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In digital online advertising, advertisers procure ad impressions simultaneously on multiple platforms, or
so-called channels, such as Google Ads, Meta Ads Manager, etc. We study how an advertiser maximizes
their total conversion (e.g., ad clicks) while satisfying aggregate return-on-investment (ROI) and budget
constraints across all channels. In practice, an advertiser does not have control over, and thus cannot globally
optimize, which individual ad auctions they participate in for each channel, and instead authorizes a channel
to procure impressions on their behalf. The advertiser can only utilize two levers on each channel, namely
setting a per-channel budget and a per-channel target ROI. In this work, we first analyze the effectiveness
of each of these levers for solving the advertiser’s global multi-channel problem. We show that when an
advertiser only optimizes over per-channel ROIs, their total conversion can be arbitrarily worse than what
they could have obtained in the global problem. Further, we show that the advertiser can achieve the global
optimal conversion when they only optimize over per-channel budgets. In light of this finding, under a bandit
feedback setting that mimics real-world scenarios where advertisers have limited information on ad auctions
in each channel and how channels procure ads, we present an efficient learning algorithm that produces
per-channel budgets whose resulting conversion approximates that of the global optimal problem. Finally,
we conduct numerical studies to demonstrate that our proposed algorithm accurately approximates optimal

per-channel budgets in practical setups.

Key words: Online advertising, autobidding, multi-channel ad procurement, return-on-investment, budget

management, ad campaign management, bandit learning

1. Introduction

In today’s world of online advertising, advertisers (including but not limited to small businesses,
marketing practitioners, non-profits, etc.) have been embracing an expanding array of advertising
platforms, such as search engines, social media platforms, and web publisher displays, which present

a multitude of channels for advertisers to procure ad impressions and obtain traffic. In this growing



multi-channel environment, the booming online advertising activities have fueled extensive research
and technological advancements in attribution analytics to answer questions like: which channels are
more effective in targeting certain users? Or, which channels produce more user conversions (e.g.,
ad clicks) or return-on-investment (ROI) with the same amount of investment? (See Kannan et al.
(2016)) for a comprehensive survey on attribution analytics). Yet, this area of research has largely left
out a crucial phase in the workflow of advertisers’ creation of a digital ad campaign, namely how
advertisers interact with advertising channels, which is the physical starting point of a campaign.

To illustrate the significance of advertiser-channel interactions, consider, for example, a small
business that is relatively well-informed through attribution research, indicating that Google Ads
and Meta ads are the two most effective channels for its products. The business instantiates its ad
campaigns by interacting with the platforms’ ad management interfaces (see Figure , on which
the business utilizes levers such as specifying budget and a target RO]E| to control campaigns.
Channels then input these specified parameters into their autobidding procedures, where they procure
impressions on the advertiser’s behalf through automated black-box algorithms. Eventually, channels
report performance metrics such as expenditure and conversion back to the advertiser once the
campaign ends. Therefore, one of the most important decisions advertisers need to make involves
how to optimize over these levers provided by channels. Unfortunately, this has rarely been addressed
in attribution analytics and relevant literature. Hence, this work contributes to filling this gap by
addressing two themes of practical significance:

How effective are these channel levers in helping advertisers achieve their conversion goals? And

how should advertisers optimize decisions for such levers?
To answer these questions, we study a setting where an advertiser simultaneously procures ads on
multiple channels, each of which consists of multiple ad auctions that sell ad impressions. The
advertiser’s global optimization problem is to maximize total conversions across all channels, while
respecting a global budget constraint that limits total spend, and a global ROI constraint that
ensures total conversion is at least the target ROI times total spend. However, channels operate
as independent entities and conduct autobidding procurement on behalf of advertisers. Therefore,
there are no realistic means for an advertiser to implement the global optimization problem by
optimizing over individual auctions. Instead, advertisers can only use two levers: a per-channel ROI
and a per-channel budget, to influence how channels should autobid for impressions. Our goal
is to understand how effective these levers are by comparing the total conversion via optimizing
levers with the globally optimal conversion, and also to present methodologies that help advertisers

optimize the usage of these levers. We summarize our contributions as follows:

! Target ROI is the numerical inverse of CPA or cost per action on Google Ads, and cost per result goal in Meta Ads.
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Figure 1 Interfaces on Google Ads (left) and Meta Ads Manager (right) for creating advertising campaigns that allow
advertisers to set budgets, target ROls, and campaign duration. CPA, or cost per action on Google Ads, as
well as cost per result goal on Meta Ads Manager, is effectively the inverse value for an advertiser’s per-
channel target ROIl. Meta Ads Manager specifically highlights that the impression procurement methodology
via autobidding maximizes total conversion while respecting advertisers’ per-channel target ROI (see red
box highlighted), providing evidence that supports the GL-OPT and CH-OPT models in Egs. and .

respectively.

1.1. Main contributions

1. Modelling ad procurement through per-channel ROI and budget levers. In Section [2, we develop
a novel model for online advertisers to optimize the per-channel ROI and budget levers to maximize
total conversions across channels while respecting global ROI and budget constraints. This multi-
channel optimization model closely imitates real-world practices (see Figure [1| for evidence), and,
to the best of our knowledge, is the first of its kind to characterize advertisers’ interactions with
channels to run ad campaigns.

2. Solely optimizing per-channel budgets is sufficient to maximize conversion. In Theorem [3.2] of
Section [3] we show that solely optimizing for per-channel ROIs is inadequate to optimize conver-
sion across all channels, possibly resulting in arbitrarily worse total conversions compared to the
hypothetical global optimal, where advertisers can optimize over individual auctions. In contrast, in
Theorem and Corollary we show that solely optimizing for per-channel budgets allows an
advertiser to achieve the global optimal.

3. Algorithm to optimize per-channel budget levers. In Section [d] we develop an algorithm for
learning the optimal per-channel budget profile under a realistic bandit feedback structure, where
advertisers can only observe the total conversion and spend in each channel after making a per-channel
budget decision. The algorithm augments dual subgradient descent (DSD) with the upper-confidence
bound (UCB) design and outputs, within 7" iterations, a per-channel budget profile that enables

advertisers to achieve O(T~'/) approximation accuracy in total conversion, relative to the optimal



per-channel budget profile. Our approach connects to constrained convex optimization with uncertain
constraints and bandit feedback under a "one-point estimation" regime. For further discussions, see
Section [[.2l and Remark [£.2] in Section [4

4. Extensions to multi-impression auctions. In Sections |5 we shed light on the applicability of our
results to more general settings when auctions correspond to the sale of multiple items (ad spots).

5. Numerical studies. In Section [6] we conduct numerical studies to demonstrate that our proposed
algorithm DSD-UCB accurately approximates optimal per-channel budgets in a stochastic setting,
even with a relatively small number of data points. Additionally, we show that its performance
degrades gracefully when channels do not optimally procure ads on advertisers’ behalf. Reflecting on
practical settings, we extend this analysis to a multi-agent setup, where multiple buyers compete
with each other while channels implement pacing strategies on their behalf. Our empirical results
demonstrate that DSD-UCB allows buyers to retain a large fraction of the hindsight global optimal

value, showcasing its effectiveness in dynamic multi-agent environments.

1.2. Related works.
Here, we review literature related to key themes of this work, namely autobidding, budget and ROI
management, and constrained optimization with bandit feedback.

Autobidding. There has been a rich line of research that models the autobidding setup as well as
budget and ROI management strategies. The autobidding model has been formally developed in
Aggarwal et al|(2019), and has been analyzed through the lens of welfare efficiency or the price of
anarchy in [Deng et al|(2021), Balseiro et al. (2021al), Deng et al.| (2022b]), Mehta, (2022)), as well
as individual advertiser welfare in |Deng et al.| (2022a), and the impact of consumer data collection
and sharing on welfare in [Bergemann and Bonatti (2023). The autobidding model, under which
buyers are usually value-maximizers, has also been compared to classic quasi-linear utility models in
Balseiro et al.| (2021b)).

However, the autobidding model examined in these works assumes advertisers can directly opti-
mize over individual auctions. In contrast, our work addresses a more realistic scenario, reflecting
industry practices where advertisers must navigate using levers provided by channels, delegating the
procurement of ads to these channels. Moreover, recent research, such as|Alimohammadi et al.| (2023),
Feng et al. (2023)), delves into whether advertisers have an incentive to misreport their target ROIs
or budgets to a single autobidding platform. In contrast, our paper focuses on optimizing per-channel
budget decisions across multiple channels, presenting a distinct perspective on this complex issue.

Budget and ROI management. Budget and ROI management strategies have been widely studied
in the context of mechanism design and online learning. [Balseiro et al. (2017) studies the “system

equilibria” of a range of budget management strategies in terms of the platforms’ profits and



advertisers’ utility; Balseiro and Gur| (2019), Balseiro et al.| (2022b) study online bidding algorithms

(called pacing) that help advertisers achieve high utility in repeated second-price auctions while

maintaining a budget constraint, whereas [Feng et al| (2022) studies similar algorithms but considers

respecting a long-term ROI constraint in addition to a fixed budget. See also |Ai et al. (2022),
|Conitzer et al.| (2022), [Susan et al. (2023), Wang et al.| (2023), Liao et al. (2024) for some recent

works that study pacing strategies under non-truthful auctions, such as first-price and generalized
price auctions.

There has been a recent line of work that studies the setting where multiple budget- or ROI-
constrained bidders run pacing-type algorithms and analyze time-average welfare guarantees among

all bidders (Gaitonde et al.| (2022)), Lucier et al.| (2023)), |Fikioris and Tardos (2023)). All of these works

on budget and ROI management focus on bidding strategies in a single repeated auction, where
advertisers’ decisions are bids submitted directly to the auctions. In contrast, this work focuses
on the setting where advertisers procure ads from multiple auctions through channels and make
decisions on how to adjust the per-channel ROI and budget levers while leaving the bidding to the
channels’ black-box algorithms.

Online optimization. Section [ where we develop an algorithm to optimize over per-channel
target ROI and budgets, relates to the area of convex constrained optimization with bandit feedback
(also referred to as zero-order or gradient-less feedback). In light of Lemma in Section {4} our
problem of interest is also constrained and convex. First, there has been a plethora of algorithms
developed for deterministic constrained convex optimization under bandit feedback structures, where
function evaluations for the objective and constraints are non-stochastic. Such algorithms include
filter methods|Audet and Dennis Jr| (2004), [Pourmohamad and Lee| (2020), barrier-type methods
[Fasano et al| (2014), Dzahini et al| (2022), as well as Nelder-Mead type algorithms Btirmen et al|
(2006), |Audet and Tribes| (2018); see [Nguyen and Balasubramanian| (2022) and references therein for

a comprehensive survey. In contrast to these works, our optimization algorithm developed in Section
[ handles noisy bandit feedback.

Regarding works that also address stochastic settings, Flaxman et al| (2004) presents online

optimization algorithms under the known constraint regime, which assumes the optimizer can
evaluate whether all constraints are satisfied, i.e., constraints are analytically available. Further, the
algorithm achieves O(T~'/*) accuracy. In this work, our setting is more complex, as the optimizer
(i.e., the advertiser) cannot tell whether the ROI constraint is satisfied (due to unknown value and
cost distributions in each channel’s auctions). Yet our proposed algorithm can still achieve a superior

O(T~1/3) accuracy.

Most relevant to this paper are the very recent works Usmanova et al., (2019), Nguyen and

Balasubramanian| (2022)), which consider a similar setting to ours that optimizes for a constrained




optimization problem where the objective and constraints are only available through noisy function
value evaluations (i.e., unknown constraints). Usmanova et al. (2019) focuses on a special (unknown)
linear constraint setting, and Nguyen and Balasubramanian| (2022) extends to general convex
constraints. Although Usmanova et al.| (2019)) and Nguyen and Balasubramanian (2022) achieve
O(T~1') and O(T~'/?) approximation accuracy to the optimal solution, which contrasts with our
O(T~Y/3) accuracy, these works impose several assumptions that are stronger than the ones we
consider. First, the objective and constraint functions are strongly smooth (i.e., the gradients are
Lipschitz continuous), and [Nguyen and Balasubramanian| (2022) further assumes strong convexity.
But in our work, our objectives and constraints are piecewise linear and do not satisfy such salient
properties. Second, and most importantly, both works consider a setting with “two-point estimations”
that allows the optimizer to access the objective and constraint function values twice in each iteration,
enabling more efficient estimations. This work, however, lies in the one-point setting, where we can
only access function values once per iteration. Finally, we remark that the optimal accuracy /oracle
complexity for the one-point setting for constrained (non-smooth) convex optimization with bandit
feedback and unknown constraints remains an open question. We refer readers to Table 4.1 in |Larson
et al. (2019) for a survey on the best-known bounds under different one-point bandit feedback
settings.

Bandits with Knapsack (BwK). Our work is also related to the literature on the BwK framework,
introduced by |Badanidiyuru et al. (2013} [2018]), for online resource allocation under constraints.
Regret-optimal algorithms for Stochastic BwK have been developed by |Agrawal and Devanur| (2014]),
Immorlica et al.| (2022), with extensions to general resource settings Agrawal and Devanur| (2019)),
contextual bandits Agrawal et al.| (2016), Badanidiyuru et al.| (2014), and frameworks addressing
both stochastic and adversarial settings |Castiglioni et al.| (2022a).

In our problem, budgets can be viewed as resources, and similar to works on BwK, we also use a
primal-dual framework to learn how to optimally allocate them. While such frameworks have been
employed in prior work, our setting presents unique challenges. Specifically, the value obtained from
a channel is governed by an optimization process, and the primal variables (budget parameters)
are continuous. Although discretization is a common approach for handling continuous decision
spaces, bounding the resulting error requires proving that the Lagrangian function—dependent on
the optimization process—is well-behaved, specifically unimodal and piecewise linear, as we establish.

Additionally, our work addresses the challenge of handling continuous dual variables in a primal-
dual framework, which could be of independent interest for analyzing such algorithms. Our algorithm
establishes an optimal mapping between two-dimensional continuous dual variables and per-channel
budget parameters. While discretizing the budget parameter is feasible, the same is not true for dual

variables. To address this, we employ a UCB (Upper Confidence Bound) design in the primal step,



treating the two-dimensional continuous dual variables as contextual information. These contexts
are not drawn from a stochastic process but arise from the interaction between the primal and dual
algorithms. Typically, the regret of a UCB algorithm scales with v/C, where C' is the number of
contexts. For continuous contexts, this would render the regret bound vacuous. To overcome this,
we leverage a concept we term complete cross-learning. Once the primal reward (computed as the
Lagrangian function evaluated at the current dual variables) is known for a specific action in one
context, the reward can be inferred for the same action in any other context. This enables complete
cross-learning, as defined in |Balseiro et al.| (2022a), ensuring that the regret of our UCB algorithm
remains independent of the number of contexts. This critical property forms the cornerstone of our

analysis.

2. Preliminaries
Advertisers’ global optimization problem. Consider an advertiser running a digital ad campaign
across M € N platforms, such as Google Ads, Meta Ads Manager, etc., each of which we call a
channel. Each channel j consists of m; € N parallel ad auctions, each of which corresponds to the
sale of an ad impressionﬂ An ad auction n € [m;] is associated with a value v;,, > 0 that represents
the expected conversion (e.g., number of clicks) of the impression on sale, and a cost d;,, > 0 that is
required for the purchase of the impression. For example, the cost in a single-slot second-price auction
is determined by the highest competing bid in the market, and in a posted price auction, the cost is
simply the posted price by the seller of the impression. Let v; = (V) )nefm; and d; = (d; »)nefm;)-
We assume that z; := (v, d;) is sampled from some discrete distribution p; supported on some finite
set F; C R+ x R+"™J.

The advertiser’s goal is to maximize total conversion of procured ad impressions, while subject to
a return-on-investment (ROI) constraint that states total conversion across all channels is no less
than ~ times total spend for some pre-specified target ROI 0 < v < 0o, as well as a budget constraint
that states total spend over all channels is no greater than the total budget p > 0. Mathematically,
the advertiser’s global optimization problem across all M channels can be written as:

GL-OPT = max Z E [v, ;]

2 T TN
J€E[M]

»
o
g
&=
=)
B
Y

>~ ) Eldjx]
]

JE[M] jelM

2 Ad auctions for each channel may be run by the channel itself, or other external ad inventory suppliers such as web
publishers.



Here, the decision variable x; € [0,1]™ is a vector where z;, denotes whether the impression in
auction n for channel j is procured. We note that « depends on the realization of z = (v;,d;) e/
and is thus random. The ROI and budget constraints are taken in expectation because an advertiser
procures impressions from a large number of auctions (as the number of auctions in each platform is
typically very large), and thus only needs to satisfy the constraints on average. We also note that
GL-OPT is a widely adopted formulation for autobidding practices in modern online advertising,
representing advertisers’ conversion-maximizing behavior while respecting certain financial targets
for ROIs and budgets; see e.g. |Aggarwal et al.| (2019)), Balseiro et al.| (2021a), Deng et al.| (2021,
2022b). In Section [Al we discuss more general advertiser objectives, such as maximizing quasi-linear
utility.

