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In digital online advertising, advertisers procure ad impressions simultaneously on multiple platforms, or

so-called channels, such as Google Ads, Meta Ads Manager, etc. We study how an advertiser maximizes

their total conversion (e.g., ad clicks) while satisfying aggregate return-on-investment (ROI) and budget

constraints across all channels. In practice, an advertiser does not have control over, and thus cannot globally

optimize, which individual ad auctions they participate in for each channel, and instead authorizes a channel

to procure impressions on their behalf. The advertiser can only utilize two levers on each channel, namely

setting a per-channel budget and a per-channel target ROI. In this work, we first analyze the effectiveness

of each of these levers for solving the advertiser’s global multi-channel problem. We show that when an

advertiser only optimizes over per-channel ROIs, their total conversion can be arbitrarily worse than what

they could have obtained in the global problem. Further, we show that the advertiser can achieve the global

optimal conversion when they only optimize over per-channel budgets. In light of this finding, under a bandit

feedback setting that mimics real-world scenarios where advertisers have limited information on ad auctions

in each channel and how channels procure ads, we present an efficient learning algorithm that produces

per-channel budgets whose resulting conversion approximates that of the global optimal problem. Finally,

we conduct numerical studies to demonstrate that our proposed algorithm accurately approximates optimal

per-channel budgets in practical setups.

Key words : Online advertising, autobidding, multi-channel ad procurement, return-on-investment, budget

management, ad campaign management, bandit learning

1. Introduction

In today’s world of online advertising, advertisers (including but not limited to small businesses,

marketing practitioners, non-profits, etc.) have been embracing an expanding array of advertising

platforms, such as search engines, social media platforms, and web publisher displays, which present

a multitude of channels for advertisers to procure ad impressions and obtain traffic. In this growing
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multi-channel environment, the booming online advertising activities have fueled extensive research

and technological advancements in attribution analytics to answer questions like: which channels are

more effective in targeting certain users? Or, which channels produce more user conversions (e.g.,

ad clicks) or return-on-investment (ROI) with the same amount of investment? (See Kannan et al.

(2016) for a comprehensive survey on attribution analytics). Yet, this area of research has largely left

out a crucial phase in the workflow of advertisers’ creation of a digital ad campaign, namely how

advertisers interact with advertising channels, which is the physical starting point of a campaign.

To illustrate the significance of advertiser-channel interactions, consider, for example, a small

business that is relatively well-informed through attribution research, indicating that Google Ads

and Meta ads are the two most effective channels for its products. The business instantiates its ad

campaigns by interacting with the platforms’ ad management interfaces (see Figure 1), on which

the business utilizes levers such as specifying budget and a target ROI1 to control campaigns.

Channels then input these specified parameters into their autobidding procedures, where they procure

impressions on the advertiser’s behalf through automated black-box algorithms. Eventually, channels

report performance metrics such as expenditure and conversion back to the advertiser once the

campaign ends. Therefore, one of the most important decisions advertisers need to make involves

how to optimize over these levers provided by channels. Unfortunately, this has rarely been addressed

in attribution analytics and relevant literature. Hence, this work contributes to filling this gap by

addressing two themes of practical significance:

How effective are these channel levers in helping advertisers achieve their conversion goals? And

how should advertisers optimize decisions for such levers?

To answer these questions, we study a setting where an advertiser simultaneously procures ads on

multiple channels, each of which consists of multiple ad auctions that sell ad impressions. The

advertiser’s global optimization problem is to maximize total conversions across all channels, while

respecting a global budget constraint that limits total spend, and a global ROI constraint that

ensures total conversion is at least the target ROI times total spend. However, channels operate

as independent entities and conduct autobidding procurement on behalf of advertisers. Therefore,

there are no realistic means for an advertiser to implement the global optimization problem by

optimizing over individual auctions. Instead, advertisers can only use two levers: a per-channel ROI

and a per-channel budget, to influence how channels should autobid for impressions. Our goal

is to understand how effective these levers are by comparing the total conversion via optimizing

levers with the globally optimal conversion, and also to present methodologies that help advertisers

optimize the usage of these levers. We summarize our contributions as follows:

1 Target ROI is the numerical inverse of CPA or cost per action on Google Ads, and cost per result goal in Meta Ads.
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Figure 1 Interfaces on Google Ads (left) and Meta Ads Manager (right) for creating advertising campaigns that allow

advertisers to set budgets, target ROIs, and campaign duration. CPA, or cost per action on Google Ads, as

well as cost per result goal on Meta Ads Manager, is effectively the inverse value for an advertiser’s per-

channel target ROI. Meta Ads Manager specifically highlights that the impression procurement methodology

via autobidding maximizes total conversion while respecting advertisers’ per-channel target ROI (see red

box highlighted), providing evidence that supports the GL-OPT and CH-OPT models in Eqs. (1) and (3),

respectively.

1.1. Main contributions

1. Modelling ad procurement through per-channel ROI and budget levers. In Section 2, we develop

a novel model for online advertisers to optimize the per-channel ROI and budget levers to maximize

total conversions across channels while respecting global ROI and budget constraints. This multi-

channel optimization model closely imitates real-world practices (see Figure 1 for evidence), and,

to the best of our knowledge, is the first of its kind to characterize advertisers’ interactions with

channels to run ad campaigns.

2. Solely optimizing per-channel budgets is sufficient to maximize conversion. In Theorem 3.2 of

Section 3, we show that solely optimizing for per-channel ROIs is inadequate to optimize conver-

sion across all channels, possibly resulting in arbitrarily worse total conversions compared to the

hypothetical global optimal, where advertisers can optimize over individual auctions. In contrast, in

Theorem 3.3 and Corollary 3.4, we show that solely optimizing for per-channel budgets allows an

advertiser to achieve the global optimal.

3. Algorithm to optimize per-channel budget levers. In Section 4, we develop an algorithm for

learning the optimal per-channel budget profile under a realistic bandit feedback structure, where

advertisers can only observe the total conversion and spend in each channel after making a per-channel

budget decision. The algorithm augments dual subgradient descent (DSD) with the upper-confidence

bound (UCB) design and outputs, within T iterations, a per-channel budget profile that enables

advertisers to achieve O(T−1/3) approximation accuracy in total conversion, relative to the optimal
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per-channel budget profile. Our approach connects to constrained convex optimization with uncertain

constraints and bandit feedback under a "one-point estimation" regime. For further discussions, see

Section 1.2 and Remark 4.2 in Section 4.

4. Extensions to multi-impression auctions. In Sections 5, we shed light on the applicability of our

results to more general settings when auctions correspond to the sale of multiple items (ad spots).

5. Numerical studies. In Section 6, we conduct numerical studies to demonstrate that our proposed

algorithm DSD-UCB accurately approximates optimal per-channel budgets in a stochastic setting,

even with a relatively small number of data points. Additionally, we show that its performance

degrades gracefully when channels do not optimally procure ads on advertisers’ behalf. Reflecting on

practical settings, we extend this analysis to a multi-agent setup, where multiple buyers compete

with each other while channels implement pacing strategies on their behalf. Our empirical results

demonstrate that DSD-UCB allows buyers to retain a large fraction of the hindsight global optimal

value, showcasing its effectiveness in dynamic multi-agent environments.

1.2. Related works.

Here, we review literature related to key themes of this work, namely autobidding, budget and ROI

management, and constrained optimization with bandit feedback.

Autobidding. There has been a rich line of research that models the autobidding setup as well as

budget and ROI management strategies. The autobidding model has been formally developed in

Aggarwal et al. (2019), and has been analyzed through the lens of welfare efficiency or the price of

anarchy in Deng et al. (2021), Balseiro et al. (2021a), Deng et al. (2022b), Mehta (2022), as well

as individual advertiser welfare in Deng et al. (2022a), and the impact of consumer data collection

and sharing on welfare in Bergemann and Bonatti (2023). The autobidding model, under which

buyers are usually value-maximizers, has also been compared to classic quasi-linear utility models in

Balseiro et al. (2021b).

However, the autobidding model examined in these works assumes advertisers can directly opti-

mize over individual auctions. In contrast, our work addresses a more realistic scenario, reflecting

industry practices where advertisers must navigate using levers provided by channels, delegating the

procurement of ads to these channels. Moreover, recent research, such as Alimohammadi et al. (2023),

Feng et al. (2023), delves into whether advertisers have an incentive to misreport their target ROIs

or budgets to a single autobidding platform. In contrast, our paper focuses on optimizing per-channel

budget decisions across multiple channels, presenting a distinct perspective on this complex issue.

Budget and ROI management. Budget and ROI management strategies have been widely studied

in the context of mechanism design and online learning. Balseiro et al. (2017) studies the “system

equilibria” of a range of budget management strategies in terms of the platforms’ profits and
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advertisers’ utility; Balseiro and Gur (2019), Balseiro et al. (2022b) study online bidding algorithms

(called pacing) that help advertisers achieve high utility in repeated second-price auctions while

maintaining a budget constraint, whereas Feng et al. (2022) studies similar algorithms but considers

respecting a long-term ROI constraint in addition to a fixed budget. See also Ai et al. (2022),

Conitzer et al. (2022), Susan et al. (2023), Wang et al. (2023), Liao et al. (2024) for some recent

works that study pacing strategies under non-truthful auctions, such as first-price and generalized

price auctions.

There has been a recent line of work that studies the setting where multiple budget- or ROI-

constrained bidders run pacing-type algorithms and analyze time-average welfare guarantees among

all bidders Gaitonde et al. (2022), Lucier et al. (2023), Fikioris and Tardos (2023). All of these works

on budget and ROI management focus on bidding strategies in a single repeated auction, where

advertisers’ decisions are bids submitted directly to the auctions. In contrast, this work focuses

on the setting where advertisers procure ads from multiple auctions through channels and make

decisions on how to adjust the per-channel ROI and budget levers while leaving the bidding to the

channels’ black-box algorithms.

Online optimization. Section 4, where we develop an algorithm to optimize over per-channel

target ROI and budgets, relates to the area of convex constrained optimization with bandit feedback

(also referred to as zero-order or gradient-less feedback). In light of Lemma 4.3 in Section 4, our

problem of interest is also constrained and convex. First, there has been a plethora of algorithms

developed for deterministic constrained convex optimization under bandit feedback structures, where

function evaluations for the objective and constraints are non-stochastic. Such algorithms include

filter methods Audet and Dennis Jr (2004), Pourmohamad and Lee (2020), barrier-type methods

Fasano et al. (2014), Dzahini et al. (2022), as well as Nelder-Mead type algorithms Bűrmen et al.

(2006), Audet and Tribes (2018); see Nguyen and Balasubramanian (2022) and references therein for

a comprehensive survey. In contrast to these works, our optimization algorithm developed in Section

4 handles noisy bandit feedback.

Regarding works that also address stochastic settings, Flaxman et al. (2004) presents online

optimization algorithms under the known constraint regime, which assumes the optimizer can

evaluate whether all constraints are satisfied, i.e., constraints are analytically available. Further, the

algorithm achieves O(T−1/4) accuracy. In this work, our setting is more complex, as the optimizer

(i.e., the advertiser) cannot tell whether the ROI constraint is satisfied (due to unknown value and

cost distributions in each channel’s auctions). Yet our proposed algorithm can still achieve a superior

O(T−1/3) accuracy.

Most relevant to this paper are the very recent works Usmanova et al. (2019), Nguyen and

Balasubramanian (2022), which consider a similar setting to ours that optimizes for a constrained
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optimization problem where the objective and constraints are only available through noisy function

value evaluations (i.e., unknown constraints). Usmanova et al. (2019) focuses on a special (unknown)

linear constraint setting, and Nguyen and Balasubramanian (2022) extends to general convex

constraints. Although Usmanova et al. (2019) and Nguyen and Balasubramanian (2022) achieve

O(T−1) and O(T−1/2) approximation accuracy to the optimal solution, which contrasts with our

O(T−1/3) accuracy, these works impose several assumptions that are stronger than the ones we

consider. First, the objective and constraint functions are strongly smooth (i.e., the gradients are

Lipschitz continuous), and Nguyen and Balasubramanian (2022) further assumes strong convexity.

But in our work, our objectives and constraints are piecewise linear and do not satisfy such salient

properties. Second, and most importantly, both works consider a setting with “two-point estimations”

that allows the optimizer to access the objective and constraint function values twice in each iteration,

enabling more efficient estimations. This work, however, lies in the one-point setting, where we can

only access function values once per iteration. Finally, we remark that the optimal accuracy/oracle

complexity for the one-point setting for constrained (non-smooth) convex optimization with bandit

feedback and unknown constraints remains an open question. We refer readers to Table 4.1 in Larson

et al. (2019) for a survey on the best-known bounds under different one-point bandit feedback

settings.

Bandits with Knapsack (BwK). Our work is also related to the literature on the BwK framework,

introduced by Badanidiyuru et al. (2013, 2018), for online resource allocation under constraints.

Regret-optimal algorithms for Stochastic BwK have been developed by Agrawal and Devanur (2014),

Immorlica et al. (2022), with extensions to general resource settings Agrawal and Devanur (2019),

contextual bandits Agrawal et al. (2016), Badanidiyuru et al. (2014), and frameworks addressing

both stochastic and adversarial settings Castiglioni et al. (2022a).

In our problem, budgets can be viewed as resources, and similar to works on BwK, we also use a

primal-dual framework to learn how to optimally allocate them. While such frameworks have been

employed in prior work, our setting presents unique challenges. Specifically, the value obtained from

a channel is governed by an optimization process, and the primal variables (budget parameters)

are continuous. Although discretization is a common approach for handling continuous decision

spaces, bounding the resulting error requires proving that the Lagrangian function—dependent on

the optimization process—is well-behaved, specifically unimodal and piecewise linear, as we establish.

Additionally, our work addresses the challenge of handling continuous dual variables in a primal-

dual framework, which could be of independent interest for analyzing such algorithms. Our algorithm

establishes an optimal mapping between two-dimensional continuous dual variables and per-channel

budget parameters. While discretizing the budget parameter is feasible, the same is not true for dual

variables. To address this, we employ a UCB (Upper Confidence Bound) design in the primal step,
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treating the two-dimensional continuous dual variables as contextual information. These contexts

are not drawn from a stochastic process but arise from the interaction between the primal and dual

algorithms. Typically, the regret of a UCB algorithm scales with
√
C, where C is the number of

contexts. For continuous contexts, this would render the regret bound vacuous. To overcome this,

we leverage a concept we term complete cross-learning. Once the primal reward (computed as the

Lagrangian function evaluated at the current dual variables) is known for a specific action in one

context, the reward can be inferred for the same action in any other context. This enables complete

cross-learning, as defined in Balseiro et al. (2022a), ensuring that the regret of our UCB algorithm

remains independent of the number of contexts. This critical property forms the cornerstone of our

analysis.

2. Preliminaries

Advertisers’ global optimization problem. Consider an advertiser running a digital ad campaign

across M ∈ N platforms, such as Google Ads, Meta Ads Manager, etc., each of which we call a

channel. Each channel j consists of mj ∈N parallel ad auctions, each of which corresponds to the

sale of an ad impression.2 An ad auction n∈ [mj] is associated with a value vj,n ≥ 0 that represents

the expected conversion (e.g., number of clicks) of the impression on sale, and a cost dj,n ≥ 0 that is

required for the purchase of the impression. For example, the cost in a single-slot second-price auction

is determined by the highest competing bid in the market, and in a posted price auction, the cost is

simply the posted price by the seller of the impression. Let vj = (vj,n)n∈[mj ] and dj = (dj,n)n∈[mj ].

We assume that zj := (vj,dj) is sampled from some discrete distribution pj supported on some finite

set Fj ⊆R+mj ×R+mj .

The advertiser’s goal is to maximize total conversion of procured ad impressions, while subject to

a return-on-investment (ROI) constraint that states total conversion across all channels is no less

than γ times total spend for some pre-specified target ROI 0<γ <∞, as well as a budget constraint

that states total spend over all channels is no greater than the total budget ρ≥ 0. Mathematically,

the advertiser’s global optimization problem across all M channels can be written as:

GL-OPT = max
x1,...,xM

∑
j∈[M ]

E
[
v⊤
j xj

]
s.t.

∑
j∈[M ]

E
[
v⊤
j xj

]
≥ γ

∑
j∈[M ]

E
[
d⊤
j xj

]
∑
j∈[M ]

E
[
d⊤
j xj

]
≤ ρ

xj ∈ [0,1]mj j ∈ [M ] .

(1)

2 Ad auctions for each channel may be run by the channel itself, or other external ad inventory suppliers such as web
publishers.
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Here, the decision variable xj ∈ [0,1]mj is a vector where xj,n denotes whether the impression in

auction n for channel j is procured. We note that x depends on the realization of z = (vj,dj)j∈[M ]

and is thus random. The ROI and budget constraints are taken in expectation because an advertiser

procures impressions from a large number of auctions (as the number of auctions in each platform is

typically very large), and thus only needs to satisfy the constraints on average. We also note that

GL-OPT is a widely adopted formulation for autobidding practices in modern online advertising,

representing advertisers’ conversion-maximizing behavior while respecting certain financial targets

for ROIs and budgets; see e.g. Aggarwal et al. (2019), Balseiro et al. (2021a), Deng et al. (2021,

2022b). In Section A, we discuss more general advertiser objectives, such as maximizing quasi-linear

utility.

Our overarching goal in this work is to develop methodologies that enable an advertiser to achieve

total campaign conversion that matches GL-OPT while respecting her global ROI γ and budget ρ.

However, directly optimizing GL-OPT may not be plausible, as discussed below.

Advertisers’ levers to solve their global problems. To solve the global optimization problem,

GL-OPT, ideally advertisers would like to optimize over individual auctions across all channels.

However, in reality, channels operate as independent entities and typically do not provide means

for general advertisers to participate in specific individual auctions at their discretion. Instead,

channels provide advertisers with specific levers to express their ad campaign goals on spend and

conversion. In this work, we focus on two of the most widely used levers: the per-channel ROI target

and per-channel budget (see illustration in Fig. 1). After an advertiser inputs these parameters to a

channel, the channel then procures on behalf of the advertiser through autonomous programs (we

call this programmatic process autobidding) to help the advertiser achieve procurement results that

match the inputs. We will elaborate on this process later.

Formally, we consider the setting where, for each channel j ∈ [M ], an advertiser is allowed to

input a per-channel target ROI 0≤ γj <∞ and a per-channel budget ρj ∈ [0, ρ], where we recall that

ρ> 0 is the total advertiser budget for a certain campaign. Then the channel uses these inputs in its

autobidding algorithm to procure ads and returns the total conversion Vj(γj, ρj;zj)≥ 0, as well as

the total spend Dj(γj, ρj;zj)≥ 0 to the advertiser, where we recall that zj = (vj,dj)∈Rmj ×Rmj

is the vector of value-cost pairs in channel j, sampled from the discrete support Fj according to

distribution pj; Vj and Dj will be further specified later.

As the advertiser has the freedom to choose whether to input per-channel target ROIs, budgets,

or both, we consider three options for the advertiser: 1. Input only a per-channel target ROI for

each channel; 2. Input only a per-channel budget for each channel; 3. Input both per-channel target
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ROIs and budgets for each channel. These options correspond to the following decision sets for

(γj, ρj)j∈[M ]:

Per-channel budget only option: IB = {(γj, ρj)j∈[M ] ∈R2×M
+ : γj = 0, ρj ∈ [0, ρ] for ∀j}.

Per-channel target ROI only option: IR = {(γj, ρj)j∈[M ] ∈R2×M
+ : γj ≥ 0, ρj =∞ for ∀j}.

General option: IG = {(γj, ρj)j∈[M ] : γj ≥ 0, ρj ∈ [0, ρ] for ∀j}.

