i :=

∑t−1
s=ti

ℓ(f i(xs), ys). For any M ≥ 1
we define the function ϕM : Y →Y such that

ϕM (y) =

{
y if ℓ(y, y0)<M,

y0 otherwise.

We now construct construct some weightswt,i for t≥ 1 and i ∈ It recursively in the following
way. Note that I1 = {0}. Therefore, we pose w0,0 = 1. Now let t≥ 2 and suppose that ws−1,i

have been constructed for all 1≤ s≤ t− 1. We define

ℓ̂s :=

∑
j∈Is ws−1,jℓ(f

j(xs), ϕ2−α+1 ln s(ys))∑
j∈Is ws−1,j

and for any i ∈ It we note L̂t−1,i :=
∑t−1

s=ti
ℓ̂s. In particular, if ti = t we have L̂t−1,i =

Lt−1,i = 0. The weights at time t are constructed as wt−1,i := eηt(L̂t−1,i−Lt−1,i) for any i ∈ It.
Last, let {̂it}t≥1 a sequence of independent random N−valued variables such that

P(̂it = i) =
wt−1,i∑
j∈It wt−1,j

, i ∈ It.

Finally, the prediction is defined as ŷt := f ît(xt). The learning rule is summarized in Algo-
rithm 1.

For simplicity, we will refer to the predictions of the learning rule as (Ŷt)t≥1. Now consider
a process (X,Y) with X ∈ CS and such that Y is empirically integrable. By Lemma 7.3, there
exists y0 ∈ Y such that on an event A of probability one, for any ϵ > 0, there exists Mϵ ≥
0 with limsupT→∞

1
T

∑T
t=1 ℓ(y0, Yt)1ℓ(y0,Yt)≥Mϵ

≤ ϵ. We will now denote Ỹ the process
defined by Ỹt = ϕ2−α+1 ln t(Yt) for all t≥ 1. Then, for any i ∈ It, note that using Lemma A.1
we have

0≤ ℓ(f i(xt), Ỹt)≤ 2α−1
(
ℓ(f i(xt), y

0) + ℓ(y0, Ỹt)
)
≤ 2 ln t,

by construction of the set It. As a result, for any i, j ∈ It, we obtain |ℓ(f i(xt), ỸM
t ) −

ℓ(f j(xt)− ỸM
t )| ≤ 2 ln t. Hence, we can use the same proof as for Theorem 3.6 and show

that almost surely, there exists t̂≥ 1 such that

∀t≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ỹ
M
s )≤ Lt,i + 3 ln2 t

√
t.

We denote by B this event. Now let f : X → Y to which we compare the predictions of
our learning rule. For any M ≥ 1, the function ϕM ◦ f is measurable and has values in the
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Input: Historical samples (Xt, Yt)t<T and new input point XT

Output: Predictions Ŷt for t≤ T
Construct the sequence of measurable functions {f i, i≥ 0} with f i = f{li1,...,lik},{A

i
1,...,A

i
k}

It := {i≤ ln t, ℓ(yl
i
p , y0)≤ 2−α+1 ln t,∀1≤ p≤ ki},Ft := {f i, i ∈ It}, ηt := 1

ln t
√
t
, t≥ 1

ti =min{t : i ∈ It}, i≥ 0

w0,0 := 1, Ŷ1 = y0(= f0(X0)) // Initialisation

for t= 2, . . . , T do
Lt−1,i =

∑t−1
s=ti

ℓ(f i(Xs), ϕ2−α+1 ln t(Ys)), L̂t−1,i =
∑t−1

s=ti
ℓ̂s, i ∈ It

wt−1,i := exp(ηt(L̂t−1,i −Lt−1,i)), i ∈ It

pt(i) =
wt−1,i∑

j∈It
wt−1,j

, i ∈ It

ît ∼ pt(·) // Function selection

Ŷt = f ît(Xt)

ℓ̂t :=

∑
j∈It

wt−1,jℓ(f
j(Xs),ϕ2−α+1 ln t(Yt)∑

j∈It
wt−1,j

end

Algorithm 1: A learning rule for adversarial empirically integrable responses under CS
processes.

ball Bℓ(y0,M) where the loss is bounded by 2αM . Hence, by Lemma 24 from [5] because
X ∈ C1 we have

inf
i≥0

E
[
µ̂X(ℓ(ϕM ◦ f(·), f i(·)))

]
= 0.