Our overarching goal in this work is to develop methodologies that enable an advertiser to achieve
total campaign conversion that matches GL-OPT while respecting her global ROI ~ and budget p.
However, directly optimizing GL-OPT may not be plausible, as discussed below.

Advertisers’ levers to solve their global problems. To solve the global optimization problem,
GL-OPT, ideally advertisers would like to optimize over individual auctions across all channels.
However, in reality, channels operate as independent entities and typically do not provide means
for general advertisers to participate in specific individual auctions at their discretion. Instead,
channels provide advertisers with specific levers to express their ad campaign goals on spend and
conversion. In this work, we focus on two of the most widely used levers: the per-channel ROI target
and per-channel budget (see illustration in Fig. . After an advertiser inputs these parameters to a
channel, the channel then procures on behalf of the advertiser through autonomous programs (we
call this programmatic process autobidding) to help the advertiser achieve procurement results that
match the inputs. We will elaborate on this process later.

Formally, we consider the setting where, for each channel j € [M], an advertiser is allowed to
input a per-channel target ROI 0 <y, < oo and a per-channel budget p; € [0, p], where we recall that
p >0 is the total advertiser budget for a certain campaign. Then the channel uses these inputs in its
autobidding algorithm to procure ads and returns the total conversion V;(v;, p;;2;) >0, as well as
the total spend D;(v;, p;; 2;) > 0 to the advertiser, where we recall that z; = (v;,d;) € R™ x R™
is the vector of value-cost pairs in channel j, sampled from the discrete support F}; according to
distribution p;; V; and D; will be further specified later.

As the advertiser has the freedom to choose whether to input per-channel target ROIs, budgets,
or both, we consider three options for the advertiser: 1. Input only a per-channel target ROI for

each channel; 2. Input only a per-channel budget for each channel; 3. Input both per-channel target



ROIs and budgets for each channel. These options correspond to the following decision sets for
(Vi: Pj)jerny:
Per-channel budget only option: Zp = {(v;, p;) e € RZM 17, =0, p; € [0, p] for Vj}.
Per-channel target ROI only option: Zp = {(7;, p;)jeinn € RZM 17, >0, p; = o0 for Vj}. (2)
General option: Z¢ = {(v;,p;)jem) 175 = 0, p; € [0, p] for Vj}.
The advertiser’s goal is to maximize the total conversion of procured ad impressions by optimizing
per-channel budgets and target ROIs, while adhering to the global ROI and budget constraints

similar to those in GL-OPT. Mathematically, for any option Z € {Zp,Zg,Z¢}, the advertiser’s

optimization problem across channels can be formulated as:

CH-OPT(Z) = a E V(v 045 25
2 (’Yjvl’?)lje)[{M]GI ;\;f V323324
s.t. ZEM(%,pj;zj)]Z’yzE[Dj(’Yij;Zj)] (3)
jeEM jeEM

Z E[D;(vip552)] < p,
]

je[M
where the expectation is taken with respect to (w.r.t.) the randomness in z;. We note that for any
channel j € [M], the number of auctions m; and the distribution p; are fixed and do not depend on
the input parameters v, and p;.

The functions (V}, D;), which map per-channel target ROI and budgets +;, p; to total conversion and
expenditure, are determined by various factors, including but not limited to channel j’s autobidding
algorithms deployed to procure ads on the advertiser’s behalf, as well as the auction mechanisms
that sell impressions. In this work, we study a general setup that closely mirrors industry practices.
We assume that, on behalf of the advertiser, each channel aims to optimize conversion across all m;
auctions while adhering to the advertiser’s inputs (i.e., per-channel target ROI and budgets). (See
e.g. Meta Ads Manager in Figure [I] specifically highlights the channel’s autobidding procurement
methodology provides evidence to support the aforementioned setup). Consequently, each channel

7’s optimization problem can be written as:

x’(v),p52;) = arg max v/ x st v/ x>ydz, dz<p;, (4)
wE[O,l]mJ'

where & = (2, )nem,) € [0,1]™ denotes the vector of probabilities to win each of the parallel auctions,
ie., z, €10,1] is the probability of winning auction n € [m;] in channel j. In light of this representation,

the corresponding conversion and spend functions are given by:
Vi pii25) =v) @5 (v5,0552;)  and - Vi(v;,05) = E[V; (75,053 25)]

(5)
Dj(v;,pj:2i) = d] @} (v;,p5:2;)  and  D;(v;,p;) = E[D;(v;, ps; 25)] -
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Here, the expectation is taken with respect to the randomness in z; = (v;,d;) € R}’ x R77. We
assume that for any (v;,p;) and realization of z;, the total conversion V;(v;, p;;2;) is bounded
above by some constant V € (0,00) almost surely. It is important to note that Eq. assumes that
channels are able to achieve optimal procurement performance. In Section [6 we conduct numerical
studies to explore scenarios where channels do not optimally solve Eq. .

Additionally, in Eq. , it is assumed that z; = (v;,d;) are drawn from a fixed distribution.
In our numerical studies in Section [5.1], we relax this assumption by considering a multi-agent
non-stochastic setting, where buyers’ bids are modeled using standard learning algorithms. We
evaluate our algorithm in such real-world-inspired ad procurement processes, where the channels use
a pacing algorithm (or DSD from Balseiro and Gur| (2019), [Balseiro et al.| (2022b))) to set the bids
and participate in numerous auctions on the advertiser’s behalf.

Key Focuses and Organization of This Work. In this paper, we address two key topics:

1. How effective are the per-channel ROI and budget levers in helping advertisers achieve the
globally optimal conversion GL-OPT while respecting global ROI and budget constraints?
Specifically, for each of the advertiser options Z € {Zg,Zr,Z¢} defined in Eq. , what is the
discrepancy between CH-OPT(Z), i.e., the optimal conversion an advertiser can achieve in
practice, and the optimal GL-OPT?

2. Since, in reality, advertisers can only utilize the two per-channel levers offered by channels, how
can they optimize per-channel target ROIs and budgets to solve for CH-OPT(Z)?

In Section , we address the first question by determining the gap between CH-OPT(Z) and
GL-OPT for different advertiser options. In Section [d] we develop an efficient algorithm to learn

the optimal per-channel levers that optimize CH-OPT(Z).

3. On the efficacy of the per-channel target ROIs and budgets as levers in
solving the global problem

In this section, we examine the effectiveness of the per-channel target ROI and per-channel budget
levers in achieving the global optimal GL-OPT. In particular, we investigate whether the optimal
solution to the channel problem CH-OPT(Z), defined in Eq. (3)), for Z € Zp,Zr, Z¢ is equal to the
global optimal GL-OPT. As a summary of our results, we show that the per-channel budget-only
option and the general option achieve GL-OPT, but the per-channel ROI-only option can yield
conversions arbitrarily worse than GL-OPT for certain instances, even when there is no global
budget constraint (i.e., p = 00). This implies that the per-channel ROI lever is inadequate for helping
advertisers achieve the globally optimal conversion, whereas the per-channel budget lever is effective
in attaining optimal conversion, even when the advertiser solely uses this lever.

Our first result in this section is the following Lemma [3.1] which shows that GL-OPT serves as
a theoretical upper bound for an advertiser’s conversion when optimizing CH-OPT(Z) with any

option Z.
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Lemma 3.1 (GL-OPT is the theoretical upper bound for conversion) For any optionZT €
I5,Ir,Iq defined in Eq. , we have GL-OPT > CH-OPT(Z), where we recall the definitions of
GL-OPT and CH-OPT in Egs. and , respectively.

The proof of Lemma [3.1] is deferred to Appendix Given the theoretical upper bound GL-OPT,
we are now interested in the gap between GL-OPT and CH-OPT(Z) for the option Z € {Zp,Zgr,Zc}.

In the following Theorem [3.2] we show that there exists a problem instance under which the ratio

CH-OPT(Zg)

aroprs approaches 0, implying that the per-channel ROIs alone fail to help advertisers optimize

conversion.

Theorem 3.2 (Per-channel ROI Only Option Fails to Optimize Conversion) Consider

an advertiser with a global target ROI of v =1 procuring impressions from M =2 channels, where
each channel consists of a single auction. The advertiser has an unlimited budget p = 0o, and chooses
the per-channel target ROI-only option Ir defined in Eq. . Assume there is only one realization of
value-cost pairs z = (v;,d;) e (i-e., the support F'=F, x F, is a singleton), and the realization is

presented in the following table, where X > 0 is some arbitrary parameter. Then, for this problem

CH-OPT(Ip) _

instance, we have: limy o —ar-5p7

Channel 1| Channel 2
Auction 1 | Auction 2

Value v, ,, 1 2X
Spend d; ,, 0 21+ X)

Proof of Theorem Let 4 = (71,72) be the optimal solution to CH-OPT(ZR), and recall
that under the option Zr, we assume per-channel budgets are infinite. It is easy to see that 7; can
be any arbitrary nonnegative number because the advertiser always wins auction 1. Additionally, we

must have 7, > HLX

X

Tx- o this case, the advertiser would win the auction in channel 2.

To see this, assume 7, <
However, under this assumption, the advertiser would win all auctions across the two channels and

acquire a total value of 1+ 2X, while incurring a total spend of 04 2(1+ X) =2+ 2X. This would

violate the ROI constraint in CH-OPT(ZR) because ;i§§ < 1. Therefore, the advertiser can only

win auction 1, which implies 7, > HLX Consequently, the optimal objective for CH-OPT(ZR) is 1.

On the other hand, it is straightforward to see that the optimal solution to GL-OPT is to win
auction 1 with probability 1 and auction 2 with probability %, yielding an optimal value of 1+ X.

Thus, % = 1—',—% Taking the limit as X — oo yields the desired result.
O
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We now provide intuition behind the inadequacy of the ROI-only option to maximize conversions.
In the proof of Theorem [3.2] as observed, there are only two possible outcomes:
X

1. By setting 7, > T+x and solving problem , the advertiser wins auction 2 with py, = oo.

However, as shown in the proof, this leads to a violation of the global ROI constraint.
2. By setting 7, < HLX and solving problem , the advertiser avoids violating the global ROI
constraint but is forced into a suboptimal solution—completely losing auction 2.
This demonstrates that under the option Zy, it is impossible to achieve all possible outcomes, including
the globally optimal solution to GL-OPT. Specifically, the constraint on the per-channel ROI forces
the advertiser into a limited set of solutions, which can lead to arbitrarily poor performance. As a
result, the ROI-only option does not provide the flexibility needed to reach the global optimum.
In contrast to the per-channel ROI only option, the budget-only option allows an advertiser’s

conversion to reach the theoretical upper bound GL-OPT through solely optimizing for per-channel

budgets. This is formalized in the following theorem, whose proof is presented in Appendix [B:2]

Theorem 3.3 (Per-channel budget-only option suffices to achieve optimal conversion)
For the budget-only option Ig defined in Eq., we have GL-OPT = CH-OPT(Zg) for any global
target ROI v >0 and total budget p > 0, even for p=oco.

As an immediate extension of Theorem [3.3] the following Corollary shows that per-channel

ROIs in fact become redundant once advertisers optimize for per-channel budgets.

Corollary 3.4 (Redundancy of per-channel ROIs) For the general option Zg defined in Eq.,
where an advertiser sets both per-channel ROI and budgets, we have GL-OPT = CH-OPT(Z¢) for
any aggregate ROI v >0 and total budget p > 0, even for p=oo. Further, there exists an optimal
solution (v, p;j)jem) to CH-OPT(Zg), such that v; =0 for all j € [M].

In light of Corollary we observe that introducing per-channel ROI targets (y;);es does not
improve the optimal value of the problem: simply optimizing over per-channel budgets (p;);e(m
suffices to satisfy both the ROI and budget constraints. Importantly, this does not mean the global
ROI constraint is irrelevant; rather, the constraint must be satisfied, but there is no additional benefit
from optimizing over ROI targets at the channel level. Therefore, for the rest of the paper, we fix
v; =0 for all j € [M], and omit 7, from the notation. For example, we write D;(p;;z;) and D;(p;)
instead of D;(v;,pj; z;) and D;(~;, p;). Equivalently, we focus on the per-channel budget-only option
I5.
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4. Learning algorithm for per-channel budgets under bandit feedback

In this section, we develop an efficient algorithm to learn optimal per-channel budgets that optimize
CH-OPT(Zg) defined in Eq. , which achieves the theoretical optimal conversion, namely GL-OPT,
as illustrated in Theorem In particular, we consider algorithms that run over 7" > 0 periods,
where each period for example corresponds to the duration of 1 hour or 1 day. At the end of T
periods, the algorithm produces some per-channel budget profile (p;) ;e € [0, p]™ that approximates
CH-OPT(Zg), and satisfies aggregate ROI and budget constraints, namely

> ien Viles) =722 em Dilps), > ienn Dilpi) <p,

where we recall (V;(p;), D;(p;)) are defined in Eq. (5).

The algorithm proceeds as follows: at the beginning of period ¢ € [T], the advertiser sets per-
channel budgets (p; ;) e, without observing values and costs z; = (2;¢)jep) = (v, d;0)J € [M],
where (v;,;,d;;) € R7 x R}’ are sampled (independently in each period) from a finite support
F =F; x--- x Fy; according to discrete distributions (p;);e(a. Each channel j then takes as input
pit € [0,p] and procures ads on behalf of the advertiser, reporting the total realized conversion
Vi(pje; zj0) as well as total spend D;(p;;2;,) to the advertiser (see definitions in Eq. (). For
simplicity, we assume that any realization z; = (v;,d;) € F; admits an ordering Zj—i > > Zj—:j for
all channels j € [M].

Bandit feedback: We highlight that the advertiser receives bandit feedback from the channels,

i.e., the advertiser only observes the numerical values V;(p;; z;:) and D;(p;+;2;:), but does not

observe Vj(p}; 2;) and D;(p}; 2;) evaluated at any other per-channel budget p} # p;, or realized
value-cost pairs zj # z; ;.

We also make two mild assumptions: In Assumption we assume that each channel will deplete
its input per-channel budgets. In Assumption we assume that for any realization of value-cost
pairs z; = (v;,d;) in a channel j € [M], there always exists an auction n € [m;] in this channel whose

value-to-cost ratio is at least v, i.e., vj, > vd, ...

Assumption 4.1 (Moderate budgets) Assume p < oo, and for any channel j € [M], value-cost
realization z; = (v;,d;) € F;, and per-channel budget p; € [0, p|, the optimal solution x;(p;; z;) defined
in Eq. is budget binding, i.e. D;(p;;z;) =d] x3(p;; 2;) = p;.

Assumption .1 holds in large online ad markets, where advertisers have moderate budgets and
fully utilize them due to the abundance of ad impressions. In practice, bidders can estimate an upper
bound on the budget for each channel, ensuring that if the budget is set below this bound, it will be
fully depleted. This is not an issue for large channels with many auctions, but for smaller ones with
fewer auctions, budget depletion may not always occur. However, by incorporating this upper bound

in our framework, the algorithm and results remain valid even for smaller channels.
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Assumption 4.2 (Strictly feasible global ROI constraints) Fiz any channel j € [M] and any
realization of value-cost pairs z; = (vj,d;) € F;. Then, the channel’s optimization problem in Eq.

18 strictly feasible, i.e. the set {a:j €[0,1]™ :U]-ij > vdszvj} 18 nonempty.

Assumption [4.2] ensures that the per-channel ROI constraint is strictly satisfied for every realization
of value-cost pairs z; = (v;,d;) € Fj. This assumption is not overly restrictive for several reasons.
First, if ROI constraints are frequently violated, it poses both technical and practical challenges.
Technically, violations impede the ability to accurately assess feedback from the channel, preventing
us from establishing any meaningful results. Practically, while occasional violations are acceptable,
frequent ones signal that the target ROI is likely too ambitious. Advertisers can adjust their target
ROI in response to this feedback. Second, in real-world scenarios, the number of auctions m; within
a channel j is typically large. Given this, we expect Assumption [£.2] to hold with high probability,
as the set {a:j € [0,1]™ :’UJTZCj > vd;xj} will generally be non-empty when m; is large enough. In

particular, Assumption is satisfied whenever there exists n € [m;] such that v;,, > vd; ..