(2)

The advertiser’s goal is to maximize the total conversion of procured ad impressions by optimizing

per-channel budgets and target ROIs, while adhering to the global ROI and budget constraints

similar to those in GL-OPT. Mathematically, for any option I ∈ {IB,IR,IG}, the advertiser’s

optimization problem across channels can be formulated as:

CH-OPT(I) = max
(γj ,ρj)j∈[M ]∈I

∑
j∈M

E [Vj(γj, ρj;zj)]

s.t.
∑
j∈M

E [Vj(γj, ρj;zj)]≥ γ
∑
j∈M

E [Dj(γj, ρj;zj)]∑
j∈[M ]

E [Dj(γj, ρj;zj)]≤ ρ ,

(3)

where the expectation is taken with respect to (w.r.t.) the randomness in zj. We note that for any

channel j ∈ [M ], the number of auctions mj and the distribution pj are fixed and do not depend on

the input parameters γj and ρj.

The functions (Vj,Dj), which map per-channel target ROI and budgets γj, ρj to total conversion and

expenditure, are determined by various factors, including but not limited to channel j’s autobidding

algorithms deployed to procure ads on the advertiser’s behalf, as well as the auction mechanisms

that sell impressions. In this work, we study a general setup that closely mirrors industry practices.

We assume that, on behalf of the advertiser, each channel aims to optimize conversion across all mj

auctions while adhering to the advertiser’s inputs (i.e., per-channel target ROI and budgets). (See

e.g. Meta Ads Manager in Figure 1 specifically highlights the channel’s autobidding procurement

methodology provides evidence to support the aforementioned setup). Consequently, each channel

j’s optimization problem can be written as:

x∗
j (γj, ρj;zj) = arg max

x∈[0,1]
mj

v⊤
j x s.t. v⊤

j x≥ γjd
⊤
j x, d⊤

j x≤ ρj , (4)

where x= (xn)n∈[mj ] ∈ [0,1]mj denotes the vector of probabilities to win each of the parallel auctions,

i.e., xn ∈ [0,1] is the probability of winning auction n∈ [mj ] in channel j. In light of this representation,

the corresponding conversion and spend functions are given by:

Vj(γj, ρj;zj) = v⊤
j x

∗
j (γj, ρj;zj) and Vj(γj, ρj) =E[Vj(γj, ρj;zj)]

Dj(γj, ρj;zj) = d⊤
j x

∗
j (γj, ρj;zj) and Dj(γj, ρj) =E[Dj(γj, ρj;zj)] .

(5)
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Here, the expectation is taken with respect to the randomness in zj = (vj,dj) ∈ Rmj
+ ×Rmj

+ . We

assume that for any (γj, ρj) and realization of zj, the total conversion Vj(γj, ρj;zj) is bounded

above by some constant V̄ ∈ (0,∞) almost surely. It is important to note that Eq. (5) assumes that

channels are able to achieve optimal procurement performance. In Section 6, we conduct numerical

studies to explore scenarios where channels do not optimally solve Eq. (4).

Additionally, in Eq. (5), it is assumed that zj = (vj,dj) are drawn from a fixed distribution.

In our numerical studies in Section 5.1, we relax this assumption by considering a multi-agent

non-stochastic setting, where buyers’ bids are modeled using standard learning algorithms. We

evaluate our algorithm in such real-world-inspired ad procurement processes, where the channels use

a pacing algorithm (or DSD from Balseiro and Gur (2019), Balseiro et al. (2022b)) to set the bids

and participate in numerous auctions on the advertiser’s behalf.

Key Focuses and Organization of This Work. In this paper, we address two key topics:

1. How effective are the per-channel ROI and budget levers in helping advertisers achieve the

globally optimal conversion GL-OPT while respecting global ROI and budget constraints?

Specifically, for each of the advertiser options I ∈ {IB,IR,IG} defined in Eq. (2), what is the

discrepancy between CH-OPT(I), i.e., the optimal conversion an advertiser can achieve in

practice, and the optimal GL-OPT?

2. Since, in reality, advertisers can only utilize the two per-channel levers offered by channels, how

can they optimize per-channel target ROIs and budgets to solve for CH-OPT(I)?
In Section 3, we address the first question by determining the gap between CH-OPT(I) and

GL-OPT for different advertiser options. In Section 4, we develop an efficient algorithm to learn

the optimal per-channel levers that optimize CH-OPT(I).

3. On the efficacy of the per-channel target ROIs and budgets as levers in
solving the global problem

In this section, we examine the effectiveness of the per-channel target ROI and per-channel budget

levers in achieving the global optimal GL-OPT. In particular, we investigate whether the optimal

solution to the channel problem CH-OPT(I), defined in Eq. (3), for I ∈ IB,IR,IG is equal to the

global optimal GL-OPT. As a summary of our results, we show that the per-channel budget-only

option and the general option achieve GL-OPT, but the per-channel ROI-only option can yield

conversions arbitrarily worse than GL-OPT for certain instances, even when there is no global

budget constraint (i.e., ρ=∞). This implies that the per-channel ROI lever is inadequate for helping

advertisers achieve the globally optimal conversion, whereas the per-channel budget lever is effective

in attaining optimal conversion, even when the advertiser solely uses this lever.

Our first result in this section is the following Lemma 3.1, which shows that GL-OPT serves as

a theoretical upper bound for an advertiser’s conversion when optimizing CH-OPT(I) with any

option I.



11

Lemma 3.1 (GL-OPT is the theoretical upper bound for conversion) For any option I ∈

IB,IR,IG defined in Eq. (2), we have GL-OPT≥CH-OPT(I), where we recall the definitions of

GL-OPT and CH-OPT in Eqs. (1) and (3), respectively.

The proof of Lemma 3.1 is deferred to Appendix B.1. Given the theoretical upper bound GL-OPT,

we are now interested in the gap between GL-OPT and CH-OPT(I) for the option I ∈ {IB,IR,IG}.

In the following Theorem 3.2, we show that there exists a problem instance under which the ratio
CH-OPT(IR)

GL-OPT approaches 0, implying that the per-channel ROIs alone fail to help advertisers optimize

conversion.

Theorem 3.2 (Per-channel ROI Only Option Fails to Optimize Conversion) Consider

an advertiser with a global target ROI of γ = 1 procuring impressions from M = 2 channels, where

each channel consists of a single auction. The advertiser has an unlimited budget ρ=∞, and chooses

the per-channel target ROI-only option IR defined in Eq. (2). Assume there is only one realization of

value-cost pairs z = (vj,dj)j∈[M ] (i.e., the support F = F1 ×F2 is a singleton), and the realization is

presented in the following table, where X > 0 is some arbitrary parameter. Then, for this problem

instance, we have: limX→∞
CH-OPT(IR)

GL-OPT = 0.

Channel 1 Channel 2

Auction 1 Auction 2

Value vj,n 1 2X

Spend dj,n 0 2(1+X)

Proof of Theorem 3.2 Let γ̃ = (γ̃1, γ̃2) be the optimal solution to CH-OPT(IR), and recall

that under the option IR, we assume per-channel budgets are infinite. It is easy to see that γ̃1 can

be any arbitrary nonnegative number because the advertiser always wins auction 1. Additionally, we

must have γ̃2 >
X

1+X
.

To see this, assume γ̃2 ≤ X
1+X

. In this case, the advertiser would win the auction in channel 2.

However, under this assumption, the advertiser would win all auctions across the two channels and

acquire a total value of 1+2X, while incurring a total spend of 0+2(1+X) = 2+2X. This would

violate the ROI constraint in CH-OPT(IR) because 1+2X
2+2X

< 1. Therefore, the advertiser can only

win auction 1, which implies γ̃2 >
X

1+X
. Consequently, the optimal objective for CH-OPT(IR) is 1.

On the other hand, it is straightforward to see that the optimal solution to GL-OPT is to win

auction 1 with probability 1 and auction 2 with probability 1
2
, yielding an optimal value of 1+X.

Thus, CH-OPT(IR)

GL-OPT = 1
1+X

. Taking the limit as X →∞ yields the desired result.

□
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We now provide intuition behind the inadequacy of the ROI-only option to maximize conversions.

In the proof of Theorem 3.2, as observed, there are only two possible outcomes:

1. By setting γ̃2 >
X

1+X
and solving problem (4), the advertiser wins auction 2 with ρ2 = ∞.

However, as shown in the proof, this leads to a violation of the global ROI constraint.

2. By setting γ̃2 <
X

1+X
and solving problem (4), the advertiser avoids violating the global ROI

constraint but is forced into a suboptimal solution—completely losing auction 2.

This demonstrates that under the option IR, it is impossible to achieve all possible outcomes, including

the globally optimal solution to GL-OPT. Specifically, the constraint on the per-channel ROI forces

the advertiser into a limited set of solutions, which can lead to arbitrarily poor performance. As a

result, the ROI-only option does not provide the flexibility needed to reach the global optimum.

In contrast to the per-channel ROI only option, the budget-only option allows an advertiser’s

conversion to reach the theoretical upper bound GL-OPT through solely optimizing for per-channel

budgets. This is formalized in the following theorem, whose proof is presented in Appendix B.2.

Theorem 3.3 (Per-channel budget-only option suffices to achieve optimal conversion)

For the budget-only option IB defined in Eq.(2), we have GL-OPT=CH-OPT(IB) for any global

target ROI γ > 0 and total budget ρ> 0, even for ρ=∞.

As an immediate extension of Theorem 3.3, the following Corollary 3.4 shows that per-channel

ROIs in fact become redundant once advertisers optimize for per-channel budgets.

Corollary 3.4 (Redundancy of per-channel ROIs) For the general option IG defined in Eq.(2),

where an advertiser sets both per-channel ROI and budgets, we have GL-OPT=CH-OPT(IG) for

any aggregate ROI γ > 0 and total budget ρ > 0, even for ρ=∞. Further, there exists an optimal

solution (γj, ρj)j∈[M ] to CH-OPT(IG), such that γj = 0 for all j ∈ [M ].

In light of Corollary 3.4, we observe that introducing per-channel ROI targets (γj)j∈[M ] does not

improve the optimal value of the problem: simply optimizing over per-channel budgets (ρj)j∈[M ]

suffices to satisfy both the ROI and budget constraints. Importantly, this does not mean the global

ROI constraint is irrelevant; rather, the constraint must be satisfied, but there is no additional benefit

from optimizing over ROI targets at the channel level. Therefore, for the rest of the paper, we fix

γj = 0 for all j ∈ [M ], and omit γj from the notation. For example, we write Dj(ρj;zj) and Dj(ρj)

instead of Dj(γj, ρj ;zj) and Dj(γj, ρj). Equivalently, we focus on the per-channel budget-only option

IB.
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4. Learning algorithm for per-channel budgets under bandit feedback
In this section, we develop an efficient algorithm to learn optimal per-channel budgets that optimize

CH-OPT(IB) defined in Eq. (3), which achieves the theoretical optimal conversion, namely GL-OPT,

as illustrated in Theorem 3.3. In particular, we consider algorithms that run over T > 0 periods,

where each period for example corresponds to the duration of 1 hour or 1 day. At the end of T

periods, the algorithm produces some per-channel budget profile (ρj)j∈[M ] ∈ [0, ρ]M that approximates

CH-OPT(IB), and satisfies aggregate ROI and budget constraints, namely∑
j∈M Vj(ρj)≥ γ

∑
j∈M Dj(ρj),

∑
j∈[M ]Dj(ρj)≤ ρ ,

where we recall (Vj(ρj),Dj(ρj)) are defined in Eq. (5).

The algorithm proceeds as follows: at the beginning of period t ∈ [T ], the advertiser sets per-

channel budgets (ρj,t)j∈[M ], without observing values and costs zt = (zj,t)j∈[M ] = (vj,t,dj,t)j ∈ [M ],

where (vj,t,dj,t) ∈ Rmj
+ × Rmj

+ are sampled (independently in each period) from a finite support

F = F1 × · · ·×FM according to discrete distributions (pj)j∈[M ]. Each channel j then takes as input

ρj,t ∈ [0, ρ] and procures ads on behalf of the advertiser, reporting the total realized conversion

Vj(ρj,t;zj,t) as well as total spend Dj(ρj,t;zj,t) to the advertiser (see definitions in Eq. (5)). For

simplicity, we assume that any realization zj = (vj,dj)∈ Fj admits an ordering vj,1
dj,1

> · · ·>
vj,mj

dj,mj
for

all channels j ∈ [M ].

Bandit feedback: We highlight that the advertiser receives bandit feedback from the channels,

i.e., the advertiser only observes the numerical values Vj(ρj,t;zj,t) and Dj(ρj,t;zj,t), but does not

observe Vj(ρ
′
j;z

′
j) and Dj(ρ

′
j;z

′
j) evaluated at any other per-channel budget ρ′j ̸= ρj,t or realized

value-cost pairs z′
j ̸= zj,t.

We also make two mild assumptions: In Assumption 4.1, we assume that each channel will deplete

its input per-channel budgets. In Assumption 4.2, we assume that for any realization of value-cost

pairs zj = (vj,dj) in a channel j ∈ [M ], there always exists an auction n∈ [mj ] in this channel whose

value-to-cost ratio is at least γ, i.e., vj,n ≥ γdj,n.

Assumption 4.1 (Moderate budgets) Assume ρ<∞, and for any channel j ∈ [M ], value-cost

realization zj = (vj,dj)∈ Fj, and per-channel budget ρj ∈ [0, ρ], the optimal solution x∗
j (ρj ;zj) defined

in Eq. (4) is budget binding, i.e. Dj(ρj;zj) = d⊤
j x

∗
j (ρj;zj) = ρj.

Assumption 4.1 holds in large online ad markets, where advertisers have moderate budgets and

fully utilize them due to the abundance of ad impressions. In practice, bidders can estimate an upper

bound on the budget for each channel, ensuring that if the budget is set below this bound, it will be

fully depleted. This is not an issue for large channels with many auctions, but for smaller ones with

fewer auctions, budget depletion may not always occur. However, by incorporating this upper bound

in our framework, the algorithm and results remain valid even for smaller channels.
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Assumption 4.2 (Strictly feasible global ROI constraints) Fix any channel j ∈ [M ] and any

realization of value-cost pairs zj = (vj,dj)∈ Fj. Then, the channel’s optimization problem in Eq. (4)

is strictly feasible, i.e. the set
{
xj ∈ [0,1]mj : v⊤

j xj >γd⊤
j xj

}
is nonempty.

Assumption 4.2 ensures that the per-channel ROI constraint is strictly satisfied for every realization

of value-cost pairs zj = (vj,dj) ∈ Fj. This assumption is not overly restrictive for several reasons.

First, if ROI constraints are frequently violated, it poses both technical and practical challenges.

Technically, violations impede the ability to accurately assess feedback from the channel, preventing

us from establishing any meaningful results. Practically, while occasional violations are acceptable,

frequent ones signal that the target ROI is likely too ambitious. Advertisers can adjust their target

ROI in response to this feedback. Second, in real-world scenarios, the number of auctions mj within

a channel j is typically large. Given this, we expect Assumption 4.2 to hold with high probability,

as the set
{
xj ∈ [0,1]mj : v⊤

j xj >γd⊤
j xj

}
will generally be non-empty when mj is large enough. In

particular, Assumption 4.2 is satisfied whenever there exists n∈ [mj] such that vj,n >γdj,n.

4.1. Optimize per-channel budgets with DSD-UCB

Here, we describe our algorithm to solve for optimal per-channel budgets with respect to

CH-OPT(IB). Similar to most algorithms for constrained optimization, including those in the

BwK framework discussed in Section 1.2, we take a dual subgradient descent (DSD) approach;

see a comprehensive survey on dual descent methods in Bertsekas (2014). First, we consider the

Lagrangian functions with respect to CH-OPT(IB), where we let c = (λ,µ) ∈ R2
+ be the dual

variables corresponding to the ROI and budget constraints, respectively:

Lj(ρj,c;zj) = (1+λ)Vj(ρj;zj)− (λγ+µ)ρj

Lj(ρj,c) =E [Lj(ρj,c;zj)] .
(6)

Then, in each period t∈ [T ], given dual variables ct = (λt, γt), we decide on a primal decision, i.e.,

per-channel budget (ρj,t)j∈[M ] by optimizing the following:

ρj,t = argmaxρj∈[0,ρ]Lj(ρj,ct;zj,t) . (7)

Having observed the realized values (Vj(ρj,t;zj,t)) j ∈ [M ] (where spend is (ρj,t)j∈[M ] under Assump-

tion 4.1), we calculate the current period violation in budget and ROI constraints, namely g1,t :=∑
j∈M (Vj(ρj,t;zj,t)− γρj,t) and g2,t = ρ −

∑
j∈[M ] ρj,t. Next, we update the dual variables 3 via

3 The dual variable λ reflects how tightly the ROI constraint is satisfied: it remains small when the ROI surplus
(value minus γ-scaled cost) is large, and increases as this surplus shrinks. The dual variable µ captures the pressure
from the total budget constraint. Though not directly observable, both variables are dynamically updated by the
algorithm and can be monitored over time to understand which constraint is binding. In practice, these trajectories
could help calibrate or adjust campaign-level parameters such as per-channel ROI targets or budget parameters based
on historical trends.
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Π[0,CF ] (λt − ηg1,t) and µt+1 = Π[0,CF ] (µt − ηg2,t), where Π is the projection operator, η is some

pre-specified step size, and CF is some dual variable upper bound specified in Eq. (9).4

However, we cannot realistically determine the primal decisions by solving Eq. (7) since the

function Lj(·,ct;zj,t) is unknown due to the bandit feedback structure. Therefore, we provide a

modification to DSD to handle this issue. We briefly note that although bandit feedback prevents

naively applying DSD to our problem, this may not be the case in other online advertising scenarios

that involve relevant learning tasks, underlining the challenges of our problem; see the following

Remark 4.1 for details.

Remark 4.1 Our problem of interest under bandit feedback is more difficult than similar problems

in related works that study online bidding strategies under budget and ROI constraints; see, e.g.,

Balseiro et al. (2017, 2022b), Feng et al. (2022). To illustrate, consider, for instance, Balseiro et al.

(2017), in which a budget-constrained advertiser’s primal decision at period t is to submit a bid value

bt after observing her value vt. The advertiser competes with some unknown highest competing bid dt

in the market, and after submitting bid bt, does not observe dt if she does not win the competition,

which involves a semi-bandit feedback structure. Nevertheless, the corresponding Lagrangian under

DSD takes the special form Lj(b,µt;zt) = (vt − (1+µt)dt) I{bt ≥ dt} where µt is the dual variable

w.r.t. the budget constraint. This simply allows an advertiser to optimize for her primal decision

by bidding argmaxb≥0Lj(b,ct;zt) =
vt

1+µt
. So, even though Balseiro et al. (2017, 2022b), Feng et al.

(2022) study DSD under bandit feedback, the special structures of their problem instances permit

DSD to effectively optimize for primal decisions in each period. In contrast, Eq. (7) in our setting

cannot be solved directly.

To handle bandit feedback, we take a natural approach to augment DSD with the celebrated

upper-confidence bound (UCB) algorithm; see the introduction to UCB and multi-arm bandits in

Slivkins et al. (2019). In particular, we first discretize our per-channel budget decision set [0, ρ] into

granular “arms" separated by distance δ > 0:

A(δ) = {ak}k∈[K] where ak = (k− 1)δ . (8)

for K := ⌈ρ/δ⌉+1. In the following, we will use the terms "per-channel budget" and "arm" inter-

changeably. In the spirit of UCB, in each period t, we maintain some estimate
(
V j(ak)

)
j∈[M ]

of the

conversions (Vj(ak))j∈[M ]
as well as an upper confidence bound UCBj,t(ak) for each arm ak using

historical payoffs from periods in which arm ak is pulled. Finally, we update primal decisions for

each channel j ∈ [M ]: ρj,t = argmaxak∈A(δ) (1+λt)
(
V j,t(ak)+ UCBj,t(ak)

)
− (λtγ+µt)ak.