Now for any k ≥ 0, let ik ≥ 0 such that E
[
µ̂X(ℓ(ϕM ◦ f(·), f ik(·)))

]
< 2−2k. By Markov

inequality, we have

P
[
µ̂X(ℓ(ϕM ◦ f(·), f i(·)))

]
< 2−k]≥ 1− 2−k.

Because
∑

k 2
−k <∞, the Borel-Cantelli lemma implies that almost surely there exists k̂

such that for any k ≥ k̂, the above inequality is met. We denote EM this event. On the event
B ∩ EM of probability one, for k ≥ k̂ and any T ≥max(tik , t̂) we have for any ϵ > 0,

1

T

T∑
t=1

(
ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

)

=
1

T

T∑
t=1

ℓ(Ŷt, Ỹt)− ℓ(f ik(Xt), Ỹt) +
1

T

T∑
t=1

ℓ(f ik(Xt), Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

≤ 1

T

tik−1∑
t=1

ℓ(Ŷt, Ỹt) +
1

T

 T∑
t=tik

ℓ(Ŷt, Ỹt)−LT,ik

+
ϵ

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), Ỹt)

+
cαϵ
T

T∑
t=1

ℓ(f ik(Xt), ϕM ◦ f(Xt))

≤ 2 ln tik
T

+
3 ln2 T√

T
+ ϵ2α−1M + ϵ2α−1 1

T

T∑
t=1

ℓ(y0, Ỹt) +
cαϵ
T

T∑
t=1

ℓ(f ik(Xt), ϕM ◦ f(Xt))
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≤ 2 ln tik
T

+
3 ln2 T√

T
+ ϵ2α−1M + ϵ2α−1 1

T

T∑
t=1

ℓ(y0, Yt) +
cαϵ
T

T∑
t=1

ℓ(f ik(Xt), ϕM ◦ f(Xt)),

where in the last inequality we used the inequality ℓ(y0, Ỹt) ≤ ℓ(y0, Yt) by construction of
Ỹt = ϕ2−α+1 ln t(Yt). Now on the event A, we have

Z1 := limsup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)≤ 2α−1ℓ(y0, y
0) + 2α−1 limsup

T→∞

1

T

T∑
t=1

ℓ(y0, Yt)

≤ 2α−1ℓ(y0, y
0) + 2α−1

(
M1 + limsup

T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M1

)
≤ 2α−1ℓ(y0, y

0) + 2α−1(M1 + 1)<∞.

Thus, on the event A∩B ∩ EM , for any k ≥ k̂ we have for any ϵ > 0,

limsup
T

1

T

T∑
t=1

ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt))≤ ϵ2α−1M + ϵ2α−1Z1 +
cαϵ
2k
.

Let δ > 0. Now taking ϵ = 1
2α(M+Z1)

, we obtain that on the event A ∩ B ∩ EM , for any

k ≥ k̂, we have limsupT
1
T

∑T
t=1 ℓ(Ŷt, Ỹt) − ℓ(ϕM ◦ f(Xt), Ỹt)) ≤ δ + cαϵ

2k . This yields
limsupT→∞

1
T

∑T
t=1 ℓ(Ŷt, Ỹt) − ℓ(ϕM ◦ f(Xt), Ỹt)) ≤ δ. Because this holds for any δ > 0

we obtain limsupT→∞
1
T

∑T
t=1 ℓ(Ŷt, Ỹt) − ℓ(ϕM ◦ f(Xt), Ỹt)) ≤ 0. Finally, on the event

A∩B ∩
⋂∞

M=1 EM of probability one, we have

limsup
T→∞

1

T

T∑
t=1

(
ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

)
≤ 0, ∀M ≥ 1,

where M is an integer. We now observe that on the event A, the same guarantee for y0 also
holds for y0. Indeed, let ϵ. For M̃ϵ := 2α−1(M2−αϵ + ℓ(y0, y0)) + ℓ(y0, y