4.1. Optimize per-channel budgets with DSD-UCB

Here, we describe our algorithm to solve for optimal per-channel budgets with respect to
CH-OPT(Zp). Similar to most algorithms for constrained optimization, including those in the
BwK framework discussed in Section we take a dual subgradient descent (DSD) approach;
see a comprehensive survey on dual descent methods in Bertsekas (2014). First, we consider the
Lagrangian functions with respect to CH-OPT(Zg), where we let ¢ = (A, ) € R% be the dual

variables corresponding to the ROI and budget constraints, respectively:
Li(pj e z5) = (L+ NVilps; 25) — Ay + w)p;
Lj(pj,e) =E[L;(p;: ¢;25)] -

Then, in each period t € [T], given dual variables ¢; = (A, 7;), we decide on a primal decision, i.e.,

(6)

per-channel budget (p;:);e by optimizing the following:

pj¢ = argmax, efo,0) L;(0s, €5 Zjt) - (7)

Having observed the realized values (V;(p;+;2;¢))j € [M] (where spend is (p;+);e(n) under Assump-
tion , we calculate the current period violation in budget and ROI constraints, namely g, ; :=
> jent Vilpjei zje) —=vpse) and g2 = p — 37 Pye- Next, we update the dual variables E| via

3 The dual variable X reflects how tightly the ROI constraint is satisfied: it remains small when the ROI surplus
(value minus ~y-scaled cost) is large, and increases as this surplus shrinks. The dual variable p captures the pressure
from the total budget constraint. Though not directly observable, both variables are dynamically updated by the
algorithm and can be monitored over time to understand which constraint is binding. In practice, these trajectories
could help calibrate or adjust campaign-level parameters such as per-channel ROI targets or budget parameters based
on historical trends.
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,cpp (At —ng1,e) and pygq = o oy (e —192+), where II is the projection operator, 1 is some
pre-specified step size, and Cr is some dual variable upper bound specified in Eq. @Dﬁ

However, we cannot realistically determine the primal decisions by solving Eq. since the
function £;(-,¢;;2;,) is unknown due to the bandit feedback structure. Therefore, we provide a
modification to DSD to handle this issue. We briefly note that although bandit feedback prevents
naively applying DSD to our problem, this may not be the case in other online advertising scenarios
that involve relevant learning tasks, underlining the challenges of our problem; see the following

Remark 1] for details.

Remark 4.1 Our problem of interest under bandit feedback is more difficult than similar problems
in related works that study online bidding strategies under budget and ROI constraints; see, e.g.,
Balseiro et al| (2017, 2022b), Feng et al.| (2022). To illustrate, consider, for instance, |Balseiro et al.
(2017), in which a budget-constrained advertiser’s primal decision at period t is to submit a bid value
b; after observing her value v;. The advertiser competes with some unknown highest competing bid d;
in the market, and after submitting bid b;, does not observe d, if she does not win the competition,
which involves a semi-bandit feedback structure. Nevertheless, the corresponding Lagrangian under
DSD takes the special form L;(b, ps; z:) = (ve — (14 p)dy) I{b; > d;} where p; is the dual variable
w.r.t. the budget constraint. This simply allows an advertiser to optimize for her primal decision

by bidding argmaxy>o L£;(b, ¢;;2) = Jiut. So, even though Balseiro et al.| (2017, 20220, |Feng et al.

(2022) study DSD under bandit feedback, the special structures of their problem instances permit
DSD to effectively optimize for primal decisions in each period. In contrast, Eq. in our setting

cannot be solved directly.

To handle bandit feedback, we take a natural approach to augment DSD with the celebrated
upper-confidence bound (UCB) algorithm; see the introduction to UCB and multi-arm bandits in
Slivkins et al.| (2019). In particular, we first discretize our per-channel budget decision set [0, p| into

granular “arms" separated by distance ¢ > 0:
A(6) = {ar}reix) where aj, = (k—1)6. (8)

for K :=[p/d] + 1. In the following, we will use the terms "per-channel budget" and "arm" inter-
changeably. In the spirit of UCB, in each period ¢, we maintain some estimate (Vj(ak))je[ M] of the

conversions (V;(ay)) as well as an upper confidence bound UCB;,(ay) for each arm a; using

jelM]
historical payoffs from periods in which arm ay is pulled. Finally, we update primal decisions for

each channel j € [M]: p; = argmax,, cacs) (1+ ;) (Vj,t(ak) —f—UCBN(ak)) — (ANey + ) ag.

4 One can also employ more general mirror descent dual variable updates; see e.g. [Balseiro et al.| (2022D).



16

Finally, to ensure aggregate ROI and budget constraint satisfaction, we maintain variables that
check ROI and budget balances, namely S; ; and Ss;, to record the cumulative ROI and spend across
all channels up until period ¢t. When the ROI balance check S; ; is too negative, or the budget balance
check is too large, we "stop" the algorithm and naively set some pre-defined small per-channel budget
p€(0,p) (later chosen in Theorem during all periods after the "stopping time" denoted as 74.
We remark that similar approaches to ensure constraint satisfaction have been introduced in, e.g.,
Balseiro et al.| (2022b)), |[Feng et al.| (2022).

We summarize our algorithm, called DSD-UCB, in Algorithm

Algorithm 1 DSD-UCB
1: Input: Budget discretization set of arms A() defined in Eq.(8). Step size 1 > 0. Initialize Nj,1(ax) =V 1(ar) =0
for all j € [M] and k € [K], and dual variables A1 = 1 =0. Set p € (0,p/M), 8> 0 and dual variable upper bound

CF:MVmaX{%B7m}, 9)

where V' > max;e(n) max,; o, maxz;cr; Vj(pj, 2;) is the conversion upper bound.

2: Set initial constraint balance checks: S1 = S2,; =0 for t =1, and start period counter ¢ =1.
3: while t <T and S1,s —yMp+ Bp(T —t) >0 and Szt + Mp+ Mp(T —t) < pT do
4: Set per-channel budget. For each channel j € [M]: If t < K, set pj: = a:. Else if t > K, set p;+ =
V_ UCB. _ vtprag
argmaxg, ¢ A(s) qu(ak) + ],t(ak) T+ )
2log(T
where UCB; ;(ax) = 4/ N]%((ak))

5: Observe realized conversion {V;(p;.t; 2j.t)};c(nr), and update for each arm k € [K] and channel j € [M]

Njiv1(ar) = Nje(ar) + Hpje =an},  Vieri(ar) = Nj’t(ak>Vj’t(ak}\>;,+vj(pj’t;zj’tmpj’t:ak}

jt+1(ak)

6: Update dual variables. Calculate g1t = c(ay (Vi(ps.t52j,t) —vpje) and ga.e = p — 32 ¢ ap pit- Then, set
Atp1=Mjo op) (A —=mg1,e) and  put1 =T o) (e —Ng2,t) - (10)

7 Update balance check: S1,:41=51++g1,+ and So 41 =52+ + ZjE[M] Pit-
8: Increment period counter ¢ <t + 1.

9: end while

10: Record 74 =t —1 and for all t=7a +1...T set pj, = p for all j € [M].

. 5. = (L .
11: Output pp = (T 2oter) pJ,t)jE[M].

4.2. Analyzing the DSD-UCB algorithm
In this subsection, we analyze the performance of DSD-UCB in Algorithm [I] and present accuracy

guarantees on the final output p, = (% Ztem ,Oj,t> )
JEIM

5 There has been very recent works that combine DSD with adversarial bandit type algorithms such as EXP3|Castiglioni
et al.[ (2022b} [2023)), or with Thompson sampling which is another well-known algorithm for stochastic bandit problems
(e.g. [Ding et al. (2021)), and works that employ DSD in bandit problems (e.g. Han et al|(2021)). Yet to the best of
our knowledge, our approach to integrate DSD with UCB is novel.
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To show the result, we first decompose the cumulative loss over T' periods, defined as

T-GL-OPT-E[ Y > Vi(p1)].

te[T] je[M]
into three main components: (1) the "stopping error," which arises when the while-loop condition is
violated and a small per-channel budget p is naively set after the stopping time 74 (see step 10); (2)
the error induced by the UCB component of our algorithm; and (3) the error resulting from DSD,
often interpreted as deviations from complementary slackness (see Proposition . This type of
regret decomposition is standard in the bandit literature.

We then proceed to bound each component individually.

Proposition 4.1 (Regret decomposition) For any channel j € [M] define pj(t) =
argmax, . L;(p;;ci) to be the optimal per-channel budget w.r.t. dual variables ¢, = (A, f)ie[r)-

Then T- GL-OPT =3, 1y > Vi(pji) is bounded by

je[M]
MV(T—7a)+ Y Nguetmged) D0 D L5 (0.e0) = Ly(prnea)
——— )
Stopping error te[ra] JE[M] telTA] |
DSD complementary slackness deviations UCB error

where T4 € [T is defined in step 10 of Algorithm [1]

Recall the definitions of g, and g, from step 5 of Algorithm [T} and note that the conversion
Vi(pj; z;) is almost surely bounded above by a constant V € (0,00). We provide a bound on the
stopping error, along with the DSD complementary slackness violations, in Lemma This result
follows standard analyses for DSD, and the proof can be found in Appendix [C.2]

Lemma 4.2 (Bounding stopping error and complementary slackness deviations)

Assume Assumptions tmd hold. Recall n >0 is the step size. Then we have MV(T )+
Zte[m] (Aegre + ,Utgz,t) < O (77T 4 %) )

Challenges in bounding UCB error due to adversarial contexts and continuum-arm
discretization. Bounding our UCB error is significantly more challenging than in classic stochastic
multi-arm bandit settings. First, our setup involves discretizing a continuum of arms, i.e., our
discretization in Eq. for [0, p]. Second, and more importantly, the dual variables {¢;}¢c[r) represent
adversarial contexts because they are updated via DSD, rather than being stochastically sampled
from some well-behaved distribution. Consequently, the Lagrangian function £;(ay, ¢;;2;) can be
viewed as a reward function that maps any arm-context pair (ax,c;) to (stochastic) payoffs. Both
the continuum of arms and adversarial contexts have been well-known for making reward function

estimation highly inefficient; see, e.g., discussions in Agrawal (1995)), |Agarwal et al.| (2014). We
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further elaborate on the specific challenges that adversarial contexts introduce:
1. Boundedness of rewards. In classic stochastic multi-arm bandits and UCB, losses in total
rewards grow linearly with the magnitude of rewards. In our setting, the reward function, i.e.,
the Lagrangian function £;(ay,c;; 2;), scales linearly with the magnitude of contexts (see Eq. @)
Therefore, large contexts (i.e., large dual variables) may lead to large losses.
2. Context-dependent exploration-exploitation tradeoffs. The typical trade-off between arm
exploration and exploitation in our setting depends on the particular values of the contexts (i.e., the
dual variables). This means there may exist "bad" contexts that lead to poor trade-offs, requiring
significantly more exploration to achieve accurate estimates of arm rewards than other "good"
contexts. We elaborate further in Lemma [£.5] and the discussions thereof.

We first handle continuum arm discretization by showing that the specific form of the conversion
functions V' (p;; z) in Eq. induces salient structures for the Lagrangian function. Namely, it is

continuous, piecewise linear, concave, and unimodalﬂ We present the proof in Appendix .

Lemma 4.3 (Structural properties) For any channel j € [M]:
e The conversion function V;(p;) is continuous, piecewise linear, strictly increasing, and concave.

In particular, V;(p;) takes the form

‘/J(pj) = Ene[sj] (Sj,npj + bj,n) H{p] S [Tj,nfly Tj,n]} )

where S; €N and (5j.,,b;0,7j) depend only on the support F; and distribution p; from

nels;
which values and costs are samplec]i. These parameters satisfy sj1 > > s;s, >0 and 0=
Tjo <Tj1 <---<Tjs, =p, as well as bj, >0 such that ;.70 +bjn =5jn417jn +bjnp1 for all
n € [S; — 1], with b;; =0. This implies that V;(p;) is continuous in p;.

e For any dual variables ¢ = (A, ) € R, L;(p;,¢) defined in Eq. @ s continuous, piece-wise

linear, concave, and unimodal in p;. In particular,

L5(pss€) = 0L, (05095 +0,,.) Hps € [rjm-15m5nl}
where the slope 0;,(c) = (1 + N)s;n — (u +A) and b, = (1 + Ab;,. This implies

argmax, >o £; (pj,c) =max{r;,:n=0,1...,5; ,0;,(c) >0}.

In fact, for any realized value-cost pairs z, the “realization versions” of the conversion and Lagrangians
functions, namely V;(p;;z) and L£;(p;,c; z), also satisfy the same properties as those of V;(p;) and
L;(p;,c). We provide a visual illustration for these properties in Figure

6 A function f:R — R is unimodal if there exists a point y such that f(y) strictly increases when 3 <y and strictly
decreases when y > y™.
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Figure 2 lllustration of Lagrangian functions defined in Eq. @ with M; = 2 auctions in channel j, and support

F; that contains 3 elements, z1) =((8,2),(2,3)), z2) = ((3,4),(1,4)), 23 = ((8,1),(4,2)), and context
c= (A p)=(4,2). Under Lemma Sj =5, where the “turning points” r;...r; s, are indicated on the
x-axis, and the optimal budget w.r.t. c is argmax, c0,, £;(pj; c) = 7;5,2. The adjacent slopes in Eq.

are o (c) =0;2(c), and o (c) =0;3(c).

We now address the reward boundedness issue for the Lagrangian functions that arise from
adversarial contexts. In Lemma (proof in Appendix [C.4), we show that the Lagrangian functions

are bounded by some absolute constants:

Lemma 4.4 (Bounding Lagrangian functions) For anyt e [T], j € [M] and p; € [0, p], we have
—(14+7)pCr < Li(pj ) < (14 Cr)V, where the dual variables ¢, = (A, 1 )e) are generated
from Algorithm [1

We now address the context-dependent exploration-exploitation tradeoff. To illustrate (e.g., Figure
, define the slopes adjacent to the optimal per-channel budget with respect to ¢ = (A, ) as follows:

assume the n-th “turning point” r;,, = argmax, co,, £;(p;,c), then

o; (€)=0;n(c) and a;-r (€)=0jnt1(c). (11)
Similar to standard exploration-exploitation tradeoffs in bandits, the flatter the slope (e.g., o; (c)
is close to 0), the more pulls are required to accurately estimate rewards for sub-optimal arms
on the slope, but the lower the loss in conversion for pulling sub-optimal arms. Our setting is
challenging because the magnitude of this tradeoff, or equivalently, the adjacent slopes o (¢) and
a; (¢), depends on the adversarial contexts. In Lemma we bound the UCB error by handling
this context-dependent tradeoff through separately analyzing periods when the adjacent slopes Uj_(c)

and a;’(c) are less than or greater than some parameter g > 0 chosen later, and characterize the

context-dependent tradeoff using o.
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Lemma 4.5 (Bounding UCB error) Assume the discretization width § satisfies § < r; :=
minne[gj]rj’n —Tjn—1, where S; and {rj’n}:jzo are defined in Lemma . Then the UCB error in

Proposition 1s upper-bounded by O <5T + ol + %), where g > 0 is any positive number.

See Appendix [C.H| for the proof. Finally, we put together Proposition .1} Lemma[4.2] and Lemma
and obtain the main result, Theorem whose proof we detail in Appendix [C.6]

Theorem 4.6 (Putting everything together) Assume that assumptions and hold. Take
step size n=0O(1/V/T), discretization width 6 = ©(T~/3), and B =p= in Algom'thm as well
as o =0O(T~3) in Lemma . Then, for large enough T, we have

1
log(T')

T-GL-OPT-E > Y Vi(p.)| <OT*?).

te[T] j€[M]

Further, recalling that py. is the final output of Algorithm[1, we have
GL-OPT =3 .y E Vi) <O(TV?),

and the constraint satisfaction:

p— Z E[ﬁj,T] >0,

JE[M]

as well as

Z E [V; (ﬁj,T) - ’ij,T] > 0.

je[M]
We make an important remark that distinguishes our result in Theorem with related literature

on convex optimization. We refer the readers to Section for a discussion on

Remark 4.2 In light of Lemma the advertiser’s optimization problem CH-OPT(Zg) in Eq.
effectively becomes a convex problem (see Proposition in Appendiz . Hence it may be
tempting for one to directly employ off-the-shelf convex optimization algorithms. However, our problem
1nwolves stochastic bandit feedback, and more importantly, uncertain constraints, meaning that we
cannot analytically determine whether a primal decision satisfies the constraints of the problem. For
exzample, in CH-OPT(Zg), for some primal decision (p;)jein, we cannot determine whether the ROI
constraint 3. B[Vi(v), pji 25) —vDj(75, pji 2;)] = 0 holds because the distribution (p;);e(a from
which z is sampled is unknown. To the best of our knowledge, within the online convex optimization
literature, two recent works address a similar stochastic bandit feedback and uncertain constraint
setting, namely |Usmanova et al.| (2019) and Nguyen and Balasubramanian (2022). However, our
setting is more challenging because these works consider a two-point estimation regime, where function

evaluations to the objective and constraints can be made twice per period, whereas we deal with a
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one-point estimation regime, where function calls are limited to once per period. The optimal oracle
complexities for unknown constraint conver optimization with one-point bandit feedback remain an

open problem. |Z]

In light of Remark [4.2] we would like to point out that stochastic bandit feedback has been
extensively studied in the BwK literature, including works such as Immorlica et al.| (2022)), |Castiglioni
et al| (20224)), and [Slivkins et al| (2023)). As discussed earlier in Section [L.2] we use a primal-dual
framework for optimal budget allocation, similar to these works. However, our problem introduces
unique challenges due to the continuous nature of the primal variables and the optimization process
governing the value from a channel. We address these challenges by discretizing the continuous
decision space and proving that the resulting Lagrangian function is well-behaved (unimodal and
piecewise linear), as established in Lemma Additionally, we propose a novel approach for handling
continuous dual variables by employing UCB (Upper Confidence Bound) in the primal step. To
avoid vacuous regret bounds that typically arise with continuous contexts (i.e., dual variables), we
introduce the concept of complete cross-learning [Balseiro et al.| (2022al), which enables rewards from
one context to be inferred for others. This ensures that the regret remains independent of the number

of contexts, a key property in our analysis, as formalized in Lemma

5. Generalizing to autobidding in multi-item auctions

In the previous sections, we assumed that each channel consists of multiple auctions, each associated
with the sale of a single ad impression (see Eq. and the accompanying discussion). However,
in practice, there are many scenarios where ad platforms sell multiple impressions in each auction
(see, e.g., Varian (2007), [Edelman et al. (2007)). In this section, we extend all the results from the
single-item auction setting to the multi-item auction setup. In Section [5.1} we formally describe the
multi-item setup; in Section [5.2] we show that in the multi-item setting, the per-budget ROI lever
remains redundant (as shown in Theorem and Corollary , and an advertiser can optimize
solely over per-channel budgets to achieve globally optimal conversion. In Section we demonstrate
that our proposed DSD-UCB algorithm is directly applicable to the multi-item auction setup for a
broad class of auctions. Similar to Theorem [£.6] our algorithm produces accurate lever estimates,

enabling the advertiser to approximate the globally optimal lever decisions.