4 One can also employ more general mirror descent dual variable updates; see e.g. Balseiro et al. (2022b).
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Finally, to ensure aggregate ROI and budget constraint satisfaction, we maintain variables that

check ROI and budget balances, namely S1,t and S2,t, to record the cumulative ROI and spend across

all channels up until period t. When the ROI balance check S1,t is too negative, or the budget balance

check is too large, we "stop" the algorithm and naively set some pre-defined small per-channel budget

ρ∈ (0, ρ) (later chosen in Theorem 4.6) during all periods after the "stopping time" denoted as τA.

We remark that similar approaches to ensure constraint satisfaction have been introduced in, e.g.,

Balseiro et al. (2022b), Feng et al. (2022).

We summarize our algorithm, called DSD-UCB, in Algorithm 1.5

Algorithm 1 DSD-UCB
1: Input: Budget discretization set of arms A(δ) defined in Eq.(8). Step size η > 0. Initialize Nj,1(ak) = V j,1(ak) = 0

for all j ∈ [M ] and k ∈ [K], and dual variables λ1 = µ1 = 0. Set ρ∈ (0, ρ/M), β > 0 and dual variable upper bound

CF =MV max
{

1
βρ

, 1
ρ−Mρ

}
, (9)

where V ≥maxj∈[M ]maxρj∈[0,ρ]maxzj∈Fj Vj(ρj ,zj) is the conversion upper bound.

2: Set initial constraint balance checks: S1,t = S2,t = 0 for t= 1, and start period counter t= 1.

3: while t≤ T and S1,t− γMρ+βρ(T − t)≥ 0 and S2,t +Mρ+Mρ(T − t)≤ ρT do

4: Set per-channel budget. For each channel j ∈ [M ]: If t≤K, set ρj,t = at. Else if t >K, set ρj,t =

argmaxak∈A(δ) V j,t(ak)+ UCBj,t(ak)− (λtγ+µt)ak
1+λt

,

where UCBj,t(ak) =
√

2 log(T )
Nj,t(ak)

.

5: Observe realized conversion {Vj(ρj,t;zj,t)}j∈[M ], and update for each arm k ∈ [K] and channel j ∈ [M ]

Nj,t+1(ak) =Nj,t(ak)+ I{ρj,t = ak}, V j,t+1(ak) =
Nj,t(ak)V j,t(ak)+Vj(ρj,t;zj,t)I{ρj,t=ak}

Nj,t+1(ak)

6: Update dual variables. Calculate g1,t =
∑

j∈[M ] (Vj(ρj,t;zj,t)− γρj,t) and g2,t = ρ−
∑

j∈[M ] ρj,t. Then, set

λt+1 =Π[0,CF ] (λt− ηg1,t) and µt+1 =Π[0,CF ] (µt− ηg2,t) . (10)

7: Update balance check: S1,t+1 = S1,t + g1,t and S2,t+1 = S2,t +
∑

j∈[M ] ρj,t.

8: Increment period counter t← t+1.

9: end while

10: Record τA = t− 1 and for all t= τA +1 . . . T set ρj,t = ρ for all j ∈ [M ].

11: Output ρT =
(

1
T

∑
t∈[T ] ρj,t

)
j∈[M ]

.

4.2. Analyzing the DSD-UCB algorithm

In this subsection, we analyze the performance of DSD-UCB in Algorithm 1 and present accuracy

guarantees on the final output ρT =
(

1
T

∑
t∈[T ] ρj,t

)
j∈[M ]

.

5 There has been very recent works that combine DSD with adversarial bandit type algorithms such as EXP3 Castiglioni
et al. (2022b, 2023), or with Thompson sampling which is another well-known algorithm for stochastic bandit problems
(e.g. Ding et al. (2021)), and works that employ DSD in bandit problems (e.g. Han et al. (2021)). Yet to the best of
our knowledge, our approach to integrate DSD with UCB is novel.
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To show the result, we first decompose the cumulative loss over T periods, defined as

T ·GL-OPT−E
[∑
t∈[T ]

∑
j∈[M ]

Vj(ρj,t)
]
,

into three main components: (1) the "stopping error," which arises when the while-loop condition is

violated and a small per-channel budget ρ is naively set after the stopping time τA (see step 10); (2)

the error induced by the UCB component of our algorithm; and (3) the error resulting from DSD,

often interpreted as deviations from complementary slackness (see Proposition 4.1). This type of

regret decomposition is standard in the bandit literature.

We then proceed to bound each component individually.

Proposition 4.1 (Regret decomposition) For any channel j ∈ [M ] define ρ∗j(t) =

argmaxρj∈[M ]
Lj(ρj;ct) to be the optimal per-channel budget w.r.t. dual variables ct = (λt, µt)t∈[T ].

Then T ·GL-OPT−
∑

t∈[T ]

∑
j∈[M ] Vj(ρj,t) is bounded by

MV (T − τA)︸ ︷︷ ︸
Stopping error

+
∑
t∈[τA]

(λtg1,t +µtg2,t)︸ ︷︷ ︸
DSD complementary slackness deviations

+
∑
j∈[M ]

∑
t∈[τA]

Lj(ρ
∗
j (t),ct)−Lj(ρj,t,ct)︸ ︷︷ ︸
UCB error

.

where τA ∈ [T ] is defined in step 10 of Algorithm 1.

Recall the definitions of g1,t and g2,t from step 5 of Algorithm 1, and note that the conversion

Vj(ρj;zj) is almost surely bounded above by a constant V ∈ (0,∞). We provide a bound on the

stopping error, along with the DSD complementary slackness violations, in Lemma 4.2. This result

follows standard analyses for DSD, and the proof can be found in Appendix C.2.

Lemma 4.2 (Bounding stopping error and complementary slackness deviations)

Assume Assumptions 4.1 and 4.2 hold. Recall η > 0 is the step size. Then we have MV (T − τA)+∑
t∈[τA](λtg1,t +µtg2,t) ≤ O

(
ηT + 1

η

)
.

Challenges in bounding UCB error due to adversarial contexts and continuum-arm

discretization. Bounding our UCB error is significantly more challenging than in classic stochastic

multi-arm bandit settings. First, our setup involves discretizing a continuum of arms, i.e., our

discretization in Eq.(8) for [0, ρ]. Second, and more importantly, the dual variables {ct}t∈[T ] represent

adversarial contexts because they are updated via DSD, rather than being stochastically sampled

from some well-behaved distribution. Consequently, the Lagrangian function Lj(ak,ct;zt) can be

viewed as a reward function that maps any arm-context pair (ak,ct) to (stochastic) payoffs. Both

the continuum of arms and adversarial contexts have been well-known for making reward function

estimation highly inefficient; see, e.g., discussions in Agrawal (1995), Agarwal et al. (2014). We
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further elaborate on the specific challenges that adversarial contexts introduce:

1. Boundedness of rewards. In classic stochastic multi-arm bandits and UCB, losses in total

rewards grow linearly with the magnitude of rewards. In our setting, the reward function, i.e.,

the Lagrangian function Lj(ak,ct;zt), scales linearly with the magnitude of contexts (see Eq. (6)).

Therefore, large contexts (i.e., large dual variables) may lead to large losses.

2. Context-dependent exploration-exploitation tradeoffs. The typical trade-off between arm

exploration and exploitation in our setting depends on the particular values of the contexts (i.e., the

dual variables). This means there may exist "bad" contexts that lead to poor trade-offs, requiring

significantly more exploration to achieve accurate estimates of arm rewards than other "good"

contexts. We elaborate further in Lemma 4.5 and the discussions thereof.

We first handle continuum arm discretization by showing that the specific form of the conversion

functions V (ρj;z) in Eq. (4) induces salient structures for the Lagrangian function. Namely, it is

continuous, piecewise linear, concave, and unimodal6. We present the proof in Appendix C.3.

Lemma 4.3 (Structural properties) For any channel j ∈ [M ]:

• The conversion function Vj(ρj) is continuous, piecewise linear, strictly increasing, and concave.

In particular, Vj(ρj) takes the form

Vj(ρj) =
∑

n∈[Sj ]
(sj,nρj + bj,n) I{ρj ∈ [rj,n−1, rj,n]} ,

where Sj ∈N and (sj,n, bj,n, rj,n)n∈[Sj ]
depend only on the support Fj and distribution pj from

which values and costs are sampled. These parameters satisfy sj,1 > · · · > sj,Sj
> 0 and 0 =

rj,0 < rj,1 < · · ·< rj,Sj
= ρ, as well as bj,n ≥ 0 such that sj,nrj,n + bj,n = sj,n+1rj,n + bj,n+1 for all

n∈ [Sj − 1], with bj,1 = 0. This implies that Vj(ρj) is continuous in ρj.

• For any dual variables c= (λ,µ) ∈ R2
+, Lj(ρj,c) defined in Eq. (6) is continuous, piece-wise

linear, concave, and unimodal in ρj. In particular,

Lj(ρj,c) =
∑Sj

n=1

(
σj,n(c)ρj + b′j,n

)
I{ρj ∈ [rj,n−1, rj,n]} ,

where the slope σj,n(c) = (1 + λ)sj,n − (µ + γλ) and b′j,n = (1 + λ)bj,n. This implies

argmaxρj≥0Lj(ρj,c) =max{rj,n : n= 0,1 . . . , Sj , σj,n(c)≥ 0}.

In fact, for any realized value-cost pairs z, the “realization versions” of the conversion and Lagrangians

functions, namely Vj(ρj;z) and Lj(ρj,c;z), also satisfy the same properties as those of Vj(ρj) and

Lj(ρj,c). We provide a visual illustration for these properties in Figure 2.

6 A function f :R→R is unimodal if there exists a point y such that f(y) strictly increases when y≤ y and strictly
decreases when y≥ y∗.
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Figure 2 Illustration of Lagrangian functions defined in Eq. (6) with Mj = 2 auctions in channel j, and support

Fj that contains 3 elements, z(1) = ((8,2), (2,3)), z(2) = ((3,4), (1,4)), z(3) = ((8,1), (4,2)), and context

c= (λ,µ) = (4,2). Under Lemma 4.3, Sj = 5, where the “turning points” rj,0 . . . rj,Sj are indicated on the

x-axis, and the optimal budget w.r.t. c is argmaxρj∈[0,ρ]Lj(ρj ;c) = rj,2. The adjacent slopes in Eq. (11)

are σ−
j (c) = σj,2(c), and σ+

j (c) = σj,3(c).

We now address the reward boundedness issue for the Lagrangian functions that arise from

adversarial contexts. In Lemma 4.4 (proof in Appendix C.4), we show that the Lagrangian functions

are bounded by some absolute constants:

Lemma 4.4 (Bounding Lagrangian functions) For any t∈ [T ], j ∈ [M ] and ρj ∈ [0, ρ], we have

− (1+ γ)ρCF ≤ Lj(ρj,ct) ≤ (1+CF )V , where the dual variables ct = (λt, µt)t∈[T ] are generated

from Algorithm 1.

We now address the context-dependent exploration-exploitation tradeoff. To illustrate (e.g., Figure

2), define the slopes adjacent to the optimal per-channel budget with respect to c= (λ,µ) as follows:

assume the n-th “turning point” rj,n = argmaxρj∈[0,ρ]Lj(ρj,c), then

σ−
j (c) = σj,n(c) and σ+

j (c) = σj,n+1(c) . (11)

Similar to standard exploration-exploitation tradeoffs in bandits, the flatter the slope (e.g., σ−
j (c)

is close to 0), the more pulls are required to accurately estimate rewards for sub-optimal arms

on the slope, but the lower the loss in conversion for pulling sub-optimal arms. Our setting is

challenging because the magnitude of this tradeoff, or equivalently, the adjacent slopes σ−
j (c) and

σ+
j (c), depends on the adversarial contexts. In Lemma 4.5, we bound the UCB error by handling

this context-dependent tradeoff through separately analyzing periods when the adjacent slopes σ−
j (c)

and σ+
j (c) are less than or greater than some parameter σ > 0 chosen later, and characterize the

context-dependent tradeoff using σ.
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Lemma 4.5 (Bounding UCB error) Assume the discretization width δ satisfies δ < rj :=

minn∈[Sj ] rj,n − rj,n−1, where Sj and {rj,n}
Sj
n=0 are defined in Lemma 4.3. Then the UCB error in

Proposition 4.1 is upper-bounded by O
(
δT +σT + 1

σδ

)
, where σ > 0 is any positive number.

See Appendix C.5 for the proof. Finally, we put together Proposition 4.1, Lemma 4.2, and Lemma

4.5, and obtain the main result, Theorem 4.6, whose proof we detail in Appendix C.6.

Theorem 4.6 (Putting everything together) Assume that assumptions 4.1 and 4.2 hold. Take

step size η =Θ(1/
√
T ), discretization width δ =Θ(T−1/3), and β = ρ= 1

log(T )
in Algorithm 1, as well

as σ=Θ(T−1/3) in Lemma 4.5. Then, for large enough T , we have

T ·GL-OPT−E

∑
t∈[T ]

∑
j∈[M ]

Vj(ρj,t)

≤O(T 2/3).

Further, recalling that ρT is the final output of Algorithm 1, we have

GL-OPT−
∑

j∈[M ]E
[
Vj(ρj,T )

]
≤O(T−1/3),

and the constraint satisfaction:

ρ−
∑
j∈[M ]

E[ρj,T ]≥ 0,

as well as ∑
j∈[M ]

E
[
Vj(ρj,T )− γρj,T

]
≥ 0.

We make an important remark that distinguishes our result in Theorem 4.6 with related literature

on convex optimization. We refer the readers to Section 1.2 for a discussion on

Remark 4.2 In light of Lemma 4.3, the advertiser’s optimization problem CH-OPT(IB) in Eq.

(3) effectively becomes a convex problem (see Proposition C.4 in Appendix C.7). Hence it may be

tempting for one to directly employ off-the-shelf convex optimization algorithms. However, our problem

involves stochastic bandit feedback, and more importantly, uncertain constraints, meaning that we

cannot analytically determine whether a primal decision satisfies the constraints of the problem. For

example, in CH-OPT(IB), for some primal decision (ρj)j∈[M ], we cannot determine whether the ROI

constraint
∑

j∈M E [Vj(γj, ρj;zj)− γDj(γj, ρj;zj)]≥ 0 holds because the distribution (pj)j∈[M ] from

which z is sampled is unknown. To the best of our knowledge, within the online convex optimization

literature, two recent works address a similar stochastic bandit feedback and uncertain constraint

setting, namely Usmanova et al. (2019) and Nguyen and Balasubramanian (2022). However, our

setting is more challenging because these works consider a two-point estimation regime, where function

evaluations to the objective and constraints can be made twice per period, whereas we deal with a
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one-point estimation regime, where function calls are limited to once per period. The optimal oracle

complexities for unknown constraint convex optimization with one-point bandit feedback remain an

open problem. 7

In light of Remark 4.2, we would like to point out that stochastic bandit feedback has been

extensively studied in the BwK literature, including works such as Immorlica et al. (2022), Castiglioni

et al. (2022a), and Slivkins et al. (2023). As discussed earlier in Section 1.2, we use a primal-dual

framework for optimal budget allocation, similar to these works. However, our problem introduces

unique challenges due to the continuous nature of the primal variables and the optimization process

governing the value from a channel. We address these challenges by discretizing the continuous

decision space and proving that the resulting Lagrangian function is well-behaved (unimodal and

piecewise linear), as established in Lemma 4.3. Additionally, we propose a novel approach for handling

continuous dual variables by employing UCB (Upper Confidence Bound) in the primal step. To

avoid vacuous regret bounds that typically arise with continuous contexts (i.e., dual variables), we

introduce the concept of complete cross-learning Balseiro et al. (2022a), which enables rewards from

one context to be inferred for others. This ensures that the regret remains independent of the number

of contexts, a key property in our analysis, as formalized in Lemma 4.5.

5. Generalizing to autobidding in multi-item auctions

In the previous sections, we assumed that each channel consists of multiple auctions, each associated

with the sale of a single ad impression (see Eq. (4) and the accompanying discussion). However,

in practice, there are many scenarios where ad platforms sell multiple impressions in each auction

(see, e.g., Varian (2007), Edelman et al. (2007)). In this section, we extend all the results from the

single-item auction setting to the multi-item auction setup. In Section 5.1, we formally describe the

multi-item setup; in Section 5.2, we show that in the multi-item setting, the per-budget ROI lever

remains redundant (as shown in Theorem 3.3 and Corollary 3.4), and an advertiser can optimize

solely over per-channel budgets to achieve globally optimal conversion. In Section 5.3, we demonstrate

that our proposed DSD-UCB algorithm is directly applicable to the multi-item auction setup for a

broad class of auctions. Similar to Theorem 4.6, our algorithm produces accurate lever estimates,

enabling the advertiser to approximate the globally optimal lever decisions.

5.1. Multi-item autobidding setup

We first formalize our multi-item setup as follows. For each auction n ∈ [mj] of channel j ∈ [M ],

assume Lj,n ∈N impressions are sold, and channel j is only allowed to procure at most 1 impression in

auction n on the advertiser’s behalf. The value acquired and the cost incurred by the advertiser when

7 See Table 4.1 in Larson et al. (2019) for the best-known complexity bounds for one-point bandit feedback setups.
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procuring impression ℓ∈ [Lj,n] are vj,n(ℓ) and dj,n(ℓ), respectively. With a slight abuse of notation

from previous sections, we write vj,n = (vj,n(1), . . . , vj,n(Lj,n))∈RLj,n
+ as the Lj,n-dimensional vector

that includes all impression values of auction n in channel j, and further write vj = (vj,1, . . . ,vj,mj
)∈

R
∑

n∈[mj ]
Lj,n

+ as the vector that concatenates all value vectors across auctions in channel j. We

also define dj,n ∈RLj,n
+ and dj ∈R

∑
n∈[mj ]

Lj,n

+ accordingly for costs. Similar to Section 2, we assume

zj = (vj,dj) is sampled from finite support Fj according to the discrete distribution pj for any

channel j ∈ [M ], and without loss of generality, we assume that for any element zj ∈ Fj, the values

and costs for individual impressions in any auction n∈ [mj] satisfy vj,n(1)> . . . > vj,n(Lj,n)> 0 and

dj,n(1)> . . . > dj,n(Lj,n)> 0.

Under the above multi-item setup, an advertiser’s global optimization problem (analogous to

GL-OPT in Eq. (1) for the single-item auction setup in previous sections) can be written as the

following problem, called GL-OPT+:

GL-OPT+ =

max(
xj=(xj,1...,xj,mj

)
)
j∈[M ]

∑
j∈[M ]

E
[
v⊤
j xj

]
s.t.

∑
j∈[M ]

E
[
v⊤
j xj

]
≥ γ

∑
j∈[M ]

E
[
d⊤
j xj

]
∑
j∈[M ]

E
[
d⊤
j xj

]
≤ ρ

xj,n ∈ [0,1]
∑

n∈[mj ]
Lj,n and

∑
ℓ∈[Lj,n]

xj,n(ℓ)≤ 1, ∀j ∈ [M ], n∈ [mj] .

(12)

Here, xj,n = (xj,n(ℓ))ℓ∈[Lj,n] denotes the indicator vector for procuring impressions ℓ∈Lj,n in auction

n ∈ [mj] of channel j ∈ [M ]. Compared to GL-OPT, the key difference for GL-OPT+ is that we

introduce additional constraints which state: “at most 1 impression is procured in every multi-item

auction.”

On the other hand, analogous to a channel’s autobidding problem for the single-item auction setup

in previous sections (Eq. (4)), in the multi-item setting, each channel jj’s autobidding problem can

be written as:
x∗,+

j (γj, ρj;zj) = arg max
x=(x1...xmj )

v⊤
j x

s.t. v⊤
j x≥ γjd

⊤
j x, and d⊤

j x≤ ρj

xn ∈ [0,1]Lj,n and
∑

ℓ∈[Lj,n]

xn(ℓ)≤ 1, ∀n∈ [mj] ,

(13)

where xn = (xn(ℓ))ℓ∈[Lj,n] ∈ [0,1]mj denotes the (possibly random) vector of indicators for winning

each impression in auction n of channel j. With respect to this per-channel multi-item auction

optimization problem in Eq. (13), we further define V +
j (γj, ρj;zj), D+

j (γj, ρj;zj), V +
j (γj, ρj), and

D+
j (γj, ρj) as in Eq. (5), and CH-OPT+(I) as in Eq. (3) for any advertiser lever option I in Eq.