0) we have

1

T

T∑
T=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M̃ϵ

≤ 2α−1ℓ(y0, y0)
1

T

T∑
t=1

1ℓ(y0,Yt)≥M̃ϵ
+ 2α−1 1

T

T∑
T=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M̃ϵ

≤ 2α−1ℓ(y0, y0)
1

T

T∑
t=1

1ℓ(y0,Yt)≥2−α+1M−ℓ(y0,y0)

+ 2α−1 1

T

T∑
T=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥2−α+1M−ℓ(y0,y0)

≤ 2α
1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M2−αϵ

Hence, we obtain limsupT→∞
1
T

∑T
T=1 ℓ(y

0, Yt)1ℓ(y0,Yt)≥M̃ϵ
≤ ϵ. We now write

1

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), Ỹt)− ℓ(f(Xt), Yt)
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≤ 1

T

T∑
t=1

(
ℓ(y0, Yt)− ℓ(f(Xt), Yt)

)
1ℓ(f(Xt),y0)≥M1ℓ(Yt,y0)≤ln t

+
1

T

T∑
t=1

(
ℓ(f(Xt), y

0)− ℓ(f(Xt), Yt)
)
1ℓ(f(Xt),y0)≤M1ℓ(Yt,y0)≥2−α+1 ln t

≤ 1

T

T∑
t=1

(
2ℓ(y0, Yt)− 2−α+1ℓ(f(Xt), y

0)
)
1ℓ(f(Xt),y0)≥M

+
1

T

T∑
t=1

(
2ℓ(f(Xt), y

0)− 2−α+1ℓ(y0, Yt)
)
1ℓ(f(Xt),y0)≤M1ℓ(Yt,y0)≥2−α+1 ln t

≤ 2

T

T∑
t=1

ℓ(y0, Yt)1ℓ(Yt,y0)≥2−αM +
2Me2

2α−1M

T
.

As a result, on the event A∩B ∩
⋂∞

M=1 EM , for any M ≥ 1,

limsup
T→∞

1

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), Ỹt)− ℓ(f(Xt), Yt)≤ 2 limsup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(Yt,y0)≥2−αM .

Last, we compute

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt) =
1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, y

0)
)
1ℓ(Yt,y0)≥2−α+1 ln t

≤ 1

T

T∑
t=1

(
2α−1ℓ(Ŷt, y

0) + 2α−1ℓ(Yt, y
0)
)
1ℓ(Yt,y0)≥2−α+1 ln t

≤ 1

T

T∑
t=1

(
ln t+ 2α−1ℓ(Yt, y

0)
)
1ℓ(Yt,y0)≥2−α+1 ln t

≤ 2α

T

T∑
t=1

ℓ(Yt, y
0)1ℓ(Yt,y0)≥2−α+1 ln t.

Note that for any ϵ > 0, we have on the event A that for any M ≥ 1,

limsup
T→∞

1

T

T∑
t=1

ℓ(Yt, y
0)1ℓ(Yt,y0)≥2−α+1 ln t ≤ limsup

T→∞

1

T

T∑
t≥e2α−1M

ℓ(Yt, y
0)1ℓ(Yt,y0)≥M

= limsup
T→∞

1

T

T∑
t=1

ℓ(Yt, y
0)1ℓ(Yt,y0)≥M .

Hence, because this holds for anyM ≥ 1, if ϵ > 0 we can apply this to the integerM := ⌈M̃ϵ⌉
which yields limsupT→∞

1
T

∑T
t=1 ℓ(Yt, y

0)1ℓ(Yt,y0)≥2−α+1 ln t ≤ ϵ. This holds for any ϵ > 0.
Hence we obtain on the event A that limsupT→∞

1
T

∑T
t=1 ℓ(Yt, y

0)1ℓ(Yt,y0)≥2−α+1 ln t ≤ 0,
which implies that limsupT→∞

1
T

∑T
t=1 ℓ(Ŷt, Yt) − ℓ(Ŷt, Ỹt) ≤ 0. Putting everything to-

gether, we obtain on A∩B ∩
⋂∞

M=1 EM that for any M ≥ 1,

limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤ limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt)
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+ limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

+ limsup
T→∞

1

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), Ỹt)− ℓ(f(Xt), Yt)

≤ 2 limsup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(Yt,y0)≥2−αM .