5.1. Multi-item autobidding setup
We first formalize our multi-item setup as follows. For each auction n € [m;] of channel j € [M],
assume L; ,, € N impressions are sold, and channel j is only allowed to procure at most 1 impression in

auction n on the advertiser’s behalf. The value acquired and the cost incurred by the advertiser when

7 See Table 4.1 in |[Larson et al.|(2019) for the best-known complexity bounds for one-point bandit feedback setups.
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procuring impression ¢ € [L; ,,| are v;,,(¢) and d; (), respectively. With a slight abuse of notation
from previous sections, we write v, = (v, (1),..., 05, (Ljn)) € Rij’" as the L, ,-dimensional vector
that includes all impression values of auction n in channel j, and further write v; = (vj1,...,Vjm;) €
R

%ne[mj } o as the vector that concatenates all value vectors across auctions in channel j. We
also define d; ,, € Rij’" and d; € R?ne[mj | am accordingly for costs. Similar to Section we assume
z; = (v;,d;) is sampled from finite support F; according to the discrete distribution p; for any
channel j € [M], and without loss of generality, we assume that for any element z; € Fj, the values
and costs for individual impressions in any auction n € [m;] satisty v, ,(1) > ... >wv;,(L;,) >0 and
din(1)>...>d;,(L;,) >0.

Under the above multi-item setup, an advertiser’s global optimization problem (analogous to
GL-OPT in Eq. for the single-item auction setup in previous sections) can be written as the
following problem, called GL-OPT™:

GL-OPT" =

max Z E ['va:cj]

(“‘F@aﬂ---’mavmj>)je[M] je[M]

st. > Elvja;] >+ ) Eld z]

jelnt] jei) (12)

> Eldja;] <p

JE[M]

@, € [0, 1m0 and N 2, (0) <1, Vi€ [M], nelm,).
eG[Lj’n]

Here, @, = (1 (f))ee[z,,,) denotes the indicator vector for procuring impressions £ € L; , in auction
n € [m;] of channel j € [M]. Compared to GL-OPT, the key difference for GL-OPT™ is that we
introduce additional constraints which state: “at most 1 impression is procured in every multi-item
auction.”

On the other hand, analogous to a channel’s autobidding problem for the single-item auction setup
in previous sections (Eq. ), in the multi-item setting, each channel jj’s autobidding problem can

be written as:

*,+ . _ T
;" (v5,p552;) = arg max v x

s.t. va:B > fyjdjTac, and djTa: <p, (13)
x, €[0,1]% and Z z,(0) <1, Vne[m,],
(€L ]

where @, = (2,(£))ee(z,,, € [0,1]™ denotes the (possibly random) vector of indicators for winning
each impression in auction n of channel j. With respect to this per-channel multi-item auction
optimization problem in Eq. (13), we further define V;*(v;, p;:2;), D (v;,p5:2i), Vit (7, p5), and
D;f (74, p4) as in Eq. , and CH-OPT*(Z) as in Eq. for any advertiser lever option Z in Eq.
2)-
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5.2. Optimizing per-channel budgets is sufficient to achieve global optimal
Our first main result for the multi-item setting is Theorem [5.1] which demonstrates that an advertiser
can achieve the global optimal conversion GL-OPT™ by solely optimizing over per-channel budgets,

analogous to Theorem [3.3] and Corollary [3.4]

Theorem 5.1 (Redundancy of per-channel ROIs in multi-slot auctions) For the per-
channel budget option I and general options Lg defined in FEq. , we have GL-OPT" =
CH-OPT"(Zp) = CH-OPT"(Zg) for any aggregate ROI v >0 and total budget p >0, even when
p = oco. Further, there exists an optimal solution (7, p;)jepn to CH-OPT™(Ig), such that v; =0
for all j € [M].

It is easy to see that the proof of Lemma Theorem [3.3] and Corollary [3.4] with respect to
the single-item setting in Section [3| can be directly applied to Theorem since we did not rely
on specific structures of the solutions to GL-OPT and CH-OPT other than the presence of the
respective ROI and budget constraints (which are still present in GL-OPT" and CH-OPT™).
Therefore, we will omit the proof of Theorem In light of Theorem we again conclude that
the per-channel ROI lever is redundant, and hence we omit the per-channel ROI ; when the context

is clear.

5.3. Applying DSD-UCB to the multi-item setting
We now turn to our second main focus in the multi-item setting: understanding whether our proposed
DSD-UCB algorithm can achieve accurate approximations of the optimal per-channel budgets,
similar to Theorem [£.6] in the single-item setting. A key observation is that the only difference
between bounding the error of DSD-UCB in the single and multi-item settings lies in the structure
of the conversion and corresponding Lagrangian functions (see Lemma . This is because the only
change in the multi-item setting, compared to the single-item setting, is how a given per-channel
budget translates into a certain conversion. Therefore, in this section, we introduce a broad class of
multi-item auction formats that induce the same conversion function structural properties as those
illustrated in Lemma [£.3] This will allow us to directly apply the proof for bounding the error of
DSD-UCB (Theorem to the multi-item setting of interest.

To begin with, we introduce the following notion of increasing marginal values, which is a
characteristic that preserves the structural properties of conversion and Lagrangian functions from

the single-item setting (as shown in Lemma [4.3)), and is demonstrated later in Lemma .
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Definition 5.1 (Multi-item auctions with increasing marginal values) We say an auction
n € [m;] in channel j € [M] has increasing marginal values if for any realization z; = (v;,d;), we

have

V(1) —v;0(2) Vjn(Ljn —1) = vjn(Ljn) j -0
(1) - ' ’

ULn(Lj,n)
>0 > >
dj,n 1) dj,n(z) dJ,n(Lj,n - 1) - dj,n(Lj,n) dj,n(Lj,n)

where we recall v;,, (1) > ...>v;,(L;,) >0 and d; (1) > ... >d; ,(L;,) > 0.

Increasing marginal values intuitively means that in a multi-item auction, the marginal value per
cost increases as higher-value impressions are procured. Many classic position auction formats satisfy
the increasing marginal gains property, such as the Vickrey—Clarke-Groves (VCG) auction. For more

details on position auctions, see [Varian| (2007), Edelman et al.| (2007)).

Example 5.1 (VCG auctions have increasing marginal values) Let auction n € [m;] in
channel j € [M] be a VCG auction, where, for any realization of (v;,,d;n) = (vjn(€),d;n(€))eeir; .5
there exists some v, ; > 0, position discounts 1 >0, ;(1)>6,,(2)>...>6,;(L,;) >0, and the
L, ;-highest competing bids from competitors in the market c?nyj(l) > Jn,j(Z) >...> Jn’j (L, ;) >0,
such that the acquired value for procuring impression £ € Ly, ; is v, ;({) = 0, ;({) - U, ;, and the

corresponding cost is
Lijn

djn(l) = Z(wa) — 0, (' +1))d, (),

o=

where we denote 0, ;(L;,, +1)= 0.E| Under VCG, the marginal values are given by
Vin(6) =0jn(041) _ (On;(0) = On;(E+1)7;

Ujn

QD) (05 1) (B, (6) — Oy (04 1) dn(6)  dyn(0)

)

which decreases in { since glvn7j(1) >d,;(2)>...>d,;(L,;) > 0. Hence, VCG auctions admit

wcreasing marginal values.

We remark that the generalized second-price auction (GSP) does not necessarily have increasing
marginal values. However, if all auctions in a channel have increasing marginal values, then we can
show that the conversion function VjJr (p;) and the corresponding Lagrangian function for multi-item

auctions admit the same structural properties as those in Lemma [£.3}

Lemma 5.2 (Structural properties for multi-item auctions) For any channel j € [M] whose
auctions have increasing marginal values (see Definition , the conversion function Vj+(pj) =

E [vaas;f’+(pj;zj)] s continuous, piecewise linear, strictly increasing, and concave. Here, recall that

® Here, the distribution over (vjn,d;.) can be viewed as the joint distribution over Un,j, (0n.;(£))eer

(dni (0)ee(L; )

], and

Jn
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ac;"+(,0j;zj) 18 the optimal solution to the channel’s optimization problem in Eq. . Further, for
any dual variables c=(X,0) € R%, the Lagrangian function LT (p;,c) := (1+ )V (p;) — (0 +~N)p;

is continuous, piecewise linear, concave, and unimodal in p;.

See the proof in Appendix In light of Lemma we can argue that DSD-UCB produces
per-channel budgets that yield the same accuracy as those in Theorem for the single-item setting.

Theorem 5.3 (DSD-UCB applied to channel procurement for multi-item auctions)

Assume multi-item auctions in any channel j € [M] have increasing marginal values (per Definition
, and assume Assumptions and hold for the multi-item settingﬂ Then, with the same
parameter choices as wn Theorem and recalling py = (% Ztem pj,t>j€[M] s the vector of

time-averaged per-channel budgets produced by DSD-UCB, we have

GL-OPT" — > E[V"(p,;)] <O(T"/?),

JE[M]

as well as constraint satisfaction

Z E pTJ ’ypT,j] >0, andp— Z E[ﬁT,J‘] >0,

je[M]
where we recall GL-OPT" is defined in Eq. (12), V" (p;) =E [v] 27" (p;; 2;)] and ;7 (pj; ;) is
defined in Eq. .

The proof for this theorem is identical to that of Theorem [£.6] given the same structural properties
of the conversion and Lagrangian functions in Lemma [5.2] and Lemma [£.3] Hence, we will omit the

proof.

6. Numerical studies

In this section, we conduct numerical studies using synthetic data to showcase the performance of
our proposed DSD-UCB algorithm in both a single-agent stochastic and multi-agent environment.
In particular, in Section we first consider the setting where we take the perspective of a single
buyer who runs our proposed DSD-UCB algorithm in a hypothetical setting where both values and
costs are stochastically generated for auctions in numerous channels. We demonstrate that under this
setup, the final per-channel budget profile output of our proposed algorithm accurately approximates
the optimal per-channel budget profile, even when the total number of periods 7' is moderately
small. Further, we show that when channels do not optimally autobid on the advertisers’ behalf (i.e.,
9 Assumption in the multi-item setting again implies the spend in any channel is exactly the input per-channel

budget; Assumption in the multi-item setting states that for any realization of value-cost pairs z = (v;,d;) c(m] €
Fy x ... Fy, the realized version of the ROI constraint in GL-OPT™ defined in Eq. is strictly feasible.
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channels do not optimally solve for Eq. ), the performance of our proposed algorithm deteriorates
gracefully.

Next, in Section [6.2] we consider a multi-agent setup where multiple buyers compete with each
other across multiple channels, while channels deploy standard budget management algorithms on
the buyers’ behalf to acquire ads (in particular, pacing strategies, which we will describe later in the
section). We show that in this multi-agent environment, our proposed DSD-UCB algorithm allows

buyers to retain a large fraction of the hindsight global optimal value.

6.1. Stochastic environment

Setup and data generation. We take the perspective of an advertiser with an aggregate budget
p =10 as well as an aggregate ROI v=1.3, and consider M = 10 channels, each of which consists
of m; =100 auctions for j € [M]. We conduct experiments over L =100 independent trials, where
each trial corresponds to a different support F' for value-cost pairs, as well as a different distribution
p € A(F) from which value-cost pairs are sampled. Here, A(F') is the probability simplex over F.
In particular, we fix a value-cost pair support size of f =5000. For each trial ¢ € [L] and channel
j€1l,...,5, wesample f values from Uniform([0,1]™) as well as f costs from Uniform([0,1]™7), with
which we construct the support Fj(g) C R™i x R™ for channel j (note that the support size |F’ j(e)| =f).
On the other hand, for any channel j € 6,...,10, we sample f values from Uniform([0,2]™7) as well as
f costs from Uniform([0, 1]") for channel j, with which we construct the support F' j(z) CR™i x R™j.
Correspondingly, for any channel j € [M], we generate uniformly at random a probability distribution
p) e A(FY), where F\Y = F9% . .. x F]Ef). Finally, for trial £ € [L], with respect to the support F'®)
and distribution p*), we denote the associated optimal conversion defined in Eq. as GL-OPT",
as well as the expected per-channel conversion defined in Eq. as Vj(é) (p;)-

We remark that it is not difficult to see that auctions in channels 6-10 have a higher value-to-cost
ratio on average than those in channels 1-5. Therefore, we refer to channels 6-10 as the lucrative”
channels, and channels 1-5 as the non-lucrative” channels. Further, for any trial, under the hindsight
optimal per-channel budget profiles, lucrative channels consume approximately 80% of our total
budget, whereas non-lucrative channels demand the remaining 20%.

Non-optimal autobidding. In previous sections, we assumed that each channel adopts “optimal
autobidding” that solves Eq. to optimality. This raises the natural question of whether our
findings still hold when channels do not procure ads optimally, perhaps due to non-stationary
environments (Besbes et al.| 2014} [Luo et al.|2018, Cheung et al. 2019, Chen et al. 2022), or the
presence of strategic market participants aiming to manipulate the market (Golrezaei et al. |2023a,
Drutsa; 2020, |Golrezaei et al.[2021], 2023b)). To model non-optimal autobidding behavior (i.e., when

a channel j does not optimally solve for V;(p;;z;) in Eq. ), we introduce corruption factors



27

(a1, a5) €[0,1]? for non-lucrative and lucrative channels, respectively. [[7] These factors capture each
channel’s degree of sub-optimal autobidding: after submitting a per-channel budget p; to channel
j € [M], the channel will report back a conversion value V;(p;; z;) = a1 V;(p;; 2;) for j € {1,...,5}, or
‘N/j(pj; z;) = asV;(pj; z;) for j€{6,...,10}, given any realized value-cost pairs z;. Consequently, in
step 4 of the DSD-UCB algorithm, we observe V;(p;; z;) instead of the optimal conversion V;(p;; z,).
In other words, we assume that channel j can only achieve a fraction of the optimal conversion,
where a; =1 or ay =1 corresponds to optimal autobidding.

Experiment procedure. We repeat the following procedure for trial £ € [L], corruption factors
ag,a € {0.2,0.4,0.6,0.8,1}, and T € {100,200, 500,1000}. We run the DSD-UCB algorithm over
T periods, where in each period ¢ € [T], value-cost pairs for all > jeny™; = 1000 auctions, namely
z = (v;,d;) € R=i€™i 5 RZ5€M ™5 are sampled from support F according to distribution p®.
After submitting (p;,)j € [M] to the channels, we observe V;(p;,z;) = a1V;(p;, z;) for j € [M]. We

—(L,a1,02)

denote the final output per-channel budget profile as p;.
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Figure 3 Left: percentage of global optimal conversion under different total periods 7' and optimal autobidding (i.e.
a1 = ag =1). Each point in box plot corresponds to the percentage conversion of a single trial £ € [L], namely,
(Xjepn Vi (ﬁg’al"“)))/GL-OPT(@) for some ¢ € [L]; Right: percentage of global optimal conversion under
T =200, and non-optimal autobidding as we vary a1, a2 € {0.2,0.4,0.6,0.8,1}. Each point in the heatmap is
the average conversion percentage over all L trials, namely, >, ,;(3 ;¢ Vi (p®t*?))) /GL-OPT®,

Results. To analyze the influence of the total number of periods on our DSD-UCB algorithm

under optimal autobidding, or in other words, to assess how data-hungry our algorithm is, we vary T’

19T model non-optimal autobidding behavior, in Section we conduct another robustness check by considering a
dynamic, non-stationary multi-agent setting, where autobidding is done with the help of a dynamic pacing algorithm
in Balseiro et al|(2017), Balseiro and Gur| (2019).
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and display the corresponding percentage of conversion our algorithm’s output achieves, compared

to the hindsight global optimal conversion, namely

— (4,1,
Zje[M]Vj(pEF ' 2))
GL-OpPT®

for ay = ap =1, in the left subgraph of Figure [3] Note that each box plot corresponds to the
variation over different trials £ € [L]. We observe that increasing the number of periods 7" in our
algorithm yields improved performance by allowing for more opportunities to collect data and learn
per-channel budgets, while simultaneously reducing the variance associated with its performance.
More interestingly, we note that for 7'= 200 (i.e., 8-9 days if one period corresponds to running an
ad campaign for an hour), our algorithm yields a per-channel budget profile that achieves more than
91% of the global optimal conversion.