(2).
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5.2. Optimizing per-channel budgets is sufficient to achieve global optimal

Our first main result for the multi-item setting is Theorem 5.1, which demonstrates that an advertiser

can achieve the global optimal conversion GL-OPT+ by solely optimizing over per-channel budgets,

analogous to Theorem 3.3 and Corollary 3.4.

Theorem 5.1 (Redundancy of per-channel ROIs in multi-slot auctions) For the per-

channel budget option IB and general options IG defined in Eq. (2), we have GL-OPT+ =

CH-OPT+(IB) =CH-OPT+(IG) for any aggregate ROI γ > 0 and total budget ρ > 0, even when

ρ=∞. Further, there exists an optimal solution (γj, ρj)j∈[M ] to CH-OPT+(IG), such that γj = 0

for all j ∈ [M ].

It is easy to see that the proof of Lemma 3.1, Theorem 3.3, and Corollary 3.4 with respect to

the single-item setting in Section 3 can be directly applied to Theorem 5.1, since we did not rely

on specific structures of the solutions to GL-OPT and CH-OPT other than the presence of the

respective ROI and budget constraints (which are still present in GL-OPT+ and CH-OPT+).

Therefore, we will omit the proof of Theorem 5.1. In light of Theorem 5.1, we again conclude that

the per-channel ROI lever is redundant, and hence we omit the per-channel ROI γj when the context

is clear.

5.3. Applying DSD-UCB to the multi-item setting

We now turn to our second main focus in the multi-item setting: understanding whether our proposed

DSD-UCB algorithm can achieve accurate approximations of the optimal per-channel budgets,

similar to Theorem 4.6 in the single-item setting. A key observation is that the only difference

between bounding the error of DSD-UCB in the single and multi-item settings lies in the structure

of the conversion and corresponding Lagrangian functions (see Lemma 4.3). This is because the only

change in the multi-item setting, compared to the single-item setting, is how a given per-channel

budget translates into a certain conversion. Therefore, in this section, we introduce a broad class of

multi-item auction formats that induce the same conversion function structural properties as those

illustrated in Lemma 4.3. This will allow us to directly apply the proof for bounding the error of

DSD-UCB (Theorem 4.6) to the multi-item setting of interest.

To begin with, we introduce the following notion of increasing marginal values, which is a

characteristic that preserves the structural properties of conversion and Lagrangian functions from

the single-item setting (as shown in Lemma 4.3), and is demonstrated later in Lemma 5.2.
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Definition 5.1 (Multi-item auctions with increasing marginal values) We say an auction

n ∈ [mj] in channel j ∈ [M ] has increasing marginal values if for any realization zj = (vj,dj), we

have

vj,n(1)− vj,n(2)

dj,n(1)− dj,n(2)
> . . . >

vj,n(Lj,n − 1)− vj,n(Lj,n)

dj,n(Lj,n − 1)− dj,n(Lj,n)
>

vj,n(Lj,n)

dj,n(Lj,n)
> 0 ,

where we recall vj,n(1)> . . . > vj,n(Lj,n)> 0 and dj,n(1)> . . . > dj,n(Lj,n)> 0.

Increasing marginal values intuitively means that in a multi-item auction, the marginal value per

cost increases as higher-value impressions are procured. Many classic position auction formats satisfy

the increasing marginal gains property, such as the Vickrey–Clarke–Groves (VCG) auction. For more

details on position auctions, see Varian (2007), Edelman et al. (2007).

Example 5.1 (VCG auctions have increasing marginal values) Let auction n ∈ [mj] in

channel j ∈ [M ] be a VCG auction, where, for any realization of (vj,n,dj,n) = (vj,n(ℓ), dj,n(ℓ))ℓ∈[Lj,n],

there exists some ṽn,j > 0, position discounts 1 ≥ θn,j(1) > θn,j(2) > . . . > θn,j(Ln,j) > 0, and the

Ln,j-highest competing bids from competitors in the market d̃n,j(1)> d̃n,j(2)> . . . > d̃n,j(Ln,j)> 0,

such that the acquired value for procuring impression ℓ ∈ Ln,j is vn,j(ℓ) = θn,j(ℓ) · ṽn,j, and the

corresponding cost is

dj,n(ℓ) =

Lj,n∑
ℓ′=ℓ

(θn,j(ℓ
′)− θn,j(ℓ

′ +1))d̃n,j(ℓ
′),

where we denote θn,j(Lj,n +1)= 0. 8 Under VCG, the marginal values are given by

vj,n(ℓ)− vj,n(ℓ+1)

dj,n(ℓ)− dj,n(ℓ+1)
=

(θn,j(ℓ)− θn,j(ℓ+1)) ṽj,n

(θn,j(ℓ)− θn,j(ℓ+1)) d̃j,n(ℓ)
=

ṽj,n

d̃j,n(ℓ)
,

which decreases in ℓ since d̃n,j(1) > d̃n,j(2) > . . . > d̃n,j(Ln,j) > 0. Hence, VCG auctions admit

increasing marginal values.

We remark that the generalized second-price auction (GSP) does not necessarily have increasing

marginal values. However, if all auctions in a channel have increasing marginal values, then we can

show that the conversion function V +
j (ρj) and the corresponding Lagrangian function for multi-item

auctions admit the same structural properties as those in Lemma 4.3:

Lemma 5.2 (Structural properties for multi-item auctions) For any channel j ∈ [M ] whose

auctions have increasing marginal values (see Definition 5.1), the conversion function V +
j (ρj) =

E
[
vj⊤x∗,+

j (ρj;zj)
]

is continuous, piecewise linear, strictly increasing, and concave. Here, recall that

8 Here, the distribution over (vj,n,dj,n) can be viewed as the joint distribution over ṽn,j , (θn,j(ℓ))ℓ∈[Lj,n], and
(d̃n,j(ℓ))ℓ∈[Lj,n].
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x∗,+
j (ρj;zj) is the optimal solution to the channel’s optimization problem in Eq. (13). Further, for

any dual variables c= (λ, θ)∈R2
+, the Lagrangian function L+

j (ρj,c) := (1+λ)V +
j (ρj)− (θ+ γλ)ρj

is continuous, piecewise linear, concave, and unimodal in ρj.

See the proof in Appendix D.1. In light of Lemma 5.2, we can argue that DSD-UCB produces

per-channel budgets that yield the same accuracy as those in Theorem 4.6 for the single-item setting.

Theorem 5.3 (DSD-UCB applied to channel procurement for multi-item auctions)

Assume multi-item auctions in any channel j ∈ [M ] have increasing marginal values (per Definition

5.1), and assume Assumptions 4.1 and 4.2 hold for the multi-item setting.9 Then, with the same

parameter choices as in Theorem 4.6, and recalling ρT =
(

1
T

∑
t∈[T ] ρj,t

)
j∈[M ]

is the vector of

time-averaged per-channel budgets produced by DSD-UCB, we have

GL-OPT+ −
∑
j∈[M ]

E
[
V +
j (ρT,j)

]
≤O(T−1/3) ,

as well as constraint satisfaction∑
j∈[M ]

E
[
V +
j (ρT,j)− γρT,j

]
≥ 0, and ρ−

∑
j∈[M ]

E[ρT,j]≥ 0 ,

where we recall GL-OPT+ is defined in Eq. (12), V +
j (ρj) = E

[
v⊤
j x

∗,+
j (ρj;zj)

]
and x∗,+

j (ρj;zj) is

defined in Eq. (13).

The proof for this theorem is identical to that of Theorem 4.6 given the same structural properties

of the conversion and Lagrangian functions in Lemma 5.2 and Lemma 4.3. Hence, we will omit the

proof.

6. Numerical studies

In this section, we conduct numerical studies using synthetic data to showcase the performance of

our proposed DSD-UCB algorithm in both a single-agent stochastic and multi-agent environment.

In particular, in Section 6.1, we first consider the setting where we take the perspective of a single

buyer who runs our proposed DSD-UCB algorithm in a hypothetical setting where both values and

costs are stochastically generated for auctions in numerous channels. We demonstrate that under this

setup, the final per-channel budget profile output of our proposed algorithm accurately approximates

the optimal per-channel budget profile, even when the total number of periods T is moderately

small. Further, we show that when channels do not optimally autobid on the advertisers’ behalf (i.e.,

9 Assumption 4.1 in the multi-item setting again implies the spend in any channel is exactly the input per-channel
budget; Assumption 4.2 in the multi-item setting states that for any realization of value-cost pairs z = (vj ,dj)j∈[M ] ∈
F1× . . . FM , the realized version of the ROI constraint in GL-OPT+ defined in Eq. (12) is strictly feasible.
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channels do not optimally solve for Eq. (4)), the performance of our proposed algorithm deteriorates

gracefully.

Next, in Section 6.2, we consider a multi-agent setup where multiple buyers compete with each

other across multiple channels, while channels deploy standard budget management algorithms on

the buyers’ behalf to acquire ads (in particular, pacing strategies, which we will describe later in the

section). We show that in this multi-agent environment, our proposed DSD-UCB algorithm allows

buyers to retain a large fraction of the hindsight global optimal value.

6.1. Stochastic environment

Setup and data generation. We take the perspective of an advertiser with an aggregate budget

ρ=10 as well as an aggregate ROI γ =1.3, and consider M =10 channels, each of which consists

of mj =100 auctions for j ∈ [M ]. We conduct experiments over L=100 independent trials, where

each trial corresponds to a different support F for value-cost pairs, as well as a different distribution

p∈∆(F ) from which value-cost pairs are sampled. Here, ∆(F ) is the probability simplex over F .

In particular, we fix a value-cost pair support size of f = 5000. For each trial ℓ ∈ [L] and channel

j ∈ 1, . . . ,5, we sample f values from Uniform([0,1]mj ) as well as f costs from Uniform([0,1]mj ), with

which we construct the support F (ℓ)
j ⊂Rmj ×Rmj for channel j (note that the support size |F (ℓ)

j |= f).

On the other hand, for any channel j ∈ 6, . . . ,10, we sample f values from Uniform([0,2]mj ) as well as

f costs from Uniform([0,1]mj ) for channel j, with which we construct the support F (ℓ)
j ⊂Rmj ×Rmj .

Correspondingly, for any channel j ∈ [M ], we generate uniformly at random a probability distribution

p(ℓ) ∈∆(F (ℓ)), where F (ℓ) = F
(ℓ)
1 × . . .×F

(ℓ)
M . Finally, for trial ℓ∈ [L], with respect to the support F (ℓ)

and distribution p(ℓ), we denote the associated optimal conversion defined in Eq. (1) as GL-OPT(ℓ),

as well as the expected per-channel conversion defined in Eq. (5) as V
(ℓ)
j (ρj).

We remark that it is not difficult to see that auctions in channels 6–10 have a higher value-to-cost

ratio on average than those in channels 1–5. Therefore, we refer to channels 6–10 as the lucrative”

channels, and channels 1–5 as the non-lucrative” channels. Further, for any trial, under the hindsight

optimal per-channel budget profiles, lucrative channels consume approximately 80% of our total

budget, whereas non-lucrative channels demand the remaining 20%.

Non-optimal autobidding. In previous sections, we assumed that each channel adopts “optimal

autobidding” that solves Eq. (4) to optimality. This raises the natural question of whether our

findings still hold when channels do not procure ads optimally, perhaps due to non-stationary

environments (Besbes et al. 2014, Luo et al. 2018, Cheung et al. 2019, Chen et al. 2022), or the

presence of strategic market participants aiming to manipulate the market (Golrezaei et al. 2023a,

Drutsa 2020, Golrezaei et al. 2021, 2023b). To model non-optimal autobidding behavior (i.e., when

a channel j does not optimally solve for Vj(ρj;zj) in Eq. (4)), we introduce corruption factors
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(α1, α2)∈ [0,1]2 for non-lucrative and lucrative channels, respectively. 10 These factors capture each

channel’s degree of sub-optimal autobidding: after submitting a per-channel budget ρj to channel

j ∈ [M ], the channel will report back a conversion value Ṽj(ρj ;zj) = α1Vj(ρj ;zj) for j ∈ {1, . . . ,5}, or

Ṽj(ρj;zj) = α2Vj(ρj;zj) for j ∈ {6, . . . ,10}, given any realized value-cost pairs zj. Consequently, in

step 4 of the DSD-UCB algorithm, we observe Ṽj(ρj ;zt) instead of the optimal conversion V j(ρj ;zt).

In other words, we assume that channel j can only achieve a fraction of the optimal conversion,

where α1 = 1 or α2 = 1 corresponds to optimal autobidding.

Experiment procedure. We repeat the following procedure for trial ℓ∈ [L], corruption factors

α1, α2 ∈ {0.2,0.4,0.6,0.8,1}, and T ∈ {100,200,500,1000}. We run the DSD-UCB algorithm over

T periods, where in each period t∈ [T ], value-cost pairs for all
∑

j∈[M ]mj = 1000 auctions, namely

zt = (vt,dt)∈R
∑

j∈[M ] mj ×R
∑

j∈[M ] mj , are sampled from support F (ℓ) according to distribution p(ℓ).

After submitting (ρj,t)j ∈ [M ] to the channels, we observe Ṽj(ρj,zj) = α1Vj(ρj,zj) for j ∈ [M ]. We

denote the final output per-channel budget profile as ρ
(ℓ,α1,α2)
T .

Figure 3 Left: percentage of global optimal conversion under different total periods T and optimal autobidding (i.e.

α1 = α2 = 1). Each point in box plot corresponds to the percentage conversion of a single trial ℓ∈ [L], namely,

(
∑

j∈[M ] Vj

(
ρ
(ℓ,α1,α2)
T

)
)/GL-OPT(ℓ) for some ℓ∈ [L]; Right: percentage of global optimal conversion under

T = 200, and non-optimal autobidding as we vary α1, α2 ∈ {0.2,0.4,0.6,0.8,1}. Each point in the heatmap is

the average conversion percentage over all L trials, namely, 1
L

∑
ℓ∈[L](

∑
j∈[M ] Vj

(
ρ
(ℓ,α1,α2)
T

)
)/GL-OPT(ℓ).

Results. To analyze the influence of the total number of periods on our DSD-UCB algorithm

under optimal autobidding, or in other words, to assess how data-hungry our algorithm is, we vary T

10 To model non-optimal autobidding behavior, in Section 6.2, we conduct another robustness check by considering a
dynamic, non-stationary multi-agent setting, where autobidding is done with the help of a dynamic pacing algorithm
in Balseiro et al. (2017), Balseiro and Gur (2019).
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and display the corresponding percentage of conversion our algorithm’s output achieves, compared

to the hindsight global optimal conversion, namely∑
j∈[M ] Vj

(
ρ
(ℓ,α1,α2)
T

)
GL-OPT(ℓ)

for α1 = α2 = 1, in the left subgraph of Figure 3. Note that each box plot corresponds to the

variation over different trials ℓ ∈ [L]. We observe that increasing the number of periods T in our

algorithm yields improved performance by allowing for more opportunities to collect data and learn

per-channel budgets, while simultaneously reducing the variance associated with its performance.

More interestingly, we note that for T = 200 (i.e., 8-9 days if one period corresponds to running an

ad campaign for an hour), our algorithm yields a per-channel budget profile that achieves more than

91% of the global optimal conversion.

In the right subgraph of Figure 3, we further calculate the average percentage of conversion our

algorithm’s output achieves compared to the global optimal conversion as we vary corruption factors

α1, α2. In particular, fixing T = 200, for any (α1, α2)-pair, we plot

1

L

∑
ℓ∈[L]

∑
j∈[M ] Vj

(
ρ
(ℓ,α1,α2)
T

)
GL-OPT(ℓ)

in the right subgraph of Figure 3. Note here that we are displaying the performance of the output

per-channel budget profile of our algorithm ρ
(ℓ,α1,α2)
T under optimal autobidding conversion Vj(·),

instead of the observed non-optimal autobidding conversion Ṽj(·). This metric can be viewed as a

normalized version of realized conversion by accounting for corruption factors α1 and α2, which

allows us to assess how much our algorithm’s output per-channel budget profile deviates from the

optimal per-channel budget profile.

Fixing the corruption factor α1 for the “non-lucrative” channels (i.e., channels with lower value-cost

ratio auctions on average), the conversion performance of our algorithm improves as the other, more

lucrative channels autobid more optimally. Nevertheless, even in the most corrupted case, where

both channels have corruption factors of 0.2 (i.e., both achieve only 20% of optimal autobidding

conversion), our algorithm still outputs a per-channel budget profile that attains more than 92%

of the optimal (normalized) conversion. In contrast, when we fix the corruption factor α2 for the

“lucrative” channels, our algorithm achieves better performance as the non-lucrative channels become

more sub-optimal in their autobidding. This is primarily because, with a decreasing corruption factor

(indicating more sub-optimal autobidding) for the non-lucrative channels, our algorithm tends to

allocate more budget to the lucrative channels, which inherently generate higher conversion for the

same amount of spend.
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6.2. Dynamic multi-agent environment

Setup. In this section, we consider a multi-agent non-stochastic setting where individual buyers’

actions (i.e., bids) are modeled using standard learning algorithms. Our experimental process mimics

real-world ad procurement processes, in which, after an advertiser sets a budget for a channel, the

platform deploys a standard pacing algorithm for online constraint management—or equivalently,

dual subgradient descent (DSD) from Balseiro et al. (2017)—to participate in a large number of

auctions and acquire ads on the advertiser’s behalf. The goal of this section is to analyze the behavior

and performance of our proposed DSD-UCB algorithm when interacting with these standard pacing

algorithms.

Experiment procedure. We consider the perspective of a single buyer acquiring ads across

M ≥ 3 channels, where each channel consists of N participant autobidders (including the buyer,

indexed as 0), for some N ∈N. For simplicity, we assume all competitors are subject only to long-term

budget constraints across multiple rounds of bidding. Each channel conducts repeated second-price

auctions organized in phases. Specifically, consider H =100 consecutive phases, where each phase

consists of T = 200 periods, during which each channel independently runs a single auction in every

period. At the start of each phase h, each buyer i determines the total budget ρ
(i)
j,hT to allocate to

each channel j. Budgets are fully replenished at the beginning of each new phase. Conceptually, a

phase represents a single ad campaign deployed across multiple channels, where, within the campaign,

each channel procures ads on behalf of the buyer over T periods. In each period, the valuations of all

N buyers for the auctioned item in any channel are independently sampled from Uniform([0,1]).11

Most importantly, we assume that each channel runs DSD to submit bids on buyers’ behalf for

each period within a phase, based on a total budget set at the beginning of the phase. Specifically,

for each phase h∈ [H], and for each channel j ∈ [M ] maintains a dual variable λ
(i)
j,t for buyer i before

bidding in period t. Once the buyer’s valuation v
(i)
j,t for the auctioned item in the channel is observed,

the channel submits a bid value

b
(i)
j,t =

v
(i)
j,t

1+λ
(i)
j,t

on behalf of buyer i. Let p(i)j,t denote the second-price auction payment for buyer i in channel j during

period t, where p
(i)
j,t equals the highest competing bid if buyer i wins the auction in channel j, and 0

otherwise. If buyer i wins the auction in channel j, they acquire a value of v(i)j,t ; otherwise, the value

is 0. The channel then updates the dual variables as follows:

λ
(i)
j,t+1 = λ

(i)
j,t − ϵ

(
ρ
(i)
j,h

T
− p

(i)
j,t

)
,

11 The code and randomly generated data used for this experiment can be found at: https://anonymous.4open.
science/r/multichannel_autobidding-6645/MultichannelSimulation.py.

https://anonymous.4open.science/r/multichannel_autobidding-6645/MultichannelSimulation.py
https://anonymous.4open.science/r/multichannel_autobidding-6645/MultichannelSimulation.py
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where ϵ= 1/T is a fixed DSD step size that is identical across channels and buyers.