Because this holds for all M ≥ 1, we can again apply this result to M := ⌈M̃ϵ⌉ which
yields limsupT→∞

1
T

∑T
t=1 ℓ(Ŷt, Yt) − ℓ(f(Xt), Yt) ≤ ϵ. This holds for any ϵ > 0. There-

fore, we finally obtain on the event A ∩ B ∩
⋂∞

M=1 EM of probability one, one has
limsupT→∞

1
T

∑T
t=1 ℓ(Ŷt, Yt) − ℓ(f(Xt), Yt) ≤ 0. This ends the proof that Algorithm 1 is

universally consistent under CS processes for adversarial empirically integrable responses.
Now because there exists a ball Bℓ(y, r) of (Y, ℓ) that does not satisfy F-TiME, from The-
orem 5.8, universal learning with responses restricted on this ball cannot be achieved for
processes X /∈ CS. However, these responses are empirically integrable because they are
bounded. Hence, CS is still necessary for universal learning with adversarial empirically
integrable responses. Thus SOLAR = CS and the provided learning rule is optimistically
universal. This ends the proof of the theorem.

E.5. Proof of Theorem 3.2. Fix (X , ρX ) and a value space (Y, ℓ) such that any ball
satisfies F-TiME We now construct our learning rule. Let ȳ ∈ Y be an arbitrary value. For
anyM ≥ 1, becauseBℓ(ȳ,M) is bounded and satisfies F-TiME, there exists an optimistically
universal learning rule fM· for value space (Bℓ(y0,M), ℓ). For any M ≥ 1, we define the
function ϕM : Y →Y defined by restricting the space to the ball Bℓ(ȳ,M) as follows

ϕM (y) :=

{
y if ℓ(y, ȳ)<M

ȳ otherwise.

For simplicity, we will denote by ŶM
t := fMt (X≤t−1, ϕM (Y)≤t−1,Xt) the prediction of fM·

at time t for the responses which are restricted to the ball Bℓ(ȳ,M). We now combine these
predictors using online learning into a final learning rule f·. Specifically, we define It :=
{0 ≤M ≤ 2−α+1 ln t} for all t ≥ 1. We also denote tM = ⌈e2α−1M⌉ for M ≥ 0 and pose
ηt =

1
4
√
t
. For any M ∈ It, we define

Lt−1,M :=

t−1∑
s=tM

ℓ(ŶM
s , ϕ2−α+1 ln s(Ys)).

For simplicity, we will denote by Ỹ the process defined by Ỹt = ϕ2−α+1 ln t(Yt) for all t≥ 1.
We now construct recursive weights as w0,0 = 1 and for t≥ 2 we pose for all 1≤ s≤ t− 1

l̂s :=

∑
M∈Is ws−1,Mℓ(Ŷ

M
s , Ỹs)∑

M∈Is ws−1,M
.

Now for any M ∈ It we note L̂t−1,M :=
∑t−1

s=tM
ℓ̂s, and pose wt−1,M := eηt(L̂t−1,M−Lt−1,M ).

We then choose a random index M̂t independent from the past history such that

P(M̂t =M) :=
wt−1,M∑

M ′∈It wt−1,M ′
, M ∈ It.
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Input: Historical samples (Xt, Yt)t<T and new input point XT

Optimistically universal learning rule fM· for value space Bℓ(y0,M), ℓ), where y0 ∈ Y fixed.
Output: Predictions Ŷt for t≤ T
It := {0≤M ≤ 2−α+1 ln t}, ηt := 1