In the right subgraph of Figure [3| we further calculate the average percentage of conversion our
algorithm’s output achieves compared to the global optimal conversion as we vary corruption factors

ay, (e In particular, fixing 7'= 200, for any («;, as)-pair, we plot

—,a1,«
1 ZjE[M] % <P§“ ' 2))
L 2 GL-OPT®

Le(L]

in the right subgraph of Figure [3] Note here that we are displaying the performance of the output
per-channel budget profile of our algorithm ﬁgpe 21:92) ynder optimal autobidding conversion V;(-),
instead of the observed non-optimal autobidding conversion ‘7}() This metric can be viewed as a
normalized version of realized conversion by accounting for corruption factors a; and «s, which
allows us to assess how much our algorithm’s output per-channel budget profile deviates from the
optimal per-channel budget profile.

Fixing the corruption factor «; for the “non-lucrative” channels (i.e., channels with lower value-cost
ratio auctions on average), the conversion performance of our algorithm improves as the other, more
lucrative channels autobid more optimally. Nevertheless, even in the most corrupted case, where
both channels have corruption factors of 0.2 (i.e., both achieve only 20% of optimal autobidding
conversion), our algorithm still outputs a per-channel budget profile that attains more than 92%
of the optimal (normalized) conversion. In contrast, when we fix the corruption factor as, for the
“lucrative” channels, our algorithm achieves better performance as the non-lucrative channels become
more sub-optimal in their autobidding. This is primarily because, with a decreasing corruption factor
(indicating more sub-optimal autobidding) for the non-lucrative channels, our algorithm tends to

allocate more budget to the lucrative channels, which inherently generate higher conversion for the

same amount of spend.
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6.2. Dynamic multi-agent environment

Setup. In this section, we consider a multi-agent non-stochastic setting where individual buyers’
actions (i.e., bids) are modeled using standard learning algorithms. Our experimental process mimics
real-world ad procurement processes, in which, after an advertiser sets a budget for a channel, the
platform deploys a standard pacing algorithm for online constraint management—or equivalently,
dual subgradient descent (DSD) from |Balseiro et al.| (2017)—to participate in a large number of
auctions and acquire ads on the advertiser’s behalf. The goal of this section is to analyze the behavior
and performance of our proposed DSD-UCB algorithm when interacting with these standard pacing
algorithms.

Experiment procedure. We consider the perspective of a single buyer acquiring ads across
M > 3 channels, where each channel consists of N participant autobidders (including the buyer,
indexed as 0), for some N € N. For simplicity, we assume all competitors are subject only to long-term
budget constraints across multiple rounds of bidding. Each channel conducts repeated second-price
auctions organized in phases. Specifically, consider H = 100 consecutive phases, where each phase
consists of T'= 200 periods, during which each channel independently runs a single auction in every
period. At the start of each phase h, each buyer ¢ determines the total budget p%T to allocate to
each channel j. Budgets are fully replenished at the beginning of each new phase. Conceptually, a
phase represents a single ad campaign deployed across multiple channels, where, within the campaign,
each channel procures ads on behalf of the buyer over T' periods. In each period, the valuations of all
N buyers for the auctioned item in any channel are independently sampled from Uniform([0, 1])[7]

Most importantly, we assume that each channel runs DSD to submit bids on buyers’ behalf for
each period within a phase, based on a total budget set at the beginning of the phase. Specifically,

for each phase h € [H], and for each channel j € [M] maintains a dual variable A;lz for buyer i before

(@

bidding in period ¢. Once the buyer’s valuation v;; for the auctioned item in the channel is observed,

the channel submits a bid value

on behalf of buyer 7. Let pyz denote the second-price auction payment for buyer ¢ in channel j during

period ¢, where pyz equals the highest competing bid if buyer ¢ wins the auction in channel j, and 0
(@,

otherwise. If buyer i wins the auction in channel j, they acquire a value of v;;; otherwise, the value

is 0. The channel then updates the dual variables as follows:

(i) (i) o (i)
Aji1 =Ajy —€ JT —Pjt |

' The code and randomly generated data used for this experiment can be found at: https://anonymous.4open
science/r/multichannel_autobidding-6645/MultichannelSimulation.py.


https://anonymous.4open.science/r/multichannel_autobidding-6645/MultichannelSimulation.py
https://anonymous.4open.science/r/multichannel_autobidding-6645/MultichannelSimulation.py
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where € =1/T is a fixed DSD step size that is identical across channels and buyers.

As stated earlier, we consider the perspective of a single buyer, indexed as 0, who uses our
DSD-UCB algorithm to allocate their budget across multiple channels. We assume that competitors
i€{l,...,N} have a per-period budget of p% =0.1. To implement DSD-UCB, at the end of each
phase h, channel j reports back the total conversion value. Using the historical conversion data
(V;(?), . Vj(,z)r)je[M] for all A" < h, the buyer determines the per-channel budgets (p;?,lﬂ)je[M] for the
next phase. These budget parameters are updated according to the proposed DSD-UCB algorithm
described in Algorithm [T}

For simplicity we fix our aggregate ROI v = 0.1, and in the following section we analyze the
performance of our DSD-UCB algorithm when we vary number of buyers N € {2...10} in each
channel as well as our per-period budget p € {0.1,0.2... 0.9}E We run 50 independent trials for our
experiment procedure (recall each consisting H = 100 with 7" =200 periods per phase), and in each

trial, we sample the number of channels M € {3,4...10} uniformly at random.

Benchmarks. Denote our highest competing bid for each channel j as d;; = max;c1,..., N} bg?

Further, let
~ 1 _
== 7T E d it and 'Uj — E j t

te[HT) te [HT)
represent the average values of the highest competing bids and the buyer’s valuations, respectively,

over all phases and periods. Note that Jj can be interpreted as the average cost of procuring ads
in channel j € [M]. We consider two benchmarks for comparing the performance of our proposed
DSD-UCB algorithm:

1. HINDSIGHT-OPT: This measures the largest acquirable total value if all costs (i.e., highest
competing bids) and realized values were observed prior to bidding.

2. PHASE-GL-OPT: This measures the total value obtained when fixing the single best budget
for each channel across different phases. PHASE-GL-OPT serves as a reasonable benchmark
since it computes the optimal solution that maximizes the expected value across channels while
having access to their average performance, providing a competitive baseline for comparison.

Mathematically, these two benchmarks are defined as follows

max H E E Vjtjt max E ’U]:B]

“e€[0.1] je[M] te[HT] e €] JEIM]
Z Z VjtLjt > v Z Z dj tLjt s.t. Z 5jmj > Y Z dj‘rj
jE[M] te[HT] JjE[M] te[HT) JE€[M] Jj€[M]
Z Z djtxjt < pHT Z djxj S p-
jE[M] te[HT] JE€[M]
(HiNnDsiGHT-OPT) (PHASE-GL-OPT)

12'We further investigate how convergence behavior scales with the amount of available budget. Additional results for
small-budget campaigns, reported in Appendix [E] show that, as expected, convergence slows when the per-round
budget is smaller.
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Results. In the following figures, we plot HINDSIGHT-OPT, PHASE-GL-OPT, and the realized
acquired values (averaged over all HT periods) for varying budget p and total number of buyers N.

In Figure [4] we fix our budget parameter p = 0.1, equal to that of all competitors, and vary the
per-channel number of buyers N. We observe that the per-period acquired value decreases as the
number of competitors increases within each channel. This is due to increased competition, which
raises the effective cost of acquiring items. More importantly, our proposed DSD-UCB algorithm
achieves between 65% and 88% of the HINDSIGHT-OPT, which represents the largest achievable
value given full knowledge of the highest competing bids for each period. [F]

Additionally, our algorithm achieves a 1.3x increase in total value compared to PHASE-GL-OPT
when N =10 and up to a 1.75x improvement when N = 3. This highlights the robustness of the
DSD-UCB algorithm even under high competition.

In Figure 5] we fix the number of buyers at N = 10 and vary the budget parameter p €
{0.1,0.2,...,0.9}. We observe that the per-period acquired value increases as the budget parame-
ter p grows, reflecting greater buying power allocated to each channel’s campaign. Our proposed
DSD-UCB algorithm achieves between 60% and 90% of the HINDSIGHT-OPT, with the relative
performance improving as p increases. For instance, when p = 0.9, the algorithm achieves 90% of
the hindsight-optimal value — a significant increase compared to 65% at p =0.1. Furthermore, the
DSD-UCB algorithm achieves a 1.4x increase in total value compared to PHASE-GL-OPT when
p=10.2 and up to 1.8x when p=0.9.

Managerial insights. Our numerical studies demonstrate that the DSD-UCB algorithm achieves
a high fraction of the value obtained by the hindsight global optimal solution, even when autobidding
algorithms do not explicitly solve an optimization problem and instead use pacing algorithms to
update bidders’ bidding strategies. As shown in Balseiro and Gur| (2019), when all bidders adopt
adaptive pacing strategies, competing bids become nonstationary and endogenous. In such scenarios,
under certain assumptions, these strategies converge to an approximate Nash equilibrium. We
conjecture that the DSD-UCB algorithm implicitly leverages the convergence of the pacing strategies
to a Nash equilibrium, enabling robust performance. Nonetheless, further investigation into this

framework presents an intriguing avenue for future research.

7. Conclusion and Open Problems

This work addresses a critical yet overlooked aspect of online advertising: how advertisers interact
with channels to optimize their campaigns. Our research focuses on how advertisers can effectively
3 Although we don’t show it here, the relative performance of the DSD-UCB algorithm improves as T' (i.e., the

number of periods within a phase) increases, which is currently set at 200. For example, increasing T' from 200 to 400
improves the efficiency by approximately 5% due to reduced pacing inefficiency within a single phase.
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over 50 independent trials. period value over 50 independent trials.

utilize per-channel budget and ROI levers to maximize conversions under global budget and ROI
constraints. We demonstrate that optimizing per-channel budgets alone is sufficient to achieve global
optimality, while relying solely on per-channel ROI targets can lead to suboptimal outcomes. To
tackle the challenge of optimizing budget decisions under bandit feedback, we propose an algorithm
combining stochastic gradient descent with a UCB framework, achieving efficient sublinear regret
guarantees. Our work extends to multi-impression auctions and general advertiser objectives, and
numerical studies confirm the algorithm’s effectiveness.

Our work focuses on the stochastic setting, motivated by real-world scenarios. While advertisers
may adapt their strategies over time, aggregated changes across a large market rarely create highly
adversarial environments. Instead, the dynamics are typically stochastic and relatively stationary,
making this setting more representative and applicable. Nevertheless, as in the BwK literature (e.g.,
Castiglioni et al.| (2022a))—where approximate sublinear regret is achieved instead of exact sublinear
regret in the stochastic setting—exploring adversarial settings could provide valuable theoretical
insights and represent an interesting direction for future work. In adversarial settings, the values
obtained from channels are not derived from an optimization problem assuming stochastic competing
bids, but are instead generated adversarially. Under such conditions, to obtain meaningful results,
one needs to bound the discretization error in the primal step, which is impossible without imposing
certain restrictions on the adversary.

Another promising direction is to study market dynamics without assuming that the channel
optimization problem is solved optimally. In this scenario, the outcome of budget allocation is derived
from gradient descent dynamics, as modeled and simulated in Section [6.2} Our numerical results

provide positive evidence, confirming that the global optimal solution can still be reached in this
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setting. Nonetheless, further investigation into this framework presents an intriguing avenue for

future research.
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Appendices for

Multi-channel Autobidding with Budget and ROI
constraints

Appendix A: More general advertiser objectives

In GL-OPT and CH-OPT(Z) defined Section [2| (or similarly GL-OPT' and CH-OPT"(Z) defined
in the multi-item setting in Section , we can also consider more general objectives, namely
MaXg,, 2y D e E [v/®; —ad]®;] and max(,, ,). aner 2 ien BV (45055 25) — V(v p55 25)] for some
private cost a € [0,7]in GL-OPT and CH-OPT(Z), respectively. When a = 0, we recover our considered
models in the previous section, whereas when o =1, we obtain the classic quasi-linear utility. We remark
that this private cost model has been introduced and studied in related literature; see Balseiro et al.| (2019)
and references therein. Nevertheless, when each channel’s autobidding problem remains as is in Eq., ie.
channels still aim to maximize conversion which causes a misalignment between advertiser objectives and
channel behavior, it is not difficult to see in our proofs that all our results still hold in Section [3] and
our DSD-UCB algorithm still produces estimates of the same order of accuracy via introducing « into the
Lagrangian. In other words, even if channels aim to maximize total conversion for advertisers, advertisers
can optimize for GL-OPT with a private cost o through optimizing CH-OPT(Z) that also incorporates the

same private cost.

Appendix B: Proofs for Section

B.1. Proof of Lemma [3.1]

Fix any option Z € {Z,Zx,Zs} defined in Eq. (2)), and let (¥, p) € Z be the optimal solution to CH-OPT(Z).
Note that for the per-channel ROI-only option Zg, we have p; = oo, and for the per-channel budget-only
option, we have 7; =0 for all j € [M]. Further, for any realization of value-cost pairs over all auctions
z = (v;,d;) e[, recall the optimal solution @ (7;, p;; 2;) to V;(7;, p;; ;) for each channel j € [M], as defined

in Eq. .

Due to the feasibility of (7, p) € Z for CH-OPT(Z), we have
S EVi(3,0552))1 27 Y JED; G iz = > Elv] a5 (3,,55:2)] 27 D [d] =302
jEM jEM je[M] je[M]
where we used the definitions V;(3;, p;; z;) = v, @} (3;, p;; 2;) and D;(3;, p5: 2;) = d] ®3(3;,p;: 2;) in Eq. (5)).
This implies that (x (i pj,zj)) ] satisfies the ROI constraint in GL-OPT. A similar analysis implies
that (z; (%,ﬁj;zj))jE[M] also satisfies the budget constraint in GL-OPT. Therefore,

( ﬁﬁﬁj;zi))je[m is feasible to GL-OPT.

Thus,
GL-OPT> Y E[v] @ (3,.75:2,)] = Y [V (3.5 2,)] = CH-OPT(Z),

J€[M] jeEM

1f @ > 7 the ROI constraints in GL-OPT as well as CH-OPT(Z) become redundant.



where the final equality follows from the assumption that (4, p) € Z is the optimal solution to CH-OPT(Z).
O

B.2. Proof of Theorem

In light of Lemma we only need to show CH-OPT(Zz) > GL-OPT. Let Z(z) = {Z;(2;)},;en] be the
optimal solution to GL-OPT, and define 7, =0 and p; =E [d] Z;(2;)] to be the corresponding expected
spend for each channel j under the optimal solution Z(z) to GL-OPT, respectively.

We first argue that (7;,0;),emn is feasible to CH-OPT(Zp). Recall the optimal solution x*(7;, p;; 2;)
to V;(3;,p;;%2;) for each channel j € [M] as defined in Eq. (d), as well as the definitions V;(3;,p,;2;) =
v @i (3;,p552;) and D;(3;, 053 2;) = d] x5 (35, p5: 2;) in Eq. (B). Then, we have

~ - e~ o~ @ ~
E[D;(®;,p5:2;)] =E [dijj (52 P5:25)] < p; =E [d;mj(zj)] ) (14)
where (i) follows from feasibility of x*(7;,p,; 2;) to V;(7;, p;; 2;). Summing over j € [M], we conclude that
(V> Pj)je[an satisfies the budget constraint in CH-OPT(Zp):
- ~ (i)
Z E[D;(7;, 055 25)] < Z E[d]Z;(2;)] <p. (15)
j€[M] jelM]
Here (i) follows from feasibility of #(2) = {x,(2;)},en] to GL-OPT since it is the optimal solution.
On the other hand, we have

—~

- ~ i)
ij(’}/ﬁpj;zj):/l]]—'rw (’YJ?pJ’ )2

JT z;(z;), (16)
where (i) follows from optimality of x(7;,p;; 2;) to V;(7;,p;; 2;). Hence, we have
Z E[V;(7;, 052 Z E[v]z; (Zi)'y Z E[d]z;(z,)] ;)fy Z E[D; (7,05 25)] , (17)
J€[M] jE[M] jelM] j€[M]
where (i) follows from feasibility of z(z) = {Z;(z;)},;e(n) to GL-OPT since it is the optimal solution; (ii)
follows from Eq. . Hence, combining Eq. and Eq., we can conclude that (7;,p;);e is feasible
to CH-OPT(Z5).