As stated earlier, we consider the perspective of a single buyer, indexed as 0, who uses our

DSD-UCB algorithm to allocate their budget across multiple channels. We assume that competitors

i∈ {1, . . . ,N} have a per-period budget of ρ(i)j,h = 0.1. To implement DSD-UCB, at the end of each

phase h, channel j reports back the total conversion value. Using the historical conversion data

(V
(0)
j,1 , . . . , V

(0)

j,h′)j∈[M ] for all h′ ≤ h, the buyer determines the per-channel budgets (ρ
(0)
j,h+1)j∈[M ] for the

next phase. These budget parameters are updated according to the proposed DSD-UCB algorithm

described in Algorithm 1.

For simplicity we fix our aggregate ROI γ = 0.1, and in the following section we analyze the

performance of our DSD-UCB algorithm when we vary number of buyers N ∈ {2 . . .10} in each

channel as well as our per-period budget ρ∈ {0.1,0.2 . . .0.9}.12 We run 50 independent trials for our

experiment procedure (recall each consisting H = 100 with T = 200 periods per phase), and in each

trial, we sample the number of channels M ∈ {3,4 . . .10} uniformly at random.

Benchmarks. Denote our highest competing bid for each channel j as dj,t =maxi∈{1,...,N} b
(i)
j,t.

Further, let

d̃j =
1

HT

∑
t∈[HT ]

dj,t and ṽj =
1

HT

∑
t∈[HT ]

v
(0)
j,t

represent the average values of the highest competing bids and the buyer’s valuations, respectively,

over all phases and periods. Note that d̃j can be interpreted as the average cost of procuring ads

in channel j ∈ [M ]. We consider two benchmarks for comparing the performance of our proposed

DSD-UCB algorithm:

1. Hindsight-OPT: This measures the largest acquirable total value if all costs (i.e., highest

competing bids) and realized values were observed prior to bidding.

2. Phase-GL-OPT: This measures the total value obtained when fixing the single best budget

for each channel across different phases. Phase-GL-OPT serves as a reasonable benchmark

since it computes the optimal solution that maximizes the expected value across channels while

having access to their average performance, providing a competitive baseline for comparison.

Mathematically, these two benchmarks are defined as follows

max
xt∈[0,1]

1

HT

∑
j∈[M ]

∑
t∈[HT ]

vj,txj,t

s.t.
∑
j∈[M ]

∑
t∈[HT ]

vj,txj,t ≥ γ
∑
j∈[M ]

∑
t∈[HT ]

dj,txj,t∑
j∈[M ]

∑
t∈[HT ]

dj,txj,t ≤ ρHT .

(Hindsight-OPT)

max
x1,...,xM∈[0,1]

∑
j∈[M ]

ṽjxj

s.t.
∑
j∈[M ]

ṽjxj ≥ γ
∑
j∈[M ]

d̃jxj∑
j∈[M ]

d̃jxj ≤ ρ .

(Phase-GL-OPT)

12 We further investigate how convergence behavior scales with the amount of available budget. Additional results for
small-budget campaigns, reported in Appendix E, show that, as expected, convergence slows when the per-round
budget is smaller.
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Results. In the following figures, we plot Hindsight-OPT, Phase-GL-OPT, and the realized

acquired values (averaged over all HT periods) for varying budget ρ and total number of buyers N .

In Figure 4, we fix our budget parameter ρ=0.1, equal to that of all competitors, and vary the

per-channel number of buyers N . We observe that the per-period acquired value decreases as the

number of competitors increases within each channel. This is due to increased competition, which

raises the effective cost of acquiring items. More importantly, our proposed DSD-UCB algorithm

achieves between 65% and 88% of the Hindsight-OPT, which represents the largest achievable

value given full knowledge of the highest competing bids for each period. 13

Additionally, our algorithm achieves a 1.3x increase in total value compared to Phase-GL-OPT

when N = 10 and up to a 1.75x improvement when N = 3. This highlights the robustness of the

DSD-UCB algorithm even under high competition.

In Figure 5, we fix the number of buyers at N = 10 and vary the budget parameter ρ ∈

{0.1,0.2, . . . ,0.9}. We observe that the per-period acquired value increases as the budget parame-

ter ρ grows, reflecting greater buying power allocated to each channel’s campaign. Our proposed

DSD-UCB algorithm achieves between 60% and 90% of the Hindsight-OPT, with the relative

performance improving as ρ increases. For instance, when ρ= 0.9, the algorithm achieves 90% of

the hindsight-optimal value — a significant increase compared to 65% at ρ= 0.1. Furthermore, the

DSD-UCB algorithm achieves a 1.4x increase in total value compared to Phase-GL-OPT when

ρ= 0.2 and up to 1.8x when ρ= 0.9.

Managerial insights. Our numerical studies demonstrate that the DSD-UCB algorithm achieves

a high fraction of the value obtained by the hindsight global optimal solution, even when autobidding

algorithms do not explicitly solve an optimization problem and instead use pacing algorithms to

update bidders’ bidding strategies. As shown in Balseiro and Gur (2019), when all bidders adopt

adaptive pacing strategies, competing bids become nonstationary and endogenous. In such scenarios,

under certain assumptions, these strategies converge to an approximate Nash equilibrium. We

conjecture that the DSD-UCB algorithm implicitly leverages the convergence of the pacing strategies

to a Nash equilibrium, enabling robust performance. Nonetheless, further investigation into this

framework presents an intriguing avenue for future research.

7. Conclusion and Open Problems

This work addresses a critical yet overlooked aspect of online advertising: how advertisers interact

with channels to optimize their campaigns. Our research focuses on how advertisers can effectively

13 Although we don’t show it here, the relative performance of the DSD-UCB algorithm improves as T (i.e., the
number of periods within a phase) increases, which is currently set at 200. For example, increasing T from 200 to 400
improves the efficiency by approximately 5% due to reduced pacing inefficiency within a single phase.
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Figure 4 Fixed budget ratio ρ= 0.1. Shaded region rep-

resents distribution of average per-period value

over 50 independent trials.

Figure 5 Fixed buyers N = 10 for each channel. Shaded

region represents distribution of average per-

period value over 50 independent trials.

utilize per-channel budget and ROI levers to maximize conversions under global budget and ROI

constraints. We demonstrate that optimizing per-channel budgets alone is sufficient to achieve global

optimality, while relying solely on per-channel ROI targets can lead to suboptimal outcomes. To

tackle the challenge of optimizing budget decisions under bandit feedback, we propose an algorithm

combining stochastic gradient descent with a UCB framework, achieving efficient sublinear regret

guarantees. Our work extends to multi-impression auctions and general advertiser objectives, and

numerical studies confirm the algorithm’s effectiveness.

Our work focuses on the stochastic setting, motivated by real-world scenarios. While advertisers

may adapt their strategies over time, aggregated changes across a large market rarely create highly

adversarial environments. Instead, the dynamics are typically stochastic and relatively stationary,

making this setting more representative and applicable. Nevertheless, as in the BwK literature (e.g.,

Castiglioni et al. (2022a))—where approximate sublinear regret is achieved instead of exact sublinear

regret in the stochastic setting—exploring adversarial settings could provide valuable theoretical

insights and represent an interesting direction for future work. In adversarial settings, the values

obtained from channels are not derived from an optimization problem assuming stochastic competing

bids, but are instead generated adversarially. Under such conditions, to obtain meaningful results,

one needs to bound the discretization error in the primal step, which is impossible without imposing

certain restrictions on the adversary.

Another promising direction is to study market dynamics without assuming that the channel

optimization problem is solved optimally. In this scenario, the outcome of budget allocation is derived

from gradient descent dynamics, as modeled and simulated in Section 6.2. Our numerical results

provide positive evidence, confirming that the global optimal solution can still be reached in this
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setting. Nonetheless, further investigation into this framework presents an intriguing avenue for

future research.
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Appendices for

Multi-channel Autobidding with Budget and ROI
constraints

Appendix A: More general advertiser objectives

In GL-OPT and CH-OPT(I) defined Section 2 (or similarly GL-OPT+ and CH-OPT+(I) defined

in the multi-item setting in Section 5), we can also consider more general objectives, namely

maxx1,...,xM

∑
j∈[M]E

[
v⊤
j xj −αd⊤

j xj

]
and max(γj ,ρj)j∈[M]∈I

∑
j∈M

E [Vj(γj , ρj ;zj)−αVj(γj , ρj ;zj)] for some

private cost α∈ [0, γ]14 in GL-OPT and CH-OPT(I), respectively. When α= 0, we recover our considered

models in the previous section, whereas when α= 1, we obtain the classic quasi-linear utility. We remark

that this private cost model has been introduced and studied in related literature; see Balseiro et al. (2019)

and references therein. Nevertheless, when each channel’s autobidding problem remains as is in Eq.(4), i.e.

channels still aim to maximize conversion which causes a misalignment between advertiser objectives and

channel behavior, it is not difficult to see in our proofs that all our results still hold in Section 3, and

our DSD-UCB algorithm still produces estimates of the same order of accuracy via introducing α into the

Lagrangian. In other words, even if channels aim to maximize total conversion for advertisers, advertisers

can optimize for GL-OPT with a private cost α through optimizing CH-OPT(I) that also incorporates the

same private cost.

Appendix B: Proofs for Section 3

B.1. Proof of Lemma 3.1

Fix any option I ∈ {IB,IR,IG} defined in Eq. (2), and let (γ̃, ρ̃)∈ I be the optimal solution to CH-OPT(I).
Note that for the per-channel ROI-only option IR, we have ρ̃j =∞, and for the per-channel budget-only

option, we have γ̃j = 0 for all j ∈ [M ]. Further, for any realization of value-cost pairs over all auctions

z = (vj ,dj)j∈[M], recall the optimal solution x∗
j (γ̃j , ρ̃j ;zj) to Vj(γ̃j , ρ̃j ;zj) for each channel j ∈ [M ], as defined

in Eq. (4).

Due to the feasibility of (γ̃, ρ̃)∈ I for CH-OPT(I), we have∑
j∈M

E [Vj(γ̃j , ρ̃j ;zj)]≥ γ
∑
j∈M

E [Dj(γ̃j , ρ̃j ;zj)] =⇒
∑

j∈[M]

E
[
v⊤
j x

∗
j (γ̃j , ρ̃j ;zj)

]
≥ γ

∑
j∈[M]

[
d⊤

j x
∗
j (γ̃j , ρ̃j ;zj)

]
,

where we used the definitions Vj(γ̃j , ρ̃j ;zj) = v⊤
j x

∗
j (γ̃j , ρ̃j ;zj) and Dj(γ̃j , ρ̃j ;zj) = d⊤

j x
∗
j (γ̃j , ρ̃j ;zj) in Eq. (5).

This implies that
(
x∗

j (γ̃j , ρ̃j ;zj)
)
j∈[M]

satisfies the ROI constraint in GL-OPT. A similar analysis implies

that
(
x∗

j (γ̃j , ρ̃j ;zj)
)
j∈[M]

also satisfies the budget constraint in GL-OPT. Therefore,(
x∗

j (γ̃j , ρ̃j ;zj)
)
j∈[M]

is feasible to GL-OPT.

Thus,

GL-OPT≥
∑

j∈[M]

E
[
v⊤
j x

∗
j (γ̃j , ρ̃j ;zj)

]
=
∑
j∈M

[Vj(γ̃j , ρ̃j ;zj)] =CH-OPT(I) ,

14 If α> γ the ROI constraints in GL-OPT as well as CH-OPT(I) become redundant.
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where the final equality follows from the assumption that (γ̃, ρ̃)∈ I is the optimal solution to CH-OPT(I).

□

B.2. Proof of Theorem 3.3

In light of Lemma 3.1, we only need to show CH-OPT(IB)≥GL-OPT. Let x̃(z) = {x̃j(zj)}j∈[N] be the

optimal solution to GL-OPT, and define γ̃j = 0 and ρ̃j = E
[
d⊤

j x̃j(zj)
]

to be the corresponding expected

spend for each channel j under the optimal solution x̃(z) to GL-OPT, respectively.

We first argue that (γ̃j , ρ̃j)j∈[M] is feasible to CH-OPT(IB). Recall the optimal solution x∗
j (γ̃j , ρ̃j;zj)

to Vj(γ̃j , ρ̃j;zj) for each channel j ∈ [M ] as defined in Eq. (4), as well as the definitions Vj(γ̃j , ρ̃j;zj) =

v⊤
j x

∗
j (γ̃j , ρ̃j ;zj) and Dj(γ̃j , ρ̃j ;zj) = d⊤

j x
∗
j (γ̃j , ρ̃j ;zj) in Eq. (5). Then, we have

E [Dj(γ̃j , ρ̃j ;zj)] =E
[
d⊤

j x
∗
j (γ̃j , ρ̃j ;zj)

] (i)

≤ ρ̃j =E
[
d⊤

j x̃j(zj)
]
, (14)

where (i) follows from feasibility of x∗
j (γ̃j , ρ̃j;zj) to Vj(γ̃j , ρ̃j;zj). Summing over j ∈ [M ], we conclude that

(γj ,ρj)j∈[M] satisfies the budget constraint in CH-OPT(IB):∑
j∈[M]

E [Dj(γ̃j , ρ̃j ;zj)]≤
∑

j∈[M]

E
[
d⊤

j x̃j(zj)
] (i)

≤ ρ . (15)

Here (i) follows from feasibility of x̃(z) = {x̃j(zj)}j∈[N] to GL-OPT since it is the optimal solution.

On the other hand, we have

Vj(γ̃j , ρ̃j ;zj) = v⊤
j x

∗
j (γ̃j , ρ̃j ;zj)

(i)

≥ v⊤
j x̃j(zj) , (16)

where (i) follows from optimality of x∗
j (γ̃j , ρ̃j ;zj) to Vj(γ̃j , ρ̃j ;zj). Hence, we have∑

j∈[M]

E [Vj(γ̃j , ρ̃j ;zj)]≥
∑

j∈[M]

E
[
v⊤
j x̃j(zj)

] (i)

≥ γ
∑

j∈[M]

E
[
d⊤

j x̃j(zj)
] (ii)

≥ γ
∑

j∈[M]

E [Dj(γ̃j , ρ̃j ;zj)] , (17)

where (i) follows from feasibility of x̃(z) = {x̃j(zj)}j∈[N] to GL-OPT since it is the optimal solution; (ii)

follows from Eq. (14). Hence, combining Eq. (15) and Eq.(17), we can conclude that (γ̃j , ρ̃j)j∈[M] is feasible

to CH-OPT(IB).

Finally, we have CH-OPT(IB)≥
∑

j∈[M]E [Vj(γ̃j , ρ̃j ;zj)]≥
∑

j∈[M]E
[
v⊤
j x̃j(zj)

]
= GL-OPT, where the

last inequality follows from Eq. (17), and the final equality is because we assumed x̃(z) = {x̃j(zj)}j∈[N] is the

optimal solution to GL-OPT.

□

B.3. Proof of Corollary 3.4

In light of Lemma 3.1, we only need to show CH-OPT(IG)≥GL-OPT. Let (γ̃, ρ̃)∈ IB, and by definition

of IB in Eq. (2) we have γ̃j = 0 for all j ∈ [M ]. Since (γ̃, ρ̃) is feasible to CH-OPT(IB), it is also feasible to

CH-OPT(IG) since these two problems share the same ROI and budget constraints. Because they also share

the same objectives, we have

CH-OPT(IG)≥CH-OPT(IB) =GL-OPT , (18)

where the final equality follows from Theorem 3.3. □
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Appendix C: Proofs for Section 4

C.1. Proof of Proposition 4.1

Let (ρ∗
j )j∈[M] be the optimal per-channel budgets to CH-OPT(IB), and define µ̄T = 1

τA

∑
t∈[τA] µt as well as

λ̄T = 1
τA

∑
t∈[τA] λt . Then

T ·GL-OPT−
∑
t∈[T ]

∑
j∈[M]

Vj(ρj,t)

(i)

≤ MV (T − τA)+ τACH-OPT(IB)−
∑

t∈[τA]

∑
j∈[M]

Vj(ρj,t)

(ii)

≤ MV (T − τA)+ τA ·
( ∑
j∈[M]

Lj(ρ
∗
j , λ̄T , µ̄T )+ ρµ̄T

)
−
∑

t∈[τA]

∑
j∈[M]

Vj(ρj,t)

(iii)

≤ MV (T − τA)+ ρ
∑

t∈[τA]

µt +
∑

t∈[τA]

∑
j∈[M]

Lj(ρ
∗
j , λt, µt)−

 ∑
t∈[τA]

∑
j∈[M]

Lj(ρj,t,ct)−λt (Vj(ρj,t)− γρj,t)+µtρj,t


(iv)

≤ MV (T − τA)+
∑

j∈[M]

∑
t∈[τA]

Lj(ρ
∗
j (t),ct)−Lj(ρj,t,ct)+

∑
t∈[τA]

(λtg1,t +µtg2,t) .

(19)

Here, (i) follows from Theorem 3.3 that states GL-OPT=CH-OPT(IB) and CH-OPT(IB) is apparently

upper bounded by MV ; (ii) follows from the weak duality theorem that CH-OPT(IB)≤
∑

j∈[M]Lj(ρ
∗
j , λ,µ)+

µρ for any (λ,µ)∈R2
+; (iii) follows from that Lj(ρ

∗
j , λ,µ) is linear in both λ and µ and the definition of the

Lagrangian in Eq. (6); in (iv) we define ρ∗
j (t) = argmaxρj≥0Lj(ρj ,ct) to be the optimal budget that maximizes

the Lagrangian w.r.t. the dual variables ct = (λt, µt). Further, we have g1,t =
∑

j∈[M] (Vj(ρj,t)− γρj,t) and

g2,t = ρ−
∑

j∈[M] ρj,t. Q.E.D.

C.2. Proof for Lemma 4.2

Recall g1,t =
∑

j∈[M] (Vj,t(ρj,t;zj,t)− γρj,t) and g2,t = ρ −
∑

j∈[M] ρj,t defined in Algorithm 1. Also recall

τA ∈ [T ] defined in step 10 of Algorithm 1. In the following, we will show

MV (T − τA)+
∑

t∈[τA]

(λtg1,t +µtg2,t)

≤ CF max{MV ,ρ}+M2V ρ ·max
{ 1

βρ
,

1

ρ−Mρ

}
+

(γM2V̄ 2 + ρ2)

2
· ηT +

1

2η
C2

F = O
(
ηT +

1

η

)
,

(20)

where we recall CF =MV max
{

1
βρ
, 1
ρ−Mρ

}
defined in Eq. (9).

From Lemma C.3, we have for any t∈ [T ], and λ,µ∈ [0,CF ],∑
τ∈[t]

(λτ −λ)g1,τ ≤
ηM2V̄ 2

2
· t+ 1

2η
λ2

∑
τ∈[t]

(µτ −µ)g2,τ ≤
ηρ2

2
· t+ 1

2η
µ2 ,

(21)

where we used the fact that λ1 = µ1 = 0 in Algorithm 1.

Suppose that τA = T and thus MV (T − τA) = 0. Then, considering λ= µ= 0 in Eq. (21), we have∑
t∈[τA]

λtg1,t ≤
ηM2V̄ 2

2
·T and

∑
t∈[τA]

µtg2,t ≤
ηρ2

2
·T . (22)
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Thus, Eq. (20) holds.