4
√
t
, t≥ 1

tM = ⌈e2
α−1M ⌉,M ≥ 0

w0,0 := 1, Ŷ1 = y0(= f0(X0)) // Initialisation

for t= 2, . . . , T do
Lt−1,M =

∑t−1
s=tM

ℓ(fMs (X≤s−1, ϕM (Y)≤s−1,Xs), ϕ2−α+1 ln s(Ys)), L̂t−1,M =∑t−1
s=tM

ℓ̂s, M ∈ It

wt−1,M := exp(ηt(L̂t−1,M −Lt−1,M )), M ∈ It

pt(M) =
wt−1,M∑

M′∈It
wt−1,M′

, M ∈ It

M̂t ∼ pt(·) // Model selection

Ŷt = fM̂t
t (X≤t−1, ϕM (Y)≤t−1,Xt)

ℓ̂t :=

∑
j∈It

wt−1,jℓ(f
M
t (X≤t−1,ϕM (Y)≤t−1,Xt),ϕ2−α+1 ln t(Yt)∑

j∈It
wt−1,j

end

Algorithm 2: A learning rule for adversarial empirically integrable responses under SMV
processes for value spaces (Y, ℓ) such that any ball satisfies F-TiME.

The output the learning rule is ft(X≤t−1,Y≤t−1,Xt) := Ŷ M̂t

t . For simplicity, we will denote
by Ŷt := ft(X≤t−1,Y≤t−1,Xt) the prediction of f· at time t. This ends the construction of
our learning rule which is summarized in Algorithm 2.

Now let (X,Y) be such that X ∈ SOUL and Y empirically integrable. By Lemma 7.3,
there exists some value y0 ∈ Y such that on an event A of probability one, we have
for any ϵ, a threshold Mϵ ≥ 0 with limsupT→∞

1
T

∑T
t=1 ℓ(y0, Yt)1ℓ(y0,Yt)≥Mϵ

≤ ϵ. We
fix a measurable function f : X → Y . Also, for any t ≥ 1 and M ∈ It we have 0 ≤
ℓ(ŶM

t , Ỹt)≤ 2α−1ℓ(ŶM
t , ȳ)+ 2α−1ℓ(Ỹt, ȳ)≤ 2 ln t. As a result, for any M,M ′ ∈ It we have

|ℓ(ŶM
t , Ỹt) − ℓ(ŶM ′

t , Ỹt)| ≤ 2 ln t. Because |It| ≤ 1 + ln t for all t ≥ 1, the same proof as
Theorem 3.6 shows that on an event B of probability one, there exists t̂≥ 0 such that

∀t≥ t̂,∀M ∈ It,
t∑

s=tM

ℓ(Ŷt, Ỹt)≤
t∑

s=tM

ℓ(ŶM
t , Ỹt) + 3 ln2 t

√
t.

Further, we know that fM· is Bayes optimistically universal for value space (Bℓ(ȳ,M), ℓ). In
particular, because X ∈ SOUL and ϕM ◦ f :X →Bℓ(ȳ,M), we have

limsup
T→∞

1

T

T∑
t=1

ℓ(ŶM
t , ϕM (Yt))− ℓ(ϕM ◦ f(Xt), ϕM (Yt))≤ 0 (a.s.).

For simplicity, we introduce δMT := 1
T

∑T
t=1 ℓ(Ŷ

M
t , ϕM (Yt))− ℓ(ϕM ◦ f(Xt), ϕM (Yt)) and

define EM as the event of probability one where the above inequality is satisfied, i.e.,
limsupT→∞ δMT ≤ 0. Because we always have ℓ(Ŷt, ȳ)≤ 2−α+1 ln t, we can write

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt) =
1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, ȳ)

)
1ℓ(Yt,ȳ)≥2−α+1 ln t

≤ 1

T

T∑
t=1

(
2α−1ℓ(Ŷt, ȳ) + 2α−1ℓ(Yt, ȳ)

)
1ℓ(Yt,ȳ)≥2−α+1 ln t
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≤ 2α

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥2−α+1 ln t.