Finally, we have CH-OPT(Zg) >3-, E[V; (75,055 2))] =2 22 ,can E [v]Z;(2;)] = GL-OPT, where the
last inequality follows from Eq. (L7), and the final equality is because we assumed & (z) = {Z;(2;)},e[n] is the
optimal solution to GL-OPT.

U

B.3. Proof of Corollary

In light of Lemma we only need to show CH-OPT(Z;) > GL-OPT. Let (7, p) € Zg, and by definition
of Zp in Eq. we have 4; =0 for all j € [M]. Since (7, p) is feasible to CH-OPT(Z), it is also feasible to
CH-OPT(Zs) since these two problems share the same ROI and budget constraints. Because they also share

the same objectives, we have
CH-OPT(Zy) > CH-OPT(Z3) = GL-OPT, (18)

where the final equality follows from Theorem [3.3] O



Appendix C: Proofs for Section

C.1. Proof of Proposition

Let (p});e[ar) be the optimal per-channel budgets to CH-OPT(Zp), and define fip = i Diefrq) e as well as
A = % D icira) e - Then

T-GL-OPT-Y" > Vi(p.)

te[T] je[M]

< MV(T —74) +74aCH-OPT(Z5) — > Y Vi(ps)

telral j€[M]

< MV(T*TAHTA'(ZZI (05, Az, fir) +puT) S Vilpie)

JE[M] te[ral je[M]

< MV(T=7a)4p D et Y, D L5 dm) = | D D Lilpsered) =X (Vi) =1050) + pepie

te(ral te[ral jE[M] teral jE[M]
(iv
< MV(T —74) Z Z L;(p;(t —L;i(pje,c) + Z (At + 1eg2,t) -
Jj€[M]te[ra] te[ra]

(19)
Here, (i) follows from Theorem that states GL-OPT = CH-OPT(Zz) and CH-OPT(Zp) is apparently
upper bounded by MV’ (ii) follows from the weak duality theorem that CH-OPT(Zz) < Zje[M] Li(p5, A 1)+
pp for any (X, p) € R2; (iii) follows from that L£;(p;, A, ut) is linear in both A and p and the definition of the
Lagrangian in Eq. @; in (iv) we define p’(t) = argmax, >0 L;(p;,c:) to be the optimal budget that maximizes
the Lagrangian w.r.t. the dual variables ¢, = (A, j1;). Further, we have g1, =31, (Vi(ps) —7p;) and
92,0 =P =D e Pin- QED.
C.2. Proof for Lemma [4.2]
Recall g1,c = > ciag (Vie(pse: 250) = vpj0) and goo = p — 3 c1py Py defined in Algorithm (1L Also recall
74 € [T] defined in step 10 of Algorithm [1} In the following, we will show

MV(T —174) + Z (Aegre + pega.r)
te[ral ) (20)

1 (YM?2V?2 + p?) 1 1
< 2y . (2 — _
Crmax{MV, p}+M?Vp- max{ﬁ = Mp} 5 77T+2770F O<77T+77>7

where we recall Cr = MV max { B Mp} defined in Eq. @D
From Lemma we have for any ¢t € [T], and A, u € [0,CF],

2772
SO - N, <MV Ly
re[t] 7 2 277
21
> (w—p)g <ML -
T 2,7 2 277 )

re[t]
where we used the fact that Ay = p; =0 in Algorithm
Suppose that 74 =T and thus MV (T — 7,) = 0. Then, considering A=y =0 in Eq. (21), we have

2772 2
Z Aegie < -1 and Z g < % T (22)

te[Tal te[ral




Thus, Eq. holds.

If 74 <T, then according to Algorithm [1} we either have Sy ;, —yMp+ Bp(T —74) <0 or Sy ., +Mp+
Mp(T —74) > pT', where we recall S ., = Zte[‘rA—l] g1cand Sy ., = Zte[m_” Zje[M] Pt = ZtE[‘FA—l] (p—
92,4):

o If Sy ., —vMp+ Bp(T —74) <0, then we have Zte[mfl] 910 <yMp—Bp(T —74). Hence, considering

A= ]‘g—z €[0,Cr] in Eq. (21), we have

MV(T =72+ Y \gis

t€lral
—_ M2‘72 1
= MV(T—TA)+)“"A91,TA+ Z >\gl,t+nT'(TA_l)+27>\2
te[ra—1] n (23)
— _ MQV MQVQ 1
< MV(T = 74) + Ay g1y — MV(T —74) + 2 7 Pyl 7 (=g N

M3V p N nM?V?
Bp 2

where the first inequality follows from Eq. , and the second inequality holds because as stated above,

_ 1
< CpMV + -T—i—%Ci,

we have Zte[nﬁl] g1, <vMp — Bp(T —74) in this case. The final inequality uses the fact that 7, <T,
A< Cp, and g;, < MV for any t € [T]. Finally, by further taking p = 0, we have Dtelra) M2, < % -T.
This and Eq. show that Eq. holds.

o If Sor, + Mp+Mp(T' —74) > pT, then we have 3, 1 1(p—92,)) > pT — Mp—Mp(T —74), or equiv-
alently >, 1192, <Mp(T' —74)+Mp—p(T —74) < —(p— Mp)(T —74) + Mp. Hence, considering
= Pli/fi]gp € [0,Cr] in Eq.(21)) we have

2

_ — 1
MV(T—712)+ > pugae < MV(T—7a)+prigory + Mg2,t+nL'TA+%N2

2
telral te[ra—1]
o _ MQV 2
< MV(T = 7a) + oy Gy — MV(T —74) + 2L L 00 =2 (24)
pP=p 2 21
M2V, 2 1
< Cpp+ L4 W1y 2,
p—p 2 21

where the first inequality follows from Eq. , and the second inequality holds because as stated above,
we have 37, 192 <Mp(T'—7a)+Mp—p(T —74) < —(p— Mp)(T'—74) + Mp in this case. The
final inequality uses the fact that 7, <T, 4 < Cp, and g2, < p for any ¢ € [T]. Finally, by further taking
A =0, we have Zte[m} Aeg1e < ”M;Vz -T. This and Eq. show that Eq. holds.

Q.E.D.

C.3. Proof of Lemma

We first show for any realization z = (z;);e(n) = (v;,d;) em, the conversion function Vj(p;;z;) is piecewise
linear, strictly increasing, and concave for any j € [M].

Fix any channel j that consists of m; parallel auctions, and recall that we assumed the order Zj—i > ZJ—Z >
75 75
vj

S > d:’mj for any realization z;. Then, with the option where the per-channel ROI is set to 0 (i.e. omitted)
dm




V;(pj; 2;) is exactly the LP relaxation of a 0-1 knapsack, whose optimal solution x}(p;; z;) is well known to

J
be unique, and takes the form for any auction index n € [m;]:

« 1 if Zn’G[n] djv”/ S Py
xj,n(pf; zj) B WD D dj,n/)+

djn

. : (25)
otherwise

where we denote d; o =0. With this form, it is easy to see

* ,U'y’ﬂ
Vilpsiz;) = v @} (ps525) = Z (d]- Pj ‘*‘bm) H{djo+-+djn1<p; <djot--+d;n}  (26)
J,m

ne[my]

where we denote d; o =0 and also b;, =3 o, 1y Vin' — 72%° (Zn/e[n—l] dj,n/) and v;0=0.

djn

It is easy to check that any two line segments, say [X,_1,X,] and [X,,, X, 1] where we write X, =

djo+---+d;,, intersect at p; = X,,, because 2% p; +b;, = 22" p. + b, ;1 at p; = X,,. Hence, from Eq.

djn P
we can conclude V;(p;; z;) is continuous, WhiCJh further impljies+ it is piecewise linear and strictly increasing.
Further, the ordering Z;—i > Zj—z > > :;—:Z implies that the slopes on each segment [X,,, X, 1] decreases as
n increases, which implies V;(p;; 2;) is concave.

Since V;(p;) =E[V;(p;; 2;)], where the expectation is taken w.r.t. randomness in z;, and since the z; is
sampled from some discrete distribution p; on finite support F;, V;(p,) is simply a weighted average over
all (V;(py; zj))zj e, with weights in p;, so V;(p,) is also continuous, piecewise linear, strictly increasing, and
concave, and thus can be written as in Lemma with parameters {(s;n,b;n;7j.n)fne(s,] that only depend
on the support F; and distribution p;.

Finally, according to the definition of £;(p;,¢) =E[L;(p;,¢; 2;)] and L;(p;,¢;2;) = (1+N)V;(ps;2;) — (Av+
w)p; as defined in Eq. @, we have

Li(pj.e) =1+ NVi(p;) — (M +u)p; (27)

which implies £;(p;,c) is continuous, piecewise linear, and concave because V;(p;) is continuous, piecewise
linear, and concave as shown above. Combining Eq. and the representation of V;(p,) in Lemma (4.3)), we
have

L;(pj,c) = Z (05n(e)p;+ (L +N)bj ) {1 <p; <7rjn}. (28)

nels;)

where the slope 0;,(c) = (1 4+ A)s;,, — (1 + ) decreases in n. Thus, at the point r;,» = max{r;, :n=
0,1...,5; ,0;.(c) >0} in which the slope to the right turns negative for the first time, £;(p;, c) takes its
maximum value max, ~o £;(p;,c), because to the left of 7; .., namely the region [0,7; -], £;(p;,c) strictly
increases because the slopes are positive; and to the right of 7 ,~, namely the region [r; .-, p], £;(p;, ¢) strictly

decreases because slopes are negative. Q.E.D.

C.4. Proof for Lemma [4.4]

Recall the definition of the Lagrangian function £;(p;,c;z;) = (1+ A)V;(p;; 2;) — (Ay + p)p; in Eq.(6]). Then,
since V;(p;;2;) <V , and A\, u; € [0,Cp] for any period ¢ € [T'] and per-channel budget p;, € [0, p], we can
conclude — (1+7) pCr < Li(pj, Mispir) < (14+Cp)V. Q.E.D.



C.5. Proof for Lemma [4.5]
In the following, instead of bounding 3, 1 £,(p],,¢:) — L;(pje. €:), we bound 37, 17y Li(0, ) — L;(pje, )
where we consider the hypothetical scenario in which we ignore the termination criteria for the while loop in
Algorithm [I} and continue to set per-channel budgets based on steps 4-6 in the algorithm until the end of
period T'. This is due to the fact that 3=, £;(p}.,¢0) = L (pje, ) =30 e £i(P]er ) = Li(pjes €0

We fix some channel j € [M] and omit the subscript j when the context is clear. Also, we first introduce
some definitions that will be used throughout our proof. Fix some positive constant ¢ > 0 whose value we
choose later, and recall a;, denotes the kth arm in the discretized budget set A(J) as we defined in Eq. .

Then we define the following
Axle) = max L,(p;,¢) — L (ar.c)

p;€[0,p]

C, —{CE{Ct}te ]n—argmaxﬁ (p;, )} for n=0...5;
(29)
={ce{eiticr i 0j (c )>g, lot(c)|>ca}

my(c) = 81AO§((CI;) for V(k,c) s.t. Ap(e) >0

Here, the “adjacent slopes” o; (c) and crf (¢), which are defined in Eq., represent the slopes adjacent to
the optimal budget argmax, (o, £;(p;,c) for any context ¢ = (X, x). In addition, S; and {r;,};c(s,] are
defined in Lemma Here we state in words the meanings of A, (¢), C(g) and C,, respectively.

o Ay(c)=max, o, L;(p;,€) — L;(ax,c) denotes the loss of contextual bandit rewards when pulling the

arm a, in context c.

o C, = {c € {ci}iemr 17 = argmax, o L; (pj,c)} is the set including all context ¢, under which the
optimal per-channel budget argmax, >0 £;(p;,¢;) is taken at the nth “turning point” r;,, (see Lemma
13).

e Clo)={ce{ci}ieir:0; (c) >0, o] (c)|>a} is the set of all contexts, in which the adjacent slopes to
the optlmal point w.r.t. the context ¢, namely argmax, o £;(p;,c), have magnitude greater than g, or
in other words, the adjacent slopes are steep.

On a related note, for any context ¢, we define the following “adjacent regions” that sandwich the optimal

budget w.r.t.c

U (c)=1[rjn-1,75,) and L{f(c) =[rjmTint1] i c€C,. (30)

In other words, if ¢ € C,,, according to the definition of C,, above, argmax, c(o,,] L;(p;,c) is located at the

nth “turning point” r; ,,, then U, (¢) and U; (c) are, respectively, the left and right regions surrounding 7; .
With the above definitions, we demonstrate how to bound the UCB error. Define Ny, =% __, | I{p;, =ax}

to be the number of times arm k is pulled up to time ¢, then we can decompose the UCB error as follows
> Li(p;(t),er) = Li(psere) = X1+ Xa+ X5 where

t>K

Xi= > > Aule)Upre=ap, Ney <milc,)}

t>K:c ¢C(a) ke[K]

Z Z Ay (eo)l{p;: = ar, Ne,e <my(ce)}

t>K:ict€C(a) ke[K]

X3 = Z Z Ax(e){pjr = ar, Nio >mu(c,)}-

ke[K] t>K

Xo



In Section C.5.1L we show that X; < O(0T + 0T + 1); in Section we show that X, < O(6T + +); in

Section |C.5.3] we show that X3 < 6(%) Here, we provide some high-level discussion about the key challenges

we face when bounding X, ¢ € [3]. To bound X3, which represents the regret when an arm a; is played
a sufficient number of times under context ¢,, our analysis, while being more involved, closely follows the
classical proof to bound the regret of the UCB algorithm.

The main challenge lies in bounding X; and X5, where most of the complexity arises. To bound X; and Xs,

which correspond to the regret when we lack sufficient observations for budget a;, (i.e., Ny, < my(c;) = Z‘zg(f)) ),
k

we must lower bound the Lagrangian differences £;(p;, ;) — L;(ax, c;) over the entire sequence of time-varying
dual variables ¢; = (A, ¢ )-

As seen in the definitions of X; and X,, we partition the rounds into two sets: the first set
contains rounds ¢ with ¢, ¢ C(g), and the second contains rounds t with ¢, € C(g). Here, C(o) =
{ce{etier 07 (€)>0,|o] (c)| >}, as formally defined in Eq. . This is the set of all contexts ¢ where
the adjacent slopes to the optimal point with respect to ¢ (i.e., arg max, >0 L;(p;, ¢)) have magnitudes greater
than o, meaning the adjacent slopes are steep. In other words, for any ¢; € C(o), the Lagrangian function is
steep around its optimal budget, implying that A,(c;) is large. Conversely, when ¢; ¢ C(c), the Lagrangian
function is not steep around its optimal budget, implying that A, (¢,) is small.

This decomposition into steep and non-steep contexts is critical in the presence of continuously varying
dual variables, because it allows us to tailor the regret analysis to the local geometry of the Lagrangian.
Specifically, it enables us to isolate contexts where the Lagrangian is flat (making learning difficult and
requiring more careful tracking) from those where the Lagrangian is sharp (where mistakes are costlier but
learning is faster). By doing so, we ensure that the regret is controlled uniformly across time-varying contexts.

When A, (¢,) is small (i.e., to bound X, ¢, ¢ C(o)), distinguishing the optimal arm from a suboptimal
one becomes challenging. In this case, the piecewise linear structure of the Lagrangian function is crucial
in the analysis (see Eq. ) and in defining C(g). More importantly, we leverage cross-learning between
dual variables, as detailed in the proof between Egs. and . To illustrate cross-learning, consider two
contexts ¢; = (A, ;) and ¢ = (\, ), and fix an action p; and a noise realization z;. Suppose that at round ¢,

the learner selects p; and observes the reward
Li(pj e z;) = (L+X)V;(ps5 25) — (v + e ) pj-

Given this observation and the known form of the Lagrangian, the learner can recover V;(p;; z;), and then
use it to compute
L;(pj,c;2) = 1+ N)Vj(ps:2) — (A +1)p;

for any other ¢ = (), 1). This means a single observation at ¢, allows the learner to evaluate the Lagrangian
for the same action p; across all other contexts. Hence, we say the learner can “cross-learn” the reward values
across contexts without additional exploration.

When Ay (e,) is large (i.e., to bound X, ¢, € C(0)), distinguishing the optimal arm from suboptimal ones
is easier, but each mistake incurs larger regret. Similar to the case of bounding X, we use cross-learning

between contexts and the piecewise linear structure of the Lagrangian function to bound Xs.



Overall, the gap Ay (c;) depends on the time-varying dual variables ¢,. To address this challenge, we
leverage cross-learning between contexts and exploit the structure of the Lagrangian function and the reward
function. This approach enables us to effectively bound X; and X5, which are the primary contributors to

the complexity of the regret analysis.