If τA <T , then according to Algorithm 1, we either have S1,τA − γMρ+ βρ(T − τA)< 0 or S2,τA +Mρ+

Mρ(T − τA)> ρT , where we recall S1,τA =
∑

t∈[τA−1] g1,t and S2,τA =
∑

t∈[τA−1]

∑
j∈[M] ρj,t =

∑
t∈[τA−1](ρ−

g2,t):

• If S1,τA − γMρ+βρ(T − τA)< 0, then we have
∑

t∈[τA−1] g1,t < γMρ−βρ(T − τA). Hence, considering

λ= MV
βρ

∈ [0,CF ] in Eq. (21), we have

MV (T − τA)+
∑

t∈[τA]

λtg1,t

≤ MV (T − τA)+λτAg1,τA +
∑

t∈[τA−1]

λg1,t +
ηM2V̄ 2

2
· (τA − 1)+

1

2η
λ2

< MV (T − τA)+λτAg1,τA −MV (T − τA)+
γM2V ρ

βρ
+

ηM2V̄ 2

2
· (τA − 1)+

1

2η
λ2

≤ CFMV +
γM2V ρ

βρ
+

ηM2V̄ 2

2
·T +

1

2η
C2

F ,

(23)

where the first inequality follows from Eq. (21), and the second inequality holds because as stated above,

we have
∑

t∈[τA−1] g1,t <γMρ−βρ(T − τA) in this case. The final inequality uses the fact that τA ≤ T ,

λ≤CF , and g1,t ≤MV for any t∈ [T ]. Finally, by further taking µ= 0, we have
∑

t∈[τA] µtg2,t ≤ ηρ2

2
·T .

This and Eq. (23) show that Eq. (20) holds.

• If S2,τA +Mρ+Mρ(T − τA)>ρT , then we have
∑

t∈[τA−1](ρ− g2,t)>ρT −Mρ−Mρ(T − τA), or equiv-

alently
∑

t∈[τA−1] g2,t <Mρ(T − τA)+Mρ− ρ(T − τA)≤−(ρ−Mρ)(T − τA)+Mρ. Hence, considering

µ= MV
ρ−Mρ

∈ [0,CF ] in Eq.(21) we have

MV (T − τA)+
∑

t∈[τA]

µtg2,t ≤ MV (T − τA)+µτAg2,τA +
∑

t∈[τA−1]

µg2,t +
ηρ2

2
· τA +

1

2η
µ2

< MV (T − τA)+µτAg2,τA −MV (T − τA)+
M2V ρ

ρ− ρ
+

ηρ2

2
· τA +

1

2η
µ2

≤ CFρ+
M2V ρ

ρ− ρ
+

ηρ2

2
·T +

1

2η
C2

F ,

(24)

where the first inequality follows from Eq. (21), and the second inequality holds because as stated above,

we have
∑

t∈[τA−1] g2,t <Mρ(T − τA) +Mρ− ρ(T − τA)≤−(ρ−Mρ)(T − τA) +Mρ in this case. The

final inequality uses the fact that τA ≤ T , µ≤CF , and g2,t ≤ ρ for any t∈ [T ]. Finally, by further taking

λ= 0, we have
∑

t∈[τA] λtg1,t ≤ ηM2V̄ 2

2
·T . This and Eq. (24) show that Eq. (20) holds.

Q.E.D.

C.3. Proof of Lemma 4.3

We first show for any realization z = (zj)j∈[M] = (vj ,dj)j∈[M], the conversion function Vj(ρj ;zj) is piecewise

linear, strictly increasing, and concave for any j ∈ [M ].

Fix any channel j that consists of mj parallel auctions, and recall that we assumed the order vj,1

dj,1
>

vj,2

dj,2
>

· · ·>
vj,mj

dj,mj

for any realization zj . Then, with the option where the per-channel ROI is set to 0 (i.e. omitted)
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Vj(ρj ;zj) is exactly the LP relaxation of a 0-1 knapsack, whose optimal solution x∗
j (ρj ;zj) is well known to

be unique, and takes the form for any auction index n∈ [mj ]:

x∗
j,n(ρj ;zj) =

{
1 if

∑
n′∈[n] dj,n′ ≤ ρj

(ρj−
∑

n′∈[n−1] dj,n′ )+

dj,n
otherwise

, (25)

where we denote dj,0 = 0. With this form, it is easy to see

Vj(ρj ;zj) = v⊤
j x

∗
j (ρj ;zj) =

∑
n∈[mj ]

(
vj,n
dj,n

ρj + bj,n

)
I{dj,0 + · · ·+ dj,n−1 ≤ ρj <dj,0 + · · ·+ dj,n} (26)

where we denote dj,0 = 0 and also bj,n =
∑

n′∈[n−1] vj,n′ − vj,n

dj,n
·
(∑

n′∈[n−1] dj,n′

)
and vj,0 = 0.

It is easy to check that any two line segments, say [Xn−1,Xn] and [Xn,Xn+1] where we write Xn =

dj,0+ · · ·+dj,n, intersect at ρj =Xn, because vj,n

dj,n
ρj + bj,n =

vj,n+1

dj,n+1
ρj + bj,n+1 at ρj =Xn. Hence, from Eq. (26)

we can conclude Vj(ρj ;zj) is continuous, which further implies it is piecewise linear and strictly increasing.

Further, the ordering vj,1

dj,1
>

vj,2

dj,2
> · · ·>

vj,mj

dj,mj

implies that the slopes on each segment [Xn,Xn+1] decreases as

n increases, which implies Vj(ρj ;zj) is concave.

Since Vj(ρj) = E [Vj(ρj ;zj)], where the expectation is taken w.r.t. randomness in zj, and since the zj is

sampled from some discrete distribution pj on finite support Fj, Vj(ρj) is simply a weighted average over

all (Vj(ρj ;zj))zj∈Fj
with weights in pj , so Vj(ρj) is also continuous, piecewise linear, strictly increasing, and

concave, and thus can be written as in Lemma 4.3 with parameters {(sj,n, bj,n, rj,n)}n∈[Sj ] that only depend

on the support Fj and distribution pj .

Finally, according to the definition of Lj(ρj ,c) =E [Lj(ρj ,c;zj)] and Lj(ρj ,c;zj) = (1+λ)Vj(ρj ;zj)− (λγ+

µ)ρj as defined in Eq. (6), we have

Lj(ρj ,c) = (1+λ)Vj(ρj)− (λγ+µ)ρj (27)

which implies Lj(ρj ,c) is continuous, piecewise linear, and concave because Vj(ρj) is continuous, piecewise

linear, and concave as shown above. Combining Eq. (27) and the representation of Vj(ρj) in Lemma (4.3), we

have

Lj(ρj ,c) =
∑

n∈[Sj ]

(σj,n(c)ρj +(1+λ)bj,n) I{rj,n−1 ≤ ρj ≤ rj,n} . (28)

where the slope σj,n(c) = (1 + λ)sj,n − (µ+ γλ) decreases in n. Thus, at the point rj,n∗ =max{rj,n : n =

0,1 . . . , Sj , σj,n(c)≥ 0} in which the slope to the right turns negative for the first time, Lj(ρj ,c) takes its

maximum value maxρj≥0Lj(ρj ,c), because to the left of rj,n∗ , namely the region [0, rj,n∗ ], Lj(ρj ,c) strictly

increases because the slopes are positive; and to the right of rj,n∗ , namely the region [rj,n∗ , ρ], Lj(ρj ,c) strictly

decreases because slopes are negative. Q.E.D.

C.4. Proof for Lemma 4.4

Recall the definition of the Lagrangian function Lj(ρj ,c;zj) = (1+λ)Vj(ρj ;zj)− (λγ+µ)ρj in Eq.(6). Then,

since Vj(ρj;zj)≤ V , and λt, µt ∈ [0,CF ] for any period t ∈ [T ] and per-channel budget ρj ∈ [0, ρ], we can

conclude − (1+ γ)ρCF ≤ Lj(ρj , λt, µt) ≤ (1+CF )V . Q.E.D.
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C.5. Proof for Lemma 4.5

In the following, instead of bounding
∑

t∈[τA]Lj(ρ
∗
j,t,ct)−Lj(ρj,t,ct), we bound

∑
t∈[T ]Lj(ρ

∗
j,t,ct)−Lj(ρj,t,ct)

where we consider the hypothetical scenario in which we ignore the termination criteria for the while loop in

Algorithm 1, and continue to set per-channel budgets based on steps 4-6 in the algorithm until the end of

period T . This is due to the fact that
∑

t∈[T ]Lj(ρ
∗
j,t,ct)−Lj(ρj,t,ct)≥

∑
t∈[τA]Lj(ρ

∗
j,t,ct)−Lj(ρj,t,ct).

We fix some channel j ∈ [M ] and omit the subscript j when the context is clear. Also, we first introduce

some definitions that will be used throughout our proof. Fix some positive constant σ > 0 whose value we

choose later, and recall ak denotes the kth arm in the discretized budget set A(δ) as we defined in Eq. (8).

Then we define the following
∆k(c) = max

ρj∈[0,ρ]
Lj(ρj ,c)−Lj(ak,c)

Cn =
{
c∈ {ct}t∈[T ] : rj,n = argmax

ρj≥0
Lj(ρj ,c)

}
for n= 0 . . . Sj

C(σ) =
{
c∈ {ct}t∈[T ] : σ

−
j (c)>σ, |σ+

j (c)|>σ
}

mk(c) =
8 log(T )

∆2
k(c)

for ∀(k,c) s.t. ∆k(c)> 0 .

(29)

Here, the “adjacent slopes” σ−
j (c) and σ+

j (c), which are defined in Eq.(11), represent the slopes adjacent to

the optimal budget argmaxρj∈[0,ρ]Lj(ρj ,c) for any context c= (λ,µ). In addition, Sj and {rj,n}j∈[Sj ] are

defined in Lemma 4.3. Here we state in words the meanings of ∆k(c), C(σ) and Cn, respectively.

• ∆k(c) =maxρj∈[0,ρ]Lj(ρj ,c)−Lj(ak,c) denotes the loss of contextual bandit rewards when pulling the

arm ak in context c.

• Cn =
{
c ∈ {ct}t∈[T ] : rj,n = argmaxρj≥0Lj(ρj ,c)

}
is the set including all context ct under which the

optimal per-channel budget argmaxρj≥0Lj(ρj ,ct) is taken at the nth “turning point” rj,n (see Lemma

4.3).

• C(σ) =
{
c∈ {ct}t∈[T ] : σ

−
j (c)>σ, |σ+

j (c)|>σ
}

is the set of all contexts, in which the adjacent slopes to

the optimal point w.r.t. the context c, namely argmaxρj≥0Lj(ρj ,c), have magnitude greater than σ, or

in other words, the adjacent slopes are steep.

On a related note, for any context c, we define the following “adjacent regions” that sandwich the optimal

budget w.r.t.c

U−
j (c) = [rj,n−1, rj,n] and U+

j (c) = [rj,n, rj,n+1] if c∈ Cn . (30)

In other words, if c ∈ Cn, according to the definition of Cn above, argmaxρj∈[0,ρ]Lj(ρj ,c) is located at the

nth “turning point” rj,n, then U−
j (c) and U−

j (c) are, respectively, the left and right regions surrounding rj,n.

With the above definitions, we demonstrate how to bound the UCB error. Define Nk,t =
∑

τ≤t−1 I{ρj,τ = ak}
to be the number of times arm k is pulled up to time t, then we can decompose the UCB error as follows∑

t>K

Lj(ρ
∗
j (t),ct)−Lj(ρj,t,ct) =X1 +X2 +X3 where

X1 =
∑

t>K:ct /∈C(σ)

∑
k∈[K]

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

X2 =
∑

t>K:ct∈C(σ)

∑
k∈[K]

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

X3 =
∑
k∈[K]

∑
t>K

∆k(ct)I{ρj,t = ak,Nk,t >mk(ct)} .

(31)
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In Section C.5.1, we show that X1 ≤ Õ(δT +σT + 1
δ
); in Section C.5.2, we show that X2 ≤ Õ(δT + 1

δσ
); in

Section C.5.3, we show that X3 ≤ Õ( 1
δT

). Here, we provide some high-level discussion about the key challenges

we face when bounding Xi, i ∈ [3]. To bound X3, which represents the regret when an arm ak is played

a sufficient number of times under context ct, our analysis, while being more involved, closely follows the

classical proof to bound the regret of the UCB algorithm.

The main challenge lies in bounding X1 and X2, where most of the complexity arises. To bound X1 and X2,

which correspond to the regret when we lack sufficient observations for budget ak (i.e., Nk,t ≤mk(ct) =
8 log(T )

∆2
k
(ct)

),

we must lower bound the Lagrangian differences Lj(ρj ,ct)−Lj(ak,ct) over the entire sequence of time-varying

dual variables ct = (λt, µt).

As seen in the definitions of X1 and X2, we partition the rounds into two sets: the first set

contains rounds t with ct /∈ C(σ), and the second contains rounds t with ct ∈ C(σ). Here, C(σ) ={
c∈ {ct}t∈[T ] : σ

−
j (c)>σ, |σ+

j (c)|>σ
}
, as formally defined in Eq. (29). This is the set of all contexts c where

the adjacent slopes to the optimal point with respect to c (i.e., argmaxρj≥0Lj(ρj ,c)) have magnitudes greater

than σ, meaning the adjacent slopes are steep. In other words, for any ct ∈ C(σ), the Lagrangian function is

steep around its optimal budget, implying that ∆k(ct) is large. Conversely, when ct /∈ C(σ), the Lagrangian

function is not steep around its optimal budget, implying that ∆k(ct) is small.

This decomposition into steep and non-steep contexts is critical in the presence of continuously varying

dual variables, because it allows us to tailor the regret analysis to the local geometry of the Lagrangian.

Specifically, it enables us to isolate contexts where the Lagrangian is flat (making learning difficult and

requiring more careful tracking) from those where the Lagrangian is sharp (where mistakes are costlier but

learning is faster). By doing so, we ensure that the regret is controlled uniformly across time-varying contexts.

When ∆k(ct) is small (i.e., to bound X1, ct /∈ C(σ)), distinguishing the optimal arm from a suboptimal

one becomes challenging. In this case, the piecewise linear structure of the Lagrangian function is crucial

in the analysis (see Eq. (37)) and in defining C(σ). More importantly, we leverage cross-learning between

dual variables, as detailed in the proof between Eqs. (34) and (35). To illustrate cross-learning, consider two

contexts ct = (λt, µt) and c= (λ,µ), and fix an action ρj and a noise realization zj . Suppose that at round t,

the learner selects ρj and observes the reward

Lj(ρj ,ct;zj) = (1+λt)Vj(ρj ;zj)− (λtγ+µt)ρj .

Given this observation and the known form of the Lagrangian, the learner can recover Vj(ρj ;zj), and then

use it to compute

Lj(ρj ,c;zj) = (1+λ)Vj(ρj ;zj)− (λγ+µ)ρj

for any other c= (λ,µ). This means a single observation at ct allows the learner to evaluate the Lagrangian

for the same action ρj across all other contexts. Hence, we say the learner can “cross-learn” the reward values

across contexts without additional exploration.

When ∆k(ct) is large (i.e., to bound X2, ct ∈ C(σ)), distinguishing the optimal arm from suboptimal ones

is easier, but each mistake incurs larger regret. Similar to the case of bounding X1, we use cross-learning

between contexts and the piecewise linear structure of the Lagrangian function to bound X2.
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Overall, the gap ∆k(ct) depends on the time-varying dual variables ct. To address this challenge, we

leverage cross-learning between contexts and exploit the structure of the Lagrangian function and the reward

function. This approach enables us to effectively bound X1 and X2, which are the primary contributors to

the complexity of the regret analysis.

Remark C.1 In the following Sections C.5.1, C.5.2 and C.5.3 where we bound X1, X2, and X3, respectively,

we assume the optimal per-channel ρ∗
j (t) = argmaxρj∈[0,ρ]Lj(ρj ,ct) lies in the arm set A(δ) for all t. This is

because otherwise, we can consider the following decomposition of the UCB error in period t as follows:

Lj(ρ
∗
j (t),ct)−Lj(ρj,t,ct) =Lj(ρ

∗
j (t),ct)−Lj(a

∗
t ,ct)+Lj(a

∗
t ,ct)−Lj(ρj,t,ct) where a∗

t = arg max
ak∈A(δ)

Lj(ak,ct)

The first term will yield an error in the order of O(δ) due to the Lagrangian function being unimodal, piecewise

linear liner, which implies |a∗
t − ρ∗

j (t)| ≤ δ so that Lj(ρ
∗
j (t),ct)−Lj(a

∗
t ,ct) =O(δ). Hence, this “discretization

error” will accumulate to a magnitude of O(δT ) over T periods, leading to an additional error that is already

taken into account in the lemma statement.

C.5.1. Bounding X1. Our strategy to bound X1 =
∑

t>K:ct /∈C(σ)

∑
k∈[K]∆k(ct)I{ρj,t = ak,Nk,t ≤

mk(ct)} consists of 4 steps, namely bounding the loss of arm ak at each context c /∈ C(σ) ={
c∈ {ct}t∈[T ] : σ

−
j (c)>σ, |σ+

j (c)|>σ
}
, when (i) ak ∈ U−

j (c) lies on the left adjacent region of the optimal

budget; (ii) ak <minU−
j (c) lies to the left of the left adjacent region; (iii) ak ∈ U+

j (c) lies on the right adjacent

region of the optimal budget; and (iv) ak >maxU+
j (c) lies to the right of the right adjacent region. Here, we

recall that the adjacent regions are defined in Eq. (30). We note that while the analysis in the first and third

steps is straightforward, the analysis in step 2 and step 4 is more involved, and this is where cross-learning

between contexts is used.

Step 1: ak ∈ U−
j (ct). For arm k such that ak ∈ U−

j (ct), recall Lemma 4.3 that Lj(a,ct) is linear in a for

a∈ U−
j (ct), so ∆k(ct) = σ−

j (ct) · (ρ∗
j (t)− ak)≤ σρ where we used the condition that ct /∈ C(σ) so the adjacent

slopes have magnitude at most σ, and ρ∗
j (t)≤ ρ. Thus, summing over all such k we get

∑
t>K:ct /∈C(σ)

∑
k∈[K]:ak∈U−

j
(ct)

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

≤
∑

t>K:ct /∈C(σ)

∑
k∈[K]:ak∈U−

j
(ct)

σρ · I{ρj,t = ak,Nk,t ≤mk(ct)} ≤ σρT =O(σT ) .
(32)

Step 2: ak <min U−
j (ct). For arm k such that ak <min U−

j (ct), we further split contexts into groups

Cn =
{
c∈ {ct}t∈[T ] : rj,n = argmaxρj≥0Lj(ρj ,c)

}
for n= 0 . . . Sj based on whether the corresponding optimal

budget w.r.t. the Lagrangian at the context is taken at the nth “turning point” (see Figure 2 of illustration).



9

Then, for each context group n by defining k′ :=max{k : ak < rj,n−1} to be the arm closest to and less than

rj,n−1, we have∑
t>K:ct∈Cn/C(σ)

∑
k∈[K]:ak<minU−

j
(ct)

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

(i)
=

∑
t>K:ct∈Cn/C(σ)

∑
k∈[K]:ak<rj,n−1

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

=
∑
t>K

∑
c∈Cn/C(σ)

∑
k∈[K]:ak<rj,n−1

∆k(c)I{ct = c, ρj,t = ak,Nk,t ≤mk(c)}

(ii)

≤
∑
t>K

∑
c∈Cn/C(σ)

∆k′(c)I{ct = c}+
∑

k∈[K]:ak<rj,n−1−δ

∆k(c)I{ct = c, ρj,t = ak,Nk,t ≤mk(c)}


(iii)

≤ ((1+CF )sj,n−1δ+ ρσ)T +
∑

k∈[K]:ak<rj,n−1−δ

∑
c∈Cn/C(σ)

∆k(c)Yk(c)

(33)

where in the final equality we defined Yk(c) =
∑

t>K
I{ct = c, ρj,t = ak,Nk,t ≤mk(c)}. In (i) we used the

fact that the left end of the left adjacent region, i.e. minU−
j (ct) is exactly rj,n−1 because for context

ct ∈ Cn the optimal budget argmaxρj∈[0,ρ]Lj(ρj ,ct) is at the nth turning point; in (ii) we used the definition

k′ := max{k : ak < rj,n−1} where we recall arms are indexed such that a1 < a2 < · · ·< aK . Note that in (ii)

we separate out the arm ak′ because its distance to the optimal per-channel may be less than δ since it is

the closest arm, and thus we ensure all other arms indexed by k ∈ [K] : ak < rj,n−1 − δ, are at least δ away

from the optimal per-channel budget; (iii) follows from the fact that under a context c∈ Cn/C(σ), we have

argmaxρj∈[0,ρ]Lj(ρj ,c) = rj,n so

∆k′(c) = Lj(rj,n,c)−Lj(rj,n−1,c)+Lj(rj,n−1,c)−Lj(ak′ ,c)

= σ−
j (c)(rj,n − rj,n−1)+σj,n−1(c)(rj,n−1 − ak′)

(iv)

≤ σρ+σj,n−1(c)δ

(v)

≤ σρ+(1+CF )sj,n−1δ ,

where in the second equality, we use that L(y,c) is piece-wise linear in y and by definition, the slope

of L(y,c) when y ∈ [rj,n−1, rj,n] is σ−
j (c) and the slope of L(y,c) when y ∈ [ak′ , rj,n−1] is σj,n−1(c). In

(iv) we used c ∈ Cn/C(σ) implies σ−
j (c) ≤ σ, as well as all rj,n ≤ ρ for any n and the fact that k′ lies

on the line segment between points rj,n−2 and rj,n−1 since δ < minn′∈[Sj ] rj,n′ − rj,n′−1; in (v) we recall

σj,n−1(c) = (1+λ)sj,n−1 − (µ+ γλ)≤ (1+CF )sj,n−1 where CF is defined in Lemma 4.4.