The proof of Theorem 3.3 shows that on the event A,

limsup
T→∞

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥2−α+1 ln t ≤ 0,

which implies limsupT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt)≤ 0. Now let M ≥ 1. We write

1

T

T∑
t=1

ℓ(ŶM
t , Ỹt)− ℓ(ŶM

t , ϕM (Yt))

≤ 1

T

tM−1∑
t=1

ℓ(ŶM
t , Ỹt) +

1

T

T∑
t=tM

(
ℓ(ŶM

t , Yt)− ℓ(ŶM
t , ȳ)

)
1M≤ℓ(Yt,ȳ)<2−α+1 ln t

≤ e2
α−1M2αM

T
+

1

T

T∑
t=1

(
2α−1ℓ(ŶM

t , ȳ) + 2α−1ℓ(Yt, ȳ)
)
1ℓ(Yt,ȳ)≥M

≤ e2
α−1M2αM

T
+

2α

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M .

Hence, on the event A, we obtain

limsup
T→∞

1

T

T∑
t=1

ℓ(ŶM
t , Ỹt)− ℓ(ŶM

t , ϕM (Yt))≤ 2α limsup
T→∞

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M .

Finally, we compute

1

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), ϕM (Yt))− ℓ(f(Xt), Yt)

≤ 1

T

T∑
t=1

(ℓ(ȳ, Yt)− ℓ(f(Xt), Yt))1ℓ(f(Xt),ȳ)≥M1ℓ(Yt,ȳ)≤M

+
1

T

T∑
t=1

(ℓ(f(Xt), ȳ)− ℓ(f(Xt), Yt))1ℓ(f(Xt),ȳ)≤M1ℓ(Yt,ȳ)≥M

≤ 1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥2−αM +
M

T

T∑
t=1

1ℓ(Yt,ȳ)≥M

+
1

T

T∑
t=1

(ℓ(ȳ, Yt)− ℓ(f(Xt), Yt))1ℓ(f(Xt),ȳ)≥M1ℓ(Yt,ȳ)≤2−αM

≤ 1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥2−αM +
1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M

+
1

T

T∑
t=1

(
2ℓ(ȳ, Yt)− 2−α+1ℓ(f(Xt), ȳ)

)
1ℓ(f(Xt),ȳ)≥M1ℓ(Yt,ȳ)≤2−αM
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≤ 1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥2−αM +
1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M .

We now put all these estimates together. On the event A∩B∩
⋂∞

M=1 EM , for any M ≥ 1 and
t≥max(t̂, tM ) we can write

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤
1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt)

)

+
1

T

T∑
t=1

(
ℓ(Ŷt, Ỹt)− ℓ(ŶM

t , Ỹt)
)
+

1

T

T∑
t=1

(
ℓ(ŶM

t , Ỹt)− ℓ(ŶM
t , ϕM (Yt))

)
+ δMT

+
1

T

T∑
t=1

(ℓ(ϕM ◦ f(Xt), ϕM (Yt))− ℓ(f(Xt), Yt))

≤ 1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt)

)
+

3 ln2 T√
T

+
1

T

T∑
t=1

(
ℓ(ŶM

t , Ỹt)− ℓ(ŶM
t , ϕM (Yt))

)

+ δMT +
1

T

T∑
t=1

(ℓ(ϕM ◦ f(Xt), ϕM (Yt))− ℓ(f(Xt), Yt)) .

Thus, we obtain on the event A∩B ∩
⋂∞

M=1 EM , for any M ≥ 1,

limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤ limsup
T→∞

1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥2−αM

+ (1+ 2α) limsup
T→∞

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M

On the event A, the same arguments as in the proof of Theorem 3.3 show that we
have same guarantees for y0 as for ȳ, i.e., for any ϵ > 0, there exists M̃ϵ such that
limsupT→∞

1
T

∑T
t=1 ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M̃ϵ

≤ ϵ. Therefore, for any ϵ > 0, we can apply the
above equation to M := ⌈2αMϵ +M2−α−1ϵ⌉ to obtain

limsup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)≤ ϵ+
1+ 2α

2α+1
≤ 2ϵ.

Because this holds for all ϵ > 0, we can in finally get

limsup
T→∞

1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

)
≤ 0,

on the event A∩ E ∩
⋂

M≥1FM of probability one. This ends the proof of the theorem.
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