Remark C.1 In the following Sections[C.5.1], [C.5.9 and[C.5.5 where we bound X, Xa, and X3, respectively,

we assume the optimal per-channel p;(t) = argmax, ejo,, £;(p;,¢:) lies in the arm set A(S) for all t. This is
because otherwise, we can consider the following decomposition of the UCB error in period t as follows:

L;i(p;(t); ) = Li(pje, ) = Li(pj(t), ) — Lj(a;,e) + L;(af, ¢) = Li(pje, ;)  where ap =arg Heliﬁ) L;(ax, ct)
ag

The first term will yield an error in the order of O(0) due to the Lagrangian function being unimodal, piecewise
linear liner, which implies |a; — p3(t)| <0 so that L;(p;(t),c.) — L;(a;, ;) = O(5). Hence, this “discretization
error” will accumulate to a magnitude of O(6T) over T periods, leading to an additional error that is already

taken into account in the lemma statement.

C.5.1. Bounding X,. Our strategy to bound X; = ZDK:C&C@ Zke[K] A(e){pj: = ar, Nips <
my(c,)} consists of 4 steps, namely bounding the loss of arm a, at each context ¢ ¢ C(a) =
{ce{eticrr 07 (€) >0, |of(c)| >a}, when (i) ax €U, (c) lies on the left adjacent region of the optimal
budget; (i) a, < minlf; (c) lies to the left of the left adjacent region; (iii) ax € U;" (c) lies on the right adjacent
region of the optimal budget; and (iv) a;, > maxuj*(c) lies to the right of the right adjacent region. Here, we
recall that the adjacent regions are defined in Eq. . We note that while the analysis in the first and third
steps is straightforward, the analysis in step 2 and step 4 is more involved, and this is where cross-learning
between contexts is used.

Step 1: a, €U, (c;). For arm k such that a, €U, (c;), recall Lemma that £;(a,¢;) is linear in a for
a€U; (c;), so Ax(e;) =05 (e) - (p;(t) —ar) < gp where we used the condition that ¢, ¢ C(g) so the adjacent

slopes have magnitude at most ¢, and p}(t) < p. Thus, summing over all such k& we get

Z Z Ay (e)l{pj: = ar, Ny <my(cy)}

t>K:e1¢C(e) ke[K):apel; (er)

< Y > op-Hp=ar, Ney <mi(e)} < apT =0(aT).
t>K:er#C(e) kelK]:apeU; ()
Step 2: a;, <min U; (c,). For arm k such that a, <min U (c;), we further split contexts into groups
C.= {c €{ci}ierr) i 7jm = argmax, >o [ﬁj(pj,c)} for n=0...5; based on whether the corresponding optimal

budget w.r.t. the Lagrangian at the context is taken at the nth “turning point” (see Figure [2] of illustration).



Then, for each context group n by defining &’ :=max{k: a; <r;,_1} to be the arm closest to and less than
T;n-1, We have

3 3 Ay(e){pje = ar, Ny <mu(ey)}

t>K:ct€Cn/C(a) ke[K]:ay <minu;(ct)

@ Z Z Ar(e){pje = ar, Ny <mi(e)}

t>K:ct€Cn/C(a) kE€[K|:ap<rjn_1

— Z Z Z Ap(e){e,=c¢,pj i = ar, Ny <my(c)}

t>K ceCpn/C(a) k€[K]:ap<rjn—1 (33)
(i1)

<> > Ap(e){e,=c} + > Ay(©){e, = ¢, p; = ax, Ny <my(e)}
t>K ceCp /C(a) ke€[Kl:ap<rjpn_1—96

(443)

< ((1+Cp)sjn_16+pa) T+ > > Au(e)Yile)

ke[K]:ap<rjn_1—8 c€Cpn/C(a)

where in the final equality we defined Yi(c) =3, I{e, = ¢, pj = ar, Ny <my(c)}. In (i) we used the

fact that the left end of the left adjacent region, i.e. minlf; (c,) is exactly r;,_1 because for context
c; € C, the optimal budget argmax, cjo,, £;(p;,¢:) is at the nth turning point; in (ii) we used the definition
k' :=max{k:ay <r;, 1} where we recall arms are indexed such that a; < az <--- < ax. Note that in (ii)
we separate out the arm a,, because its distance to the optimal per-channel may be less than § since it is
the closest arm, and thus we ensure all other arms indexed by k € [K]:ay <7;,_1 — 9, are at least § away

from the optimal per-channel budget; (iii) follows from the fact that under a context ¢ € C,/C(c), we have

argmax, o, p £J (pja c) =Tjn SO

Ap(e) = Li(rjne) = Lij(rjn1,¢)+Li(rjn-1,¢) = Li(ay, )
=0, (&)(rjn —Tjn-1) + 0jn-1(c)(rjn—1 — aw)

(iv)
< op+toj-1(c)d

(v)
< gp+(1+Cr)sjn_0,

where in the second equality, we use that L(y,c) is piece-wise linear in y and by definition, the slope
of L(y,c) when y € [r),_1,7;,] is 0; (c) and the slope of L(y,c) when y € [aw,7),-1] is 0;,-1(c). In
(iv) we used c € C,/C(g) implies 0, (c) < g, as well as all r;,, < p for any n and the fact that &’ lies
on the line segment between points r;, o and r;,_; since § <min,cis,) 7 — 75n—1; in (V) we recall
Ojm-1(c) =1+ N)s 1 — (n+7A) < (14 Cr)s;,,—1 where Cp is defined in Lemma [4.4]

We now bound

of context ¢(1),..., ¢ € {¢: e

ccCn /(o) Ai(e)Yi(c) in Eq. . It is easy to see the following inequality for any sequence

Yi(ew) +---+Yilew) < max my(cq)- (34)

This is because

Z Yk(c(é’)) = Z Z e, = C(ery Pt = iy Nip < mk(c(z'))}

el t>K ¢/ ele]
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< D> Her=ew),pie=ae, Niy < max mi(ce)}
t>K ¢/ ele]

= > e € {cw) toe pie =i Nix < Jmax my ()}
t>K

Z;E%%Emk(cw)).

An inequality similar to Y (c@1)) + -+ Yi(e)) < maxp—1.. ,my(cry) that we just shown is proven in the
proof of Lemma 3 of Balseiro et al.| (2022a)).

For simplicity denote L = |C,/C(c)|, and order contexts in ¢ € C,/C(a) as {cw) e s-t- Ar(cq)) >
Ay(c)) >+ > Ay(ew), or equivalently my(cay) < my(ce2)) < -+ <my(c()) according to Eq.(29). Then
multiplying Eq. by by Ak(cw)) — Ax(ce41)) (which is strictly positive due to the ordering of contexts),

and summing {=1...L we get

Z Ai(e)Yi(e) = Z Ar(ew)Yilew)

ceCn/C() ce[L]

< Z mi(ew) (Aelew) = Arlees)))

Le(L]
A _A (i) = g
8log(T) Z k(C“)A)Q e(eern) < 810g(T)/ —j
eelbod] k(c(é)) Aplecr)) #
_ 8log(T) ) 8log(T)
Ar(ew) mincec, /e(s) Ar(e)

—~
.
=

Here (i) follows from the definition of my(¢) in Eq. where my(c) = Si%g((s); both (ii) and (iii) follow from
k

the ordering of contexts so that Ay(c1)) > Ar(ez)) > -+ > Ay(cr)). Note that for any c€C, /C(c) and arm

k such that a <r;,_1, we have

Ag(e) = Lij(rjn,€) = Li(Tjn-1,¢) +L;(1jn-1,¢) = L;(ax, c)

> Li(rjn-1,¢) = L;(ax, c)

> (0jn-1(c) =0;n(c)) (Tjn_1 —ax)
w (1+X) (Sj,nfl - sj,n) (7"]',%1 —ay)

> (Sj,n—l - Sj,n) (rj,n—l - ak) )

where in (i) we recall the slope 0;,_1(c) is defined in Lemma and further (i) follows from concavity
of L;(p;,c) in the first argument p;; in (ii) we used the fact that o,,(c) > 0 since the optimal budget
argmax, co,p £; (pj,c) is taken at the nth turning point, and is the largest turning point whose left slope is

non-negative from Lemma [£.3} (iii) follows from the definition o, (€) = (1+A)s; v — (u+~A) for any n’.
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Finally combining Egs. , and , and summing over n=1...5; we get
Z Z Ag(e){pj = ar, Npo <my(ce)}

t>K:e:¢C(a) ke[K]:ay <mini " (es)

> > 3 Aw(e){py, = ag, Ny, <mi(c.)}

n€[S;]t>K:ct€Cp /C(a) ke[K]:ap<minlf; (et)

3 (A +Cr)sjnsb+p) T+ Y ) 8log(T)

<

ne[S;] ne[S;] ke[Kl:ap<rjn—1—6 (Sjr"*]- - Sj»") (rjy’ﬂ*l - a’k) (37)
© = 8log(T')
< 1 oo T _ °Pe\r)
— Z (( +OF)8],n 16+pg) + Z Z (Srnil—s.n)f(s

ne[S;] nels;] =1 "7 Js

8log(T) log( K 1
< Z (1+Cr)8jn-10+pa) T + g(T) log(K)
; Y o (Sjn—1 = S5m)

nels;] nels;]

~ 1
= O(5T+QT+5).

In the first inequality, the first term (i.e., Zne[sj] (14 Cr)Sjn_10+pa)T) is the first term in the last
inequality of Eq. when we sum over all possible values for n. The second term is an upper bound
O D e (Kliap<rym1—5 2cccy (o) Di(€)Yi(c) (see the second term in the last inequality of Eq. ([33)). We
established this upper bound in Egs. and (36)). Note that (i) follows because for all aj, <7;,_1 —d, the
distances a;’ from 7, ,,_1 are at least §,24,34.... In the last equation, we hide all logarithmic factors using
the notation @, and note that the constants Cp, (8jn)nes;, S; are all absolute constants that depend only
on the support F; and corresponding sampling distribution p; for value-cost pairs; see definitions of these
absolute constants in Lemmas 3] and 41

Step 3 and 4: a;, €U, (¢;) or a;, >max U, (c,). The cases where arm a, €U, (¢;) and a;, > maxU; (c,)
are symmetric to a, €U; (c;) and a;, < minuf(ct), respectively, and we omit from this paper.

Therefore, combining Eqs. and we can conclude

~ 1

C.5.2. Bounding X,. We first rewrite Xo =3, .. coo) 2orepr) Dr(e)l{pje = ar, Ny <mu(e,)} as

follows

Xy = Z Z Ag(e){p; i = ar, Ny <my(e)}

t>K:cre€C(o) ke[K]

= Z Z Z Z Ak(c)ﬂ{ct =cC, pj,t = ak’Nk,t S mk(c)}

t>K nelS;] ke[K] ceCrnnC(a)

@ c)Y;(c
= Z Z Z Ag(c)Yi(c) (39)

n€[S;] k€[K] ceCrnnC(a)

(i4)
=2 2 X AN+ ) > (o)
n€[S;] e€CnNC(e) ke{ky ki) n€[S;] eeCnnCle) kelK]/{ki ki)

(idd

§) T6(1+Cr) Z (Sjn+ Sjnt1) + Z Z Z Ai(e)Yi(e).
nels

nels;] il eeCnnC(a) ke[K]/{ky ki)

Here, we recall that C(o) = {c € {ci}ieiry 05 (¢) >0, |of (c)|>c}. In (i) we define Yy (c) =3, e, =

¢, pj: = ar, Ny <my(c)}; in (i) we separate out two arms k, and k;7 defined as follows: recall for context
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ce€(C,NC(a), the optimal budget argmax, c(o,, £;(p;,€) =7 is taken at the nth turning point per the
definition of C, in Eq. , and thereby we defined

k. :==max{ke[K]:ar<rj.}
to be the arm closest to and no greater than r;,,, whereas
kf:=min{k € [K]:a, >7;,}

to be the arm closest to and no less than r; ,; in (iii), for small enough § < min,c(s,) 7 n =701, We know that
k, lies on the line segment between 7, ,, 1 and 7; ., s0o A, - (¢) =0} (¢)(rjn —a,-) <07 (€)0 < (14+Cp)s;n_10,
where in the final inequality follows from the definition of o (¢) = 0; () = (14+A)s;,,, — (p+7A) < (14+A)s;,, <
(1+CF)s;n where Cp is defined in Lemma ({.4). A similar bound holds for Ay (e).

Then, following the same logic as in Egs. , , in Section where we bound X;, we can

bound Ai(e)Yi(c) as follows for any arm k € [K]\ {k;,k}, i.e., arms that are at least 6 away

ceCpnNC(a)

from the optimal per-channel budget with respect to c:

S Adevile) < —— el

ceC,NC(a) B mincecnmc(l) Ak(c)

(40)

Now, the set k € [K]/{k;,k}} in Eq. can be further split into two subsets, namely {k € [K] : a; <
rin—0} and {k € [K]:ay >r;, +d} due to the definitions k, :=max{k € [K]:a, <7;,} and k} :=min{k €

[K]:ay >7;.,}. Therefore, for any k s.t. ap <r;, —J and any c€C, NC(a),
Ag(e)=Lj(rjn,€) = Lj(ar,€) > 05 (e)(1jn —ar) > a(r; . —ax),

where the final inequality follows from the definition of C(o) in Eq. such that o} (c) > (o) for c€C(a).
Hence combining this with Eq. we have

> G ACEID Y _8log(T) ZK: Blog(T) _ 8log(T)log(K) ),

a(rjn—ar) ald  — gl

ke[K]:ap<rjn,—96 c€CnNC(a) ke[K]:ap<rjn—©6 — =1

where (i) follows because for all a;, <r;, —d, the a,’s distances from r;,_1 are at least §,29,30.... Symmet-

rically, we can show an identical bound for the set {k € [K]:ay > r;, + ¢}. Hence, combining Egs. and

(41) we can conclude
~ 1
X, <O 0T+ 5o ) (42)

Here, similar to our bound in Eq. for bounding X, we hide all logarithmic factors using the notation
(57 and note that the constants Cp, (Sj,n)nESj7 and S; are all absolute constants that depend only on the
support F; and the corresponding sampling distribution p; for value-cost pairs. See the definitions of these

absolute constants in Lemmas [£.3] and [£.4]
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C.5.3. Bounding X3. We first define

where Cr is specified in Lemma Recalling the definition Ay (c) =max, o, L;(p;,¢) — L;(ax, ¢) in Eq.
[9), and —(1+7)pCr < L;(p;,¢) < (1+ Cr)V for any p; € [0, p] and context c (see Lemma, it is easy to
see

Ay(e)< L Vke[K],Ve. (44)

Then we bound X3 as follows

= 3 S B Mo = ax. New > ()]

ke[K]t>K
S L- Z ZP p]i_a’kaNk‘t>mk(ct))
K|t>K (45)
(“) - t7+ut 5 Ay + e .
Z ;j{ﬂ)( kUGB () 2 V(03 (1)) = S 05 (1) + UGB 5 (1))

N,m > mk(ct)> :
where (i) follows from Eq. ; in (ii), recall that we choose arm p; ; = a;, because the estimated UCB rewards
of arm ay, are greater than those of any other arm, including pj(t), according to the DSD-UCB (Algorithm ,
or mathematically,

N Ay + 1 5 N P .
Vii(ar) — ﬁak +UCB; . (ar) > V. (p; () — ET)\;PJ' (t) +UCB; . (p;(t))-
Here, we also used the fact that p(t) lies in the arm set A(J) for all ¢ (see Remark |C.1)).

Now, let Rn(ak) denote the average conversion of arm k over its first n pulls, i.e.,
Rn(ak) = Vj,T(ak) for r=min{t € [T]: N, , =n}, (46)

where we recall Vw(ak) is the estimated conversion for arm a, in channel j during period 7 as defined in
Algorithm In other words, 7 is the period during which arm a,, is pulled for the nth time so Rn(ak) = ‘A/N(ak).

Hence, we continue with Eq. as follows:

A + * *
BB 5 (1) 4+ UCB, (9 (1), N >mn(ey))

N Ay + N .
P(V(a0) = S an UGB () 2 V(s (1) = 5755
t

1+)\t
g]P’( max {Rn(ak)+UCBn(ak)—

nimy (cr)<n<t

Ay + e
14+ A\ k}
Ay + e *@)}) (47)

> min_ LR (p;(0) + 0B (0} (1) —

n’:1<n’<t
Ayt A (o . Ay + e
< Z Z ( (ax) +UCB, (ax) — ﬁak > R (p;(t)) +UCB, (05 (1)) — ﬁpj (t)
n=[my(er)]+17'=1 ! ‘

Now, when the event {Rn(ak) +UCB, (ay) — Aif;’j‘a > R, (p *(t)) +UCB,/ (p;(t)) — Aﬁiti”p;‘ (t)} occurs, it is
easy to see that one of the following events must also occur:

Gin= {Rn(ak) >V(ag) +UCBn(ak)} for n s.t. my(e,) <n<t
Goowr = { R (95 (1)) SV (0} (1)) = UGB (p (1))} for ' st 1<’ <t (48)

_ . Ay F e Ayt e
g3—{Vj(Pj(t)) T+ p;(t) < V;(ax) 1T, a, +2-UCB,(ax)
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Note that for n > my(c;), we have UCB,,(ay) = \/QIOi(T) < iig(g)) = A’“;Ct) since we defined my(c) = Sg%gg))
in Eq. . Therefore
Ay pe Ay 0) . Ayt
Vi(ax) — Wak +2-UCB, (ax) < Vj(ar) — T)\tak +Ak(er) = V;(p;(t)) — T)\tpj (t)
=L(ak,ct) =L(p; (t),ct)=max,e a(s) £L(a,ct)

where (i) follows from the definition of A, (¢c) = — L(a,¢) in Eq. for any context c.