We now bound
∑

c∈Cn/C(σ)∆k(c)Yk(c) in Eq. (33). It is easy to see the following inequality for any sequence

of context c(1), . . . ,c(ℓ) ∈ {ct}t∈[T ]:

Yk(c(1))+ · · ·+Yk(c(ℓ))≤ max
ℓ′=1...ℓ

mk(c(ℓ′)) . (34)

This is because ∑
ℓ′∈[ℓ]

Yk(c(ℓ′)) =
∑
t>K

∑
ℓ′∈[ℓ]

I{ct = c(ℓ′), ρj,t = ak,Nk,t ≤mk(c(ℓ′))}
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≤
∑
t>K

∑
ℓ′∈[ℓ]

I{ct = c(ℓ′), ρj,t = ak,Nk,t ≤ max
ℓ′=1...ℓ

mk(c(ℓ′))}

=
∑
t>K

I{ct ∈ {c(ℓ′)}ℓ′∈[ℓ], ρj,t = ak,Nk,t ≤ max
ℓ′=1...ℓ

mk(c(ℓ′))}

≤ max
ℓ′=1...ℓ

mk(c(ℓ′)) .

An inequality similar to Yk(c(1))+ · · ·+Yk(c(ℓ))≤maxℓ′=1...ℓmk(c(ℓ′)) that we just shown is proven in the

proof of Lemma 3 of Balseiro et al. (2022a)).

For simplicity denote L = |Cn/C(σ)|, and order contexts in c ∈ Cn/C(σ) as {c(ℓ)}ℓ∈[L] s.t. ∆k(c(1)) >

∆k(c(2))> · · ·>∆k(c(L)), or equivalently mk(c(1))<mk(c(2))< · · ·<mk(c(L)) according to Eq.(29). Then

multiplying Eq. (34) by by ∆k(c(ℓ))−∆k(c(ℓ+1)) (which is strictly positive due to the ordering of contexts),

and summing ℓ= 1 . . .L we get

∑
c∈Cn/C(σ)

∆k(c)Yk(c) =
∑
ℓ∈[L]

∆k(c(ℓ))Yk(c(ℓ))

≤
∑
ℓ∈[L]

mk(c(ℓ))
(
∆k(c(ℓ))−∆k(c(ℓ+1))

)
(i)
= 8 log(T )

∑
ℓ∈[L−1]

∆k(c(ℓ))−∆k(c(ℓ+1))

∆2
k(c(ℓ))

(ii)

≤ 8 log(T )

∫ ∞

∆k(c(L))

dz

z2

=
8 log(T )

∆k(c(L))

(iii)
=

8 log(T )

minc∈Cn/C(σ)∆k(c)
.

(35)

Here (i) follows from the definition of mk(c) in Eq. (29) where mk(c) =
8 log(T )

∆2
k
(c)

; both (ii) and (iii) follow from

the ordering of contexts so that ∆k(c(1))>∆k(c(2))> · · ·>∆k(c(L)). Note that for any c∈ Cn/C(σ) and arm

k such that ak < rj,n−1, we have

∆k(c) = Lj(rj,n,c)−Lj(rj,n−1,c)+Lj(rj,n−1,c)−Lj(ak,c)

> Lj(rj,n−1,c)−Lj(ak,c)

(i)

≥ σj,n−1(c)(rj,n−1 − ak)

(ii)

≥ (σj,n−1(c)−σj,n(c)) (rj,n−1 − ak)

(iii)
= (1+λ) (sj,n−1 − sj,n) (rj,n−1 − ak)

> (sj,n−1 − sj,n) (rj,n−1 − ak) ,

(36)

where in (i) we recall the slope σj,n−1(c) is defined in Lemma 4.3 and further (i) follows from concavity

of Lj(ρj ,c) in the first argument ρj; in (ii) we used the fact that σj,n(c) ≥ 0 since the optimal budget

argmaxρj∈[0,ρ]Lj(ρj ,c) is taken at the nth turning point, and is the largest turning point whose left slope is

non-negative from Lemma 4.3; (iii) follows from the definition σj,n′(c) = (1+λ)sj,n′ − (µ+ γλ) for any n′.



11

Finally combining Eqs. (33), (35) and (36), and summing over n= 1 . . . Sj we get∑
t>K:ct /∈C(σ)

∑
k∈[K]:ak<minU−

j
(ct)

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

=
∑

n∈[Sj ]

∑
t>K:ct∈Cn/C(σ)

∑
k∈[K]:ak<minU−

j
(ct)

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

≤
∑

n∈[Sj ]

((1+CF )sj,n−1δ+ ρσ)T +
∑

n∈[Sj ]

∑
k∈[K]:ak<rj,n−1−δ

8 log(T )

(sj,n−1 − sj,n) (rj,n−1 − ak)

(i)

≤
∑

n∈[Sj ]

((1+CF )sj,n−1δ+ ρσ)T +
∑

n∈[Sj ]

K∑
ℓ=1

8 log(T )

(sj,n−1 − sj,n) ℓδ

≤
∑

n∈[Sj ]

((1+CF )sj,n−1δ+ ρσ)T +
8 log(T ) log(K)

δ

∑
n∈[Sj ]

1

(sj,n−1 − sj,n)

= Õ(δT +σT +
1

δ
) .

(37)

In the first inequality, the first term (i.e.,
∑

n∈[Sj ]
((1+CF )sj,n−1δ+ ρσ)T ) is the first term in the last

inequality of Eq. (33) when we sum over all possible values for n. The second term is an upper bound

on
∑

k∈[K]:ak<rj,n−1−δ

∑
c∈Cn/C(σ)∆k(c)Yk(c) (see the second term in the last inequality of Eq. (33)). We

established this upper bound in Eqs. (35) and (36). Note that (i) follows because for all ak < rj,n−1 − δ, the

distances ak’ from rj,n−1 are at least δ,2δ,3δ . . . . In the last equation, we hide all logarithmic factors using

the notation Õ, and note that the constants CF , (sj,n)n∈Sj
, Sj are all absolute constants that depend only

on the support Fj and corresponding sampling distribution pj for value-cost pairs; see definitions of these

absolute constants in Lemmas 4.3 and 4.4.

Step 3 and 4: ak ∈ U+
j (ct) or ak >max U+

j (ct). The cases where arm ak ∈ U+
j (ct) and ak >maxU+

j (ct)

are symmetric to ak ∈ U−
j (ct) and ak <minU+

j (ct), respectively, and we omit from this paper.

Therefore, combining Eqs. (32) and (37) we can conclude

X1 ≤ Õ(δT +σT +
1

δ
) . (38)

C.5.2. Bounding X2. We first rewrite X2 =
∑

t>K:ct∈C(σ)

∑
k∈[K]∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)} as

follows

X2 =
∑

t>K:ct∈C(σ)

∑
k∈[K]

∆k(ct)I{ρj,t = ak,Nk,t ≤mk(ct)}

=
∑
t>K

∑
n∈[Sj ]

∑
k∈[K]

∑
c∈Cn∩C(σ)

∆k(c)I{ct = c, ρj,t = ak,Nk,t ≤mk(c)}

(i)
=

∑
n∈[Sj ]

∑
k∈[K]

∑
c∈Cn∩C(σ)

∆k(c)Yk(c)

(ii)
=

∑
n∈[Sj ]

∑
c∈Cn∩C(σ)

∑
k∈{k−

n ,k+
n }

∆k(c)Yk(c)+
∑

n∈[Sj ]

∑
c∈Cn∩C(σ)

∑
k∈[K]/{k−

n ,k+
n }

∆k(c)Yk(c)

(iii)

≤ Tδ(1+CF )
∑

n∈[Sj ]

(sj,n + sj,n+1)+
∑

n∈[Sj ]

∑
c∈Cn∩C(σ)

∑
k∈[K]/{k−

n ,k+
n }

∆k(c)Yk(c) .

(39)

Here, we recall that C(σ) =
{
c∈ {ct}t∈[T ] : σ

−
j (c)>σ, |σ+

j (c)|>σ
}
. In (i) we define Yk(c) =

∑
t>K

I{ct =

c, ρj,t = ak,Nk,t ≤mk(c)}; in (ii) we separate out two arms k−
n and k+

n defined as follows: recall for context
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c ∈ Cn ∩ C(σ), the optimal budget argmaxρj∈[0,ρ]Lj(ρj ,c) = rj,n is taken at the nth turning point per the

definition of Cn in Eq. (29), and thereby we defined

k−
n :=max{k ∈ [K] : ak < rj,n}

to be the arm closest to and no greater than rj,n, whereas

k+
n :=min{k ∈ [K] : ak > rj,n}

to be the arm closest to and no less than rj,n; in (iii), for small enough δ <minn′∈[Sj ] rj,n′ −rj,n′−1, we know that

k−
n lies on the line segment between rj,n−1 and rj,n, so ∆k−

n
(c) = σ−

j (c)(rj,n−ak−
n
)≤ σ−

j (c)δ≤ (1+CF )sj,n−1δ,

where in the final inequality follows from the definition of σ−
j (c) = σj,n(c) = (1+λ)sj,n−(µ+γλ)≤ (1+λ)sj,n ≤

(1+CF )sj,n where CF is defined in Lemma (4.4). A similar bound holds for ∆k+
n
(c).

Then, following the same logic as in Eqs. (34), (35), (36) in Section C.5.1, where we bound X1, we can

bound
∑

c∈Cn∩C(σ)∆k(c)Yk(c) as follows for any arm k ∈ [K] \ {k−
n , k

+
n }, i.e., arms that are at least δ away

from the optimal per-channel budget with respect to c:

∑
c∈Cn∩C(σ)

∆k(c)Yk(c)≤
8 log(T )

minc∈Cn∩C(σ)∆k(c)
. (40)

Now, the set k ∈ [K]/{k−
n , k

+
n } in Eq. (39) can be further split into two subsets, namely {k ∈ [K] : ak <

rj,n − δ} and {k ∈ [K] : ak > rj,n + δ} due to the definitions k−
n :=max{k ∈ [K] : ak < rj,n} and k+

n :=min{k ∈

[K] : ak > rj,n}. Therefore, for any k s.t. ak < rj,n − δ and any c∈ Cn ∩C(σ),

∆k(c) =Lj(rj,n,c)−Lj(ak,c)≥ σ−
j (c)(rj,n − ak)≥ σ(rj,n − ak) ,

where the final inequality follows from the definition of C(σ) in Eq. (29) such that σ−
j (c)≥ (σ) for c∈ C(σ).

Hence combining this with Eq. (40) we have

∑
k∈[K]:ak<rj,n−δ

∑
c∈Cn∩C(σ)

∆k(c)Yk(c)≤
∑

k∈[K]:ak<rj,n−δ

8 log(T )

σ(rj,n − ak)

(i)

≤
K∑

ℓ=1

8 log(T )

σℓδ
≤ 8 log(T ) log(K)

σδ
, (41)

where (i) follows because for all ak < rj,n − δ, the ak’s distances from rj,n−1 are at least δ,2δ,3δ . . . . Symmet-

rically, we can show an identical bound for the set {k ∈ [K] : ak > rj,n + δ}. Hence, combining Eqs. (39) and

(41) we can conclude

X2 ≤ Õ
(
δT +

1

δσ

)
. (42)

Here, similar to our bound in Eq. (37) for bounding X1, we hide all logarithmic factors using the notation

Õ, and note that the constants CF , (sj,n)n∈Sj
, and Sj are all absolute constants that depend only on the

support Fj and the corresponding sampling distribution pj for value-cost pairs. See the definitions of these

absolute constants in Lemmas 4.3 and 4.4.
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C.5.3. Bounding X3. We first define

L̄= (1+ γ)ρCF +(1+CF )V̄ , (43)

where CF is specified in Lemma 4.4. Recalling the definition ∆k(c) =maxρj∈[0,ρ]Lj(ρj ,c)−Lj(ak,c) in Eq.

(29), and −(1+ γ)ρCF ≤Lj(ρj ,c)≤ (1+CF )V̄ for any ρj ∈ [0, ρ] and context c (see Lemma 4.4), it is easy to

see

∆k(c)≤ L̄ ∀k ∈ [K],∀c . (44)

Then we bound X3 as follows

X3 =
∑
k∈[K]

∑
t>K

E [∆k(c)I{ρj,t = ak,Nk,t >mk(c)}]

(i)

≤ L̄ ·
∑
k∈[K]

∑
t>K

P (ρj,t = ak,Nk,t >mk(ct))

(ii)

≤ L̄ ·
∑
k∈[K]

∑
t>K

P
(
V̂j,t(ak)−

λtγ+µt

1+λt

ak + UCBj,t(ak)≥ V̂j,t(ρ
∗
j (t))−

λtγ+µt

1+λt

ρ∗
j (t)+ UCBj,t(ρ

∗
j (t)),

Nk,t >mk(ct)
)
,

(45)

where (i) follows from Eq. (44); in (ii), recall that we choose arm ρj,t = ak because the estimated UCB rewards

of arm ak are greater than those of any other arm, including ρ∗
j (t), according to the DSD-UCB (Algorithm 1),

or mathematically,

V̂j,t(ak)−
λtγ+µt

1+λt

ak + UCBj,t(ak)≥ V̂j,t(ρ
∗
j (t))−

λtγ+µt

1+λt

ρ∗
j (t)+ UCBj,t(ρ

∗
j (t)).

Here, we also used the fact that ρ∗
j (t) lies in the arm set A(δ) for all t (see Remark C.1).

Now, let R̂n(ak) denote the average conversion of arm k over its first n pulls, i.e.,

R̂n(ak) = V̂j,τ (ak) for τ =min{t∈ [T ] :Nk,t = n} , (46)

where we recall V̂j,τ (ak) is the estimated conversion for arm ak in channel j during period τ as defined in

Algorithm 1. In other words, τ is the period during which arm ak is pulled for the nth time so R̂n(ak) = V̂j,τ (ak).

Hence, we continue with Eq. (45) as follows:

P
(
V̂j,t(ak)−

λtγ+µt

1+λt

ak + UCBj,t(ak)≥ V̂j,t(ρ
∗
j (t))−

λtγ+µt

1+λt

ρ∗
j (t)+ UCBj,t(ρ

∗
j (t)), Nk,t >mk(ct)

)
≤ P

(
max

n:mk(ct)<n≤t

{
R̂n(ak)+ UCBn(ak)−

λtγ+µt

1+λt

ak

}
≥ min

n′:1≤n′≤t

{
R̂n′(ρ∗

j (t))+ UCBn′(ρ∗
j (t))−

λtγ+µt

1+λt

ρ∗
j (t)
})

≤
t∑

n=⌈mk(ct)⌉+1

t∑
n′=1

P
(
R̂n(ak)+ UCBn(ak)−

λtγ+µt

1+λt

ak > R̂n′(ρ∗
j (t))+ UCBn′(ρ∗

j (t))−
λtγ+µt

1+λt

ρ∗
j (t)

)
(47)

Now, when the event
{
R̂n(ak)+ UCBn(ak)− λtγ+µt

1+λt
ak > R̂n′(ρ∗

j (t))+ UCBn′(ρ∗
j (t))− λtγ+µt

1+λt
ρ∗
j (t)
}

occurs, it is

easy to see that one of the following events must also occur:

G1,n =
{
R̂n(ak)≥ V (ak)+ UCBn(ak)

}
for n s.t. mk(ct)<n≤ t

G2,n′ =
{
R̂n′(ρ∗

j (t))≤ V (ρ∗
j (t))− UCBn(ρ

∗
j (t))

}
for n′ s.t. 1≤ n′ ≤ t

G3 =

{
Vj(ρ

∗
j (t))−

λtγ+µt

1+λt

ρ∗
j (t) < Vj(ak)−

λtγ+µt

1+λt

ak +2 · UCBn(ak)

} (48)
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Note that for n>mk(ct), we have UCBn(ak) =
√

2 log(T )

n
<
√

2 log(T )

mk(ct)
= ∆k(ct)

2
since we defined mk(c) =

8 log(T )

∆2
k
(c)

in Eq. (29). Therefore

Vj(ak)−
λtγ+µt

1+λt

ak +2 · UCBn(ak)<Vj(ak)−
λtγ+µt

1+λt

ak︸ ︷︷ ︸
=L(ak,ct)

+∆k(ct)
(i)
= Vj(ρ

∗
j (t))−

λtγ+µt

1+λt

ρ∗
j (t)︸ ︷︷ ︸

=L(ρ∗
j
(t),ct)=maxa∈A(δ) L(a,ct)

where (i) follows from the definition of ∆k(c) = maxa∈A(δ)L(a,c)−L(ak,c) in Eq. (29) for any context c.

This implies that event G3 in Eq. (48) cannot hold for n>mk(ct). Therefore

P
(
R̂n(ak)+ UCBn(ak)−

λtγ+µt

1+λt

ak > R̂n′(ρ∗
j (t))+ UCBn′(ρ∗

j (t))−
λtγ+µt

1+λt

ρ∗
j (t)

)
≤ P (G1,n ∪G2,n′) . (49)

From the standard UCB analysis and the Azuma Hoeffding’s inequality, we have P(G1,n) ≤ V̄
T4 and

P(G2,n′)≤ V̄
T4 . Hence, combining Eqs. (45) (47), (49) we can conclude

X3 ≤
∑
k∈[K]

∑
t>K

t∑
n=⌈mk(ct)⌉+1

t∑
n′=1

(P (G1,n)+P (G2,n′))

≤
∑
k∈[K]

∑
t>K

t∑
n=⌈mk(ct)⌉+1

t∑
n′=1

2V̄

T 4

≤ 2KV̄

T
=O

(
1

δT

)
.

(50)

Q.E.D.

C.6. Proof for Theorem 4.6

Starting from Proposition 4.1, we get

T ·GL-OPT−E

∑
t∈[T ]

∑
j∈[M]

Vj(ρj,t)


≤ MV (T − τA)+

∑
j∈[M]

E

 ∑
t∈[τA]

Lj(ρ
∗
j (t),ct)−Lj(ρj,t,ct)

+E
[ ∑

t∈[τA]

(λtg1,t +µtg2,t)
]

(i)

≤ MV (T − τA)+O
(
σT + δT +

1

σδ

)
+O

(
ηT +

1

η

)
,

(51)

where in (i) we applied Lemmas 4.5 and 4.2. Taking η = 1/
√
T , δ = σ = T−1/3 (i.e. K = O(T 1/3) yields

T · GL-OPT − E
[∑

t∈[T ]

∑
j∈[M] Vj(ρj,t)

]
≤ O(T 2/3). According to Lemma 4.3, Vj(ρj) is concave for all

j ∈ [M ], so

O(T−1/3) ≥ GL-OPT− 1

T

∑
t∈[T ]

E

∑
j∈[M]

Vj(ρj,t)


≥ GL-OPT−E

∑
j∈[M]

Vj

 1

T

∑
t∈[T ]

ρj,t


≥ GL-OPT−E

∑
j∈[M]

Vj(ρj,T )


(52)
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where in the final equality we used the definition ρ̄T =
(

1
T

∑
t∈[T ] ρj,t

)
j∈[M]

as defined in Algorithm 1.

Regarding ROI constraint satisfaction, consider

0
(i)

≤ 1

T

∑
t∈[T ]

E [g1,t]

=
1

T

∑
t∈[T ]

∑
j∈[M]

E [Vj(ρj,t;zj,t)− γρj,t]

=
1

T

∑
t∈[T ]

∑
j∈[M]

E [Vj(ρj,t)− γρj,t]

(ii)

≤
∑

j∈[M]

E

Vj

 1

T

∑
t∈[T ]

ρj,t

− γ · 1
T

∑
t∈[T ]

ρj,t


=
∑

j∈[M]

E[Vj

(
ρj,T

)
− γρj,T ] .

(53)

where (i) follows from Lemma C.2; in (ii), we again apply the concavity of Vj(ρj). We omit the analysis of

the budget constraint, as it is similar to the above.

Q.E.D.

C.7. Additional Results for Section 4

Proposition C.1 Assume Assumption 4.2 holds, and recall zj = (vj ,dj) ∈ Fj is any realization of values

and costs for channel j ∈ [M ]. Then, for any channel j ∈ [M ], we have minzj∈Fj

vj,1

dj,1
>γ, where we recall the

ordering vj,1

dj,1
>

vj,2

dj,2
> · · ·>

vj,mj

dj,mj

for any element zj = (vj ,dj)∈ Fj (see Section 4). Further, there exists some

ρ̃∈ (0, ρ) s.t. for any per-channel budget ρj ≤ ρ̃, we have Vj(ρj ;zj) =
vj,1

dj,1
ρj >γρj for any j ∈ [M ].

Proof. Under Assumption 4.2, it is easy to see for any realization of value-cost pairs zj = (vj ,dj) there

always exists an auction n∈ [mj ] whose value-to-cost ratio is at least γ, i.e. vj,n >γdj,n. Hence we know that
vj,1

dj,1
≥ vj,n

dj,n
>γ. Now, in Eq. (26) within the proof of Lemma 4.3, we showed

Vj(ρj ;zj) = v⊤
j x

∗
j (ρj ;zj) =

∑
n∈[mj ]

(
vj,n
dj,n

ρj + bj,n

)
I{dj,0 + · · ·+ dj,n−1 <ρj <dj,0 + · · ·+ dj,n} ,

where dj,0 = vj,0 = bj,1 = 0. This implies that for any ρj < dj,1, we have Vj(ρj;zj) =
vj,1

dj,1
ρj > γρj. Therefore,

we can take ρ̃=minj∈[M]minzj∈Fj
dj,1, which ensures that for any ρj ≤ ρ̃ and realization zj ∈ Fj we have

Vj(ρj ;zj) =
vj,1

dj,1
ρj >γρj for any channel j ∈ [M ]. Q.E.D.

Lemma C.2 (Constraint satisfaction) Assume Assumption 4.2 holds, and consider β = ρ = 1
log(T )

in

Algorithm 1. Then, for large enough T we have

1

T

∑
t∈[T ]

g1,t ≥ 0 and
1

T

∑
t∈[T ]

∑
j∈[M]

ρj,t ≤ ρ ,

where we recall g1,t =
∑

j∈[M] (Vj(ρj,t;zj,t)− γρj,t).

Proof. Recall τA ∈ [T ] defined in step 10 of Algorithm 1.

If τA = T , then we know that Algorithm 1 does not exit the while loop, and therefore S1,t−γMρ+βρ(T−t)≥

0 for t = T , or equivalently S1,T ≥ γMρ > 0. Since we recall S1,T =
∑

t∈[T−1] g1,t, we can conclude that
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∑
t∈[T ] g1,t = S1,T +g1,T ≥Mρ+g1,T ≥ 0 since g1,T ≥−γMρ. Similarly, we also have S2,t+Mρ+ρ(T − t)≤ ρT

for t= T , or equivalently S2,T ≤ ρT −Mρ where we used the fact that ρ= 1/ log(T )< ρ for large enough

T and M ≥ 2. Hence, recalling S2,T =
∑

t∈[T−1]

∑
j∈[M] ρj,t, we can conclude that

∑
t∈[T ]

∑
j∈[M] ρj,t = S2,T +∑

j∈[M] ρj,T ≤ ρT −Mρ+
∑

j∈[M] ρj,T ≤ ρT since
∑

j∈[M] ρj,T ≤Mρ.

If τA <T , then we know that at the stopping time τA, the while loop in Algorithm 1 has not yet exited, so

we have

S1,τA − γMρ+βρ(T − τA)≥ 0 and S2,τA +Mρ+Mρ(T − τA)≤ ρT (54)

Hence,

∑
t∈[T ]

g1,t =
∑

t∈[τA−1]

g1,t + g1,τA +

T∑
t=τA+1

g1,t

(i)

≥ γMρ−βρ(T − τA)+ g1,τA +
T∑

t=τA+1

g1,t

≥ γMρ−βρ(T − τA)− γMρ+

T∑
t=τA+1

g1,t

(ii)
= −βρ(T − τA)+

T∑
t=τA+1

∑
j∈[M]

(
Vj(ρ;zj,t)− γρ

)
(iii)

≥ −βρ(T − τA)+

T∑
t=τA+1

∑
j∈[M]

(
ρ · min

zj∈Fj

vj,1
dj,1

− γρ

)
= −βρ(T − τA)+ (T − τA)M

(
ρ · min

zj∈Fj

vj,1
dj,1

− γρ

)
(iv)

≥ 0 ,

(55)

where (i) follows from S1,τA =
∑

t∈[τA−1] g1,t and Eq. (54) that gives S1,τA ≥ γMρ − βρ(T − τA); (ii)

follows from Algorithm 1 where we set ρj,t = ρ for all j ∈ [M ] and t = τA + 1 . . . T , and that g1,t =∑
j∈[M] (Vj(ρj,t;zj,t)− γρj,t); for (iii), assuming the jth channel’s realized value cost pairs zj,t is the ele-

ment zj ∈ Fj, then Proposition C.1 says Vj(ρ;zj,t)≥
vj,1

dj,1
ρ since ρ= 1

log(T )
< ρ̃ for large enough T . Hence

Vj(ρ;zj,t)≥minzj∈Fj

vj,1

dj,1
ρ; (iv) follows from the fact that minzj∈Fj

vj,1

dj,1
>γ according to Proposition C.1, so

Mminzj∈Fj

vj,1

dj,1
≥Mγ+β since β = 1

log(T )
≤Mminzj∈Fj

vj,1

dj,1
−Mγ for large enough T .

Similarly, we have

∑
t∈[T ]

∑
j∈[M]

ρj,t =
∑

t∈[τA−1]

∑
j∈[M]

ρj,t +
∑

j∈[M]

ρj,τA +

T∑
t=τA+1

∑
j∈[M]

ρj,t

(i)

≤ ρT −Mρ−Mρ(T − τA)+
∑

j∈[M]

ρj,τA +M(T − τA)ρ

≤ ρT −Mρ−Mρ(T − τA)+Mρ+M(T − τA)ρ

= ρT .

(56)

where (i) follows from S2,τA =
∑

t∈[τA−1]

∑
j∈[M] ρj,t and Eq. (54), as well as in Algorithm 1 we set ρj,t = ρ for

all j ∈ [M ] and t= τA, τA +1 . . . T . Q.E.D.
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Lemma C.3 Let (λt, µt)t∈[T ] be the dual variables generated by Algorithm 1. Then for any λ,µ∈ [0,CF ] and

t∈ [T ] we have ∑
τ∈[t]

(λτ −λ)g1,τ ≤
ηM2V̄ 2

2
· t+ 1

2η
(λ−λ1)

2

∑
τ∈[t]

(µτ −µ)g2,τ ≤
ηρ2

2
· t+ 1

2η
(µ−µ1)

2 ,

(57)

where we recall g1,τ =
∑

j∈[M] (Vj,τ (ρj,τ )− γρj,τ ) and g2,τ = ρ−
∑

j∈[M] ρj,τ .

Proof. We will show Eq. (57). Starting with the first inequality w.r.t. λτ ’s, we have

(λτ −λ)g1,τ = (λτ+1 −λ)g1,τ +(λτ −λτ+1)g1,τ . (58)

Since λτ+1 =Π[0,CF ] (λτ − ηg1,τ )+ = argminλ∈[0,CF ] (λ− (λτ − ηg1,τ ))
2, we have

(λτ+1 − (λτ − ηg1,τ )) · (λ−λτ+1)≥ 0 ∀λ∈ [0,CF ] . (59)

So we have

(λτ+1 −λ)g1,τ ≤ 1

η
(λτ+1 −λτ ) · (λ−λτ+1)

=
1

2η

(
(λ−λτ )

2 − (λ−λτ+1)
2 − (λτ+1 −λτ )

2
)
.

(60)

Plugging the above back into Eq. (58), we get

(λτ −λ)g1,τ ≤ (λτ −λτ+1)g1,τ +
1

2η

(
(λ−λτ )

2 − (λ−λτ+1)
2 − (λτ+1 −λτ )

2
)

≤ η

2
g21,τ +

1

2η

(
(λ−λτ )

2 − (λ−λτ+1)
2
)

≤ ηM2V̄ 2

2
+

1

2η

(
(λ−λτ )

2 − (λ−λτ+1)
2
) (61)

The second inequality holds because (λτ −λτ+1)g1,τ − 1
2η
(λτ+1 − λτ )

2 ≤ η

2
g21,τ , following the inequality

2ab≤ a2 + b2. The final inequality follows from g1,τ =
∑

j∈M
(Vj(ρj,τ )− γρj,τ )≤MV̄ , where the inequality

holds because Vj,τ (ρj,τ )≤ V̄ for all j ∈ [M ] and τ ∈ [t]. Summing the above over τ =1 . . . t and telescoping

we get ∑
τ∈[t]

(λτ −λ)g1,τ ≤
ηM2V̄ 2

2
· t+ 1

2η
(λ−λ1)

2 for ∀λ∈ [0,CF ] .

Following the same arguments above we can show∑
τ∈[t]

(µτ −µ)g2,τ ≤
ηρ2

2
·T +

1

2η
(µ−µ1)

2 for ∀µ∈ [0,CF ] .

Q.E.D.

Proposition C.4 Under Assumption 4.2, the advertiser’s per-channel only budget optimization problem,

namely CH-OPT(IB) is a convex problem.
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Proof. Recalling the CH-OPT(IB) in Eq. (3) and the definition of IB in Eq. (2), we can write CH-OPT(IB)

as

CH-OPT(IB) = max
(γj)j∈[M]∈I

∑
j∈M

Vj(ρj)

s.t.
∑
j∈M

Vj(ρj)≥ γ
∑
j∈M

ρj∑
j∈[M]

ρj ≤ ρ .

(62)

Here, we used the definition Vj(ρj) =E [Vj(ρj ;zj)] in Eq. (5), and Dj(ρj ;zj) = ρj for any zj under Assumption

4.2. According to Lemma 4.3, Vj(ρj) is concave in ρj for any j, so the objective of CH-OPT(IB) maximizes

a concave function. For the feasibility region, assume ρj and ρ′
j are feasible, then defining ρ′′

j = θρj +(1− θ)ρ′
j

for any θ ∈ [0,1], we know that∑
j∈M

(
Vj(ρ

′′
j )− γρ′′

j

) (i)

≥
∑
j∈M

(
θVj(ρj)+ (1− θ)Vj(ρ

′
j)− γρ′′

j

)
= θ

∑
j∈M

(Vj(ρj)− γρj)+ (1− θ)
∑
j∈M

(
Vj(ρ

′
j)− γρ′

j

)
(ii)

≥ 0

where (i) follows from the concavity of Vj(ρj) and (ii) follows from feasibility of ρj and ρ′
j . On the other hand

it is apparent that
∑

j∈[M] ρ
′′
j ≤ ρ. Hence we conclude that for any ρj and ρ′

j feasible, ρ′′
j = θρj +(1− θ)ρ′

j is

also feasible, so the feasible region of CH-OPT(IB) is convex. This concludes the statement of the proposition.

Q.E.D.

Appendix D: Proofs for Section 5

D.1. Proof of Lemma 5.2

Before we show the lemma, we first show the following claim is true:

Claim D.1 Recall that vj,n(1)> . . . > vj,n(Lj,n)> 0 and dj,n(1)> . . . > dj,n(Lj,n)> 0 for any channel j ∈ [M ]

and auction n ∈ [mj]. If auction n in channel j has increasing marginal values, i.e., for any realization

zj = (vj ,dj), for any n∈ [mj ], we have vj,n(ℓ−1)−vj,n(ℓ)

dj,n(ℓ−1)−dj,n(ℓ)
decreases in ℓ, then vj,n(ℓ)

dj,n(ℓ)
also decreases in ℓ.

Proof. We prove this claim by induction. The base case is ℓ=Lj,n: it is easy to see

vj,n(Lj,n − 1)− vj,n(Lj,n)

dj,n(Lj,n − 1)− dj,n(Lj,n)
>

vj,n(Lj,n)

dj,n(Lj,n)
=⇒ vj,n(Lj,n − 1)

dj,n(Lj,n − 1)
>

vj,n(Lj,n)

dj,n(Lj,n)
.

Now assume the induction hypothesis vj,n(ℓ)

dj,n(ℓ)
>

vj,n(ℓ+1)

dj,n(ℓ+1)
> · · ·> vj,n(Lj,n)

dj,n(Lj,n)
. Then, we have

vj,n(ℓ)

dj,n(ℓ)
>

vj,n(ℓ+1)

dj,n(ℓ+1)
=⇒dj,n(ℓ+1)− dj,n(ℓ)

dj,n(ℓ)
>

vj,n(ℓ+1)− vj,n(ℓ)

vj,n(ℓ)

=⇒dj,n(ℓ)− dj,n(ℓ+1)

dj,n(ℓ)
<

vj,n(ℓ)− vj,n(ℓ+1)

vj,n(ℓ)

=⇒vj,n(ℓ)

dj,n(ℓ)
<

vj,n(ℓ)− vj,n(ℓ+1)

dj,n(ℓ)− dj,n(ℓ+1)
.

(63)
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Since vj,n(ℓ−1)−vj,n(ℓ)

dj,n(ℓ−1)−dj,n(ℓ)
decreases in ℓ we have

vj,n(ℓ− 1)− vj,n(ℓ)

dj,n(ℓ− 1)− dj,n(ℓ)
>

vj,n(ℓ)− vj,n(ℓ+1)

dj,n(ℓ)− dj,n(ℓ+1)

(i)

>
vj,n(ℓ)

dj,n(ℓ)

=⇒vj,n(ℓ− 1)

dj,n(ℓ− 1)

(ii)

>
vj,n(ℓ)

dj,n(ℓ)
,

where (i) follows from Eq. (63), and (ii) follows from the fact that A
B
> C

D
for A,B,C,D > 0 implies A+C

B+D
> C

D

where we let A= vj,n(ℓ− 1)− vj,n(ℓ), B = dj,n(ℓ− 1)− dj,n(ℓ), C = vj,n(ℓ) and D= dj,n(ℓ). This concludes

the proof. □

Now we prove Lemma 5.2. Similar to the proof of Lemma 4.3, we only need to show for any realization

zj = (vj ,dj)j∈[M], the conversion function V +
j (ρj;zj) = v⊤

j x
∗,+
j (ρj;zj) where x∗,+

j (ρj;zj) is defined as Eq.

(13) is piecewise linear, continuous, strictly increasing and concave.

For simplicity we use the shorthand notation x∗
j =x∗,+

j (ρj ;zj)∈ [0,1]
∑

n∈[mj ]
Lj,n as the optimal solution

to V +
j (ρj ;zj), defined in Eq. (13). By re-labeling the auction indices in channel j ∈ [M ] such that vj,1(1)

dj,1(1)
>

vj,2(1)

dj,2(1)
> · · ·>

vj,mj
(1)

dj,mj
(1)

, we claim that x∗
j takes the following form:

x∗
j,n(ℓ) =


1 if ℓ= 1 and

∑
n′∈[n] dj,n′(1)≤ ρj

ρj−
∑

n′∈[n−1] dj,n′ (1)

dj,n(1)
if ℓ= 1 and

∑
n′∈[n] dj,n′(1)> ρj

0 otherwise

(64)

which is analogous to that of Eq. (25) in the proof of Lemma 4.3. In other words, in the optimal solution, an

advertiser would only procure impressions who are in the first position in each auction, and also those with

high value-to-cost ratios. With the above representation of x∗
j , the rest of the proof follows exactly from that

for Lemma 4.3.

It remains to show that Eq. (64) holds. We proceed by contradiction: suppose that in some auction, an

impression other than the first is procured, i.e., x∗
j,n(ℓ)> 0 for some ℓ∈ {2, . . . ,Lj,n}. Under this assumption, we

know that by the constraint that at most one impression can be procured in each auction, i.e.,
∑

ℓ∈[Lj,n] x
∗
j,n(ℓ)≤

1 (as in Eq. (13)), it must follow that x∗
j,n(1)< 1.

Furthermore, observe that x∗
j,n(ℓ

′) incurs a cost of dj,n(ℓ
′) ·x∗

j,n(ℓ
′) from the total per-channel budget ρj . If

we instead allocate this cost to the first impression, we would observe an increase in the total value.

vj,n(1) ·
dj,n(ℓ

′) ·x∗
j,n(ℓ

′)

dj,n(1)
− vj,n(ℓ

′) ·x∗
j,n(ℓ

′) = dj,n(ℓ
′) ·x∗

j,n(ℓ
′) ·
(
vj,n(1)

dj,n(1)
− vj,n(ℓ

′)

dj,n(ℓ′)

)
> 0,

where the final inequality follows from the assumption that x∗
j,n(ℓ

′) > 0, and the multi-item auction has

increasing marginal values (see Definition 5.1) so Claim D.1 holds. This contradicts the optimality of x∗
j , and

hence x∗
j,n(ℓ) = 0 for any ℓ∈ {2, . . . ,Lj,n}, or in other words, a channel will only procure impressions ranked

first. Hence, a channel’s procurement problem in Eq. (13) can be restricted to the first impression in each

auction, and thus, similar to the proof of Lemma 4.3, is an LP-relaxation to the 0-1 knapsack with budget ρj ,

and mj items whose values are vj,1(1), . . . , vj,mj
(1) with costs dj,1(1), . . . , dj,mj

(1).

□
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Appendix E: Additional Experiment: Convergence under Small Budgets

To study how per-period budget affects convergence, we replicate the experimental setup in Section 6.2 but

consider smaller per-period budgets ρ ∈ {0.01,0.03,0.05,0.1}. We run H = 100 phases, each consisting of

T = 200 rounds, and update per-channel budgets only at the end of each phase. After each phase, we record

the per-period value achieved by our algorithm and compute a 5-phase rolling standard deviation to measure

stability over time.

As shown in Figure 6, the algorithm converges more slowly for smaller budgets. This occurs because smaller

per-period budget produces smaller reward magnitudes and higher stochastic variance in feedback, which

makes the dual updates noisier and increases the number of phases required for stabilization.

Figure 6 Convergence comparison under small per-period budgets ρ∈ {0.01,0.03,0.05,0.1}. After each of H = 100

phases (each with T = 200 rounds), we record the per-period value achieved by the proposed algorithm

and plot the 5-phase rolling standard deviation across recent phases. A smaller rolling standard deviation

indicates faster stabilization and convergence.
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