This implies that event G3 in Eq. cannot hold for n > my(¢;). Therefore

maxaeA((;) E(G/, C)

® >\ + » * * A + *
P ( R,(ax) +UCB, (ax) — ~Fay > Ry (03 (£) +UCB,. (p3(8) — “ P2 (1) ) < P(G1 0 UGa) . (49)
1+ A 1+ X\
From the standard UCB analysis and the Azuma Hoeffding’s inequality, we have P(G, ) < % 71 and
P(Gsn) < ﬁ. Hence, combining Eqs. (45) ., . we can conclude
K|t>K [Mk(Cf)]+1nl 1
< Z >y Z (50)
K|t>K ,— I—mk(ct)~|+1n’ 1
2KV 1
— =0 = ).
<7 =o(sr)
Q.E.D.
C.6. Proof for Theorem [4.6]
Starting from Proposition we get
T-GL-OPT-E [ Y > Vi(p;.)
te[T] je[M]
(51)
< MV(T —7a) Z E Z L;( ,03 —L;(pji,ci) ‘HE{ Z (Aegie + f1ega.e)
je[M] | telral te[ral

(2)

_ 1
< MV(T—TA)+(’)<UT+(5T+6) —l—(’)(nT-l-n) ,
a

where in (i) we applied Lemmas and Taking = 1/VT, § = =T"'3 (ie. K = O(T"?) yields
T-GL-OPT — E [Ztem > el Vj(p]—,t)} < O(T?3). According to Lemma V;(p;) is concave for all
j€[M], so

_ 1
O(T™1?%) > GL-OPT— = 3 "E| > Vi(p;s)

te[T] JE[M]
> GL-OPT-E | )V, Z it (52)
ES [M] te[T

> GL-OPT—-E

ZVP]T

Li€[M]
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where in the final equality we used the definition pr = (% > te[T)] pj,t) " as defined in Algorithm
jelm
Regarding ROI constraint satisfaction, consider

i)

1
0 < T ZE[th]

—~

tE[T]
= 7 Z Z Pijts % ',t) _’ij,t]
te[T]Je[M]
=m Z Z E[V;(pje) = VPl (53)
tE[T]JE[M]
(44) 1
S I ED SN EETE-D oy
je[M] te[T te[T]

Z E[V, P] T ’ij,T] .

where (i) follows from Lemma in ( i), we again apply the concavity of V;(p;). We omit the analysis of
the budget constraint, as it is similar to the above.

Q.E.D.

C.7. Additional Results for Section [l

Proposition C.1 Assume Assumption holds, and recall z; = (v;,d;) € F; is any realization of values

and costs for channel j € [M ] Then, for any channel j € [M], we have ming e r, :J—i > v, where we recall the
75
ordering Zj—’l > 2]%'2 > > L for any element z; = (v;,d;) € F; (see Section . Further, there exists some
J,m

p€(0,p) s.t. for any per- channel budget p; < p, we have V;(p;;z;) = Z?—'ipj >~yp; for any j € [M].
75

Proof. Under Assumption it is easy to see for any realization of value-cost pairs z; = (v;,d;) there
always exists an auction n € [m]-] whose value-to-cost ratio is at least v, i.e. v;,, > ~vd;,. Hence we know that
23l > %n >y Now, in Eq. (26)) within the proof of Lemmaﬁ we showed

d_] 1 d_] n

T % Uja"

Vilpjiz5) =v; @5 (pj; 25) = Z (d-pj +bj,n> Hdjo+-+djn1<p;<djot--+djn},
ne[m;] Jom
where d; o =v;0=">0;1 =0. This implies that for any p; <d; 1, we have V;(p;;2;) = Z;—:ipj > 7yp;. Therefore,
we can take p = min e[y IninzjE F; d; 1, which ensures that for any p; < p and realization z; € F; we have
Vilpji2) = Z?—’ipj > vp; for any channel j € [M]. Q.E.D.
Js

m

Lemma C.2 (Constraint satisfaction) Assume Assumption holds, and consider 3 = p = @

Algorithm[1, Then, for large enough T we have
1
fth,tzo and Z > <o,
te[T] te[T] je[M]
where we recall g1 = 3, iy (Vi Py 230) = 1030)-
Proof. Recall 74 € [T] defined in step 10 of Algorithm

If 7, =T, then we know that Algorithmdoes not exit the while loop, and therefore Sy ; —yM p+Bp(T' —t) >
0 for t =T, or equivalently Sy > vMp > 0. Since we recall Sy, = Zte[T,l] g1+, we can conclude that
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Ztem 910 =S1,r+g1,0 > Mp+g1r > 0since g1 7 > —yM p. Similarly, we also have Sy, +Mp+p(T —t) < pT'
for t =T, or equivalently S; < pT'— Mp where we used the fact that p=1/log(T) < p for large enough
T and M > 2. Hence, recalling Sa.r =3, 17 1) 22 (s Pies We can conclude that 35, D cia Pie = S2.r +
D jeinn Pir S PT = Mp+ 32 pir < pT since -y pjr < Mp.

If 74 < T, then we know that at the stopping time 74, the while loop in Algorithm [I| has not yet exited, so

we have
S1s —YMp+Bp(T'—74) >0 and Sy, +Mp+Mp(T —74) < pT (54)

Hence,

Zgu = Z G+, + Z 91t

te[T) te[ra—1] t=74+1

> yMp—Bp(T —7a) + 91,74 + Z gt

t=74+1

> yMp—Bp(T —7a) —vMp+ > g1

t=7144+1

W Bp(T —74) Z > (Vilps zi4) —p)

t= TA-H]e[M]

w — Bp(T —74) Z > <'J]né? dj’lw>

t=71a+1j€e[M]

= = Bp(T —7a) + (T —74)M (,,. min ”Jw_w)

— z;€EF;

()
= 0,

where (i) follows from Si,, =3, 191 and Eq. that gives Si,, > yMp — Bp(T — 74); (ii)
follows from Algorithm [I| where we set p;, = p for all j € [M] and t =74, + 1...T, and that g, , =
2 (Vilpjei 254) —vpse); for (ili), assuming the jth channel’s realized value cost pairs z;, is the ele-

ment z; € F;, then Proposition says Vi(p;zj.) > d—p since p = < p for large enough T'. Hence

10g(T)
Vi(pszj1) > minz],E p, (iv) follows from the fact that min, ¢ FJ > ~ according to Proposition S0
M min, epj M*y + B since = 1og(T) < Mmlnzjep == — My for large enough 7.

Slmllarly, we have

T
DD pe= D D Pt D Pimat D D
te[T] je[M] te[ra—1]j€[M] j€[M] t=ratlje[M]
(@)
SpT—Mp—MB(T—TA)-i—ij,rA‘f'M(T_TA)B (56)
j€[M]

<pT —Mp—Mp(T —74)+Mp+M(T —74)p
= pI.

where (i) follows from S; ,, = Zte[mil] EjE[M] p; and Eq. , as well as in Algorithm we set p;, = p for
all je [M] and t=7a,74+1...T. QE.D.
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Lemma C.3 Let (A, jt¢)ie[r) be the dual variables generated by Algorithm . Then for any A\, u € [0,Cr] and
t € [T] we have

2172
S = Ng < P Loy

2 277
TE[t] 1 (57)
np°
D (e =) g2 € Tt o = m)”,
TE[t]
where we recall g1, =3, vy (Vi (p52) = 7P57) and go.r =p =30y Pir-
Proof. We will show Eq. . Starting with the first inequality w.r.t. A.’s, we have
(>\7'7)\)gl,‘r:(>\7+1 7)\) gl,T+()\T 7AT+1)g1,T' (58)
Since A,41 =1l cp) (A — 7791,r)+ =argminyepo,c,] (A — (Ar — 7791,7))27 we have
(Ari1 = (Ar =ng1,-)) - (A= Ar1) 20 VAE[0,CF]. (59)
So we have
1
()\T-‘rl - )\) 91,7 S 7()\7'-{-1 - )\T) : (>\ - )\‘r—‘rl)
n
l (60)
= 5 (A=A = (A A = (e = A ))
Plugging the above back into Eq. , we get
1
()\‘r - )\) g1,r g ()\‘r T+l) 91,7 + % (()\ - >\T)2 - ()\ - >\T+1)2 - ()\7‘+l - )\7)2)
n
< 5 9~ "’2* (A=A =(A=A41)?) (61)
M?V? 1
<N L N \2 oy 2
> 2 + 277 ((A )\7‘) (A >\7‘+1) )

The second inequality holds because (A, — A 41) g1, — ﬁ(/\r-s-l —A;)? < 293, following the inequality
2ab < a® +b?. The final inequality follows from g, . =Y.\, (V;(p;-) = vps-) < MV, where the inequality
holds because V; . (p,.) <V for all j € [M] and 7 € [t]. Summing the above over 7 =1...t and telescoping

we get

MR 1
S - Vg, <! 2V (=M for YA€ 0.Cyl.

‘re[t]
Following the same arguments above we can show
np? 1 2
> (=) g2 < 5T g = m)® for Vi e(0,Cxl.
re[t]

Q.E.D.

Proposition C.4 Under Assumption[].3, the advertiser’s per-channel only budget optimization problem,
namely CH-OPT(Ig) is a convex problem.
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Proof. Recalling the CH-OPT(Z3) in Eq. and the definition of Z5 in Eq. (2), we can write CH-OPT(Zp)

as

CH-OPT(Zp) = Z V;(p;)

("/])Je M]GI

8.1 ZV] (p5) ZVZPJ' (62)

JEM JEM

> pi<o.

je[M]
Here, we used the definition V;(p;) = E[V;(p;; 2;)] in Eq. (), and D;(p;; z;) = p; for any z; under Assumption
According to Lemma V;(p;) is concave in p; for any j, so the objective of CH-OPT(Zz) maximizes
a concave function. For the feasibility region, assume p; and p/; are feasible, then defining p7/ = 6p; + (1 —0)p)

for any 6 € [0, 1], we know that

ST W) ) = S (8Vi(p) + (1 - 0)V(6) — )

JEM JEM
=0 (Vi(p) —vp)+ (1 =0) > (Vi(p}) —7p})
JEM JEM
(41)
>0

where (i) follows from the concavity of V;(p,) and (ii) follows from feasibility of p; and p/. On the other hand

it is apparent that > < p. Hence we conclude that for any p; and p) feasible, p =0p, + (1 —0)p is

jE[M] p]
also feasible, so the feasible region of CH-OPT(Z3) is convex. This concludes the statement of the proposition.

QE.D.
Appendix D: Proofs for Section

D.1. Proof of Lemma [5.2]

Before we show the lemma, we first show the following claim is true:

Claim D.1 Recall that v;,,(1)>...>v;,(L;n) >0 and d; (1) >...>d; .(L;,) >0 for any channel j € [M]

and auction n € [m;]. If auction n in channel j has increasing marginal values, i.e., for any realization

_ U n([ 1) U n.(e) v n() .
z; = (v;,d;), for any n € [m;], we have W decreases in {, then Z- 2 lso decreases in L.

Proof. We prove this claim by induction. The base case is £ =L, ,: it is easy to see

Vjn(Ljn —1) =0jn(Ljn) _ Vjn(Ljn) Vjn(Ljn—1) > Vjn(Ljn) )
djn(Ljn—1) = djn(Ljn) = djn(Lyjn) djn(Ljn—1) " djn(Ljn)

. . . 'u]-.’"(l) ’Uj,"([—‘rl) vj, n(LJ n)
Now assume the induction hypothesis FRNG) > a4, ) > > T Then, we have
Yjn (é) > Uj,n (£ + 1) dj,n (f + 1) — djm(g) > Uj,n (Z + 1) — Uj,n(f)
djn(0) = djn(0+1) djn(€) 0j,n(€)
djn(0) —djn(C4+1) _ 0n(f) —vn(£+1)
—— : < = : 63
TonlD 00 (05)
:>Uj,n(€) < Uj,n(z) — Uj,nw"' )

djn(l) ~ djn(l) —djn(l+1
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V4, 'n(‘g 1) V4, n(Z)
Since PR sy S ) decreases in ¢ we have

Jn(e 1) — v, n(£) > Uj n(f) Uy W(l+1) @ Uj n(£)
J"(ﬂ ) danw) dan@)_djn (+1 djnw)
;) ,L(E 1)

where (i) follows from Eq. . and (ii) follows from the fact that £ > § for A, B,C, D >0 implies ££5 > &
where we let A=wv;,({—1)—v,;,({), B=d;,({—1)—d;,.(¢), C= fuj,n(é) and D =d;,(¢). This concludes
the proof. [

Now we prove Lemma [5.2] Similar to the proof of Lemma[4:3] we only need to show for any realization
z; = (vj,d;) e, the conversion function V;*(p;;2;) = v ¥ (p;; 2;) where " (p;; 2;) is defined as Eq.
(13) is piecewise linear, continuous, strictly increasing and concave.

Lj,n

For simplicity we use the shorthand notation x; = z; " (p;;2;) €10, 1] nelmy] as the optimal solution

to VJ (pj;2;), defined in Eq. . By re-labeling the auction indices in channel j € [M] such that =& 183 >

2;28 S>> 7:7:;8, we claim that z} takes the following form:
1 if=1and > djn (1) <p;
x;‘:n(e) = Pj_Zn/;j[f;f(i])dj,n/(l) if /=1 and Z eln] d] n’(]-) > Pj (64)
0 otherwise

which is analogous to that of Eq. in the proof of Lemma In other words, in the optimal solution, an
advertiser would only procure impressions who are in the first position in each auction, and also those with
high value-to-cost ratios. With the above representation of x}, the rest of the proof follows exactly from that
for Lemma

It remains to show that Eq. holds. We proceed by contradiction: suppose that in some auction, an
impression other than the first is procured, i.e., 7, (¢) > 0 for some £ € {2, ..., L;, }. Under this assumption, we
know that by the constraint that at most one impression can be procured in each auction, i.e., telL;n] x;,(0) <
1 (as in Eq. (13)), it must follow that «%, (1) <1.

Furthermore, observe that %, (¢') incurs a cost of d;,,(¢') -z, (¢') from the total per-channel budget p;. If

we instead allocate this cost to the first impression, we would observe an increase in the total value.

Vjn (1)

djn ()5, (&) , , y y V(1) v ()
Al 0l )0 = (0 0 w)-(dm(l)— dmw))>o7

where the final inequality follows from the assumption that z7, (¢') >0, and the multi-item auction has
increasing marginal values (see Definition so Claim holds. This contradicts the optimality of x, and
hence z%, (¢) =0 for any £ € {2,...,L; ,}, or in other words, a channel will only procure impressions ranked
first. Hence, a channel’s procurement problem in Eq. can be restricted to the first impression in each
auction, and thus, similar to the proof of Lemma is an LP-relaxation to the 0-1 knapsack with budget p;,
and m; items whose values are v;1(1),...,v;m, (1) with costs d; 1(1),...,d; ., (1).

O
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Appendix E: Additional Experiment: Convergence under Small Budgets

To study how per-period budget affects convergence, we replicate the experimental setup in Section but
consider smaller per-period budgets p € {0.01,0.03,0.05,0.1}. We run H = 100 phases, each consisting of
T =200 rounds, and update per-channel budgets only at the end of each phase. After each phase, we record
the per-period value achieved by our algorithm and compute a 5-phase rolling standard deviation to measure
stability over time.

As shown in Figure [f] the algorithm converges more slowly for smaller budgets. This occurs because smaller
per-period budget produces smaller reward magnitudes and higher stochastic variance in feedback, which

makes the dual updates noisier and increases the number of phases required for stabilization.

0.020

0.015 -

0.010 -

0.005 -

Rolling std of per period acquired value

0.000 -

T T
20 40 60 80 100
Phase index

Figure 6 Convergence comparison under small per-period budgets p € {0.01,0.03,0.05,0.1}. After each of H =100
phases (each with 7= 200 rounds), we record the per-period value achieved by the proposed algorithm
and plot the 5-phase rolling standard deviation across recent phases. A smaller rolling standard deviation

indicates faster stabilization and convergence.
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