
Fast Self-Stabilization for Gradients

Jacob Beal1, Jonathan Bachrach2, Dan Vickery, and Mark Tobenkin

1 BBN Technologies, Cambridge, MA 02138, USA,
jakebeal@bbn.com

2 MIT CSAIL, Cambridge, MA 02139, USA

Abstract. Gradients are distributed distance estimates used as a build-
ing block in many sensor network applications. In large or long-lived de-
ployments, it is important for the estimate to self-stabilize in response
to changes in the network or ongoing computations, but existing algo-
rithms may repair very slowly, produce distorted estimates, or suffer
large transients. The CRF-Gradient algorithm[1] addresses these short-
comings, and in this paper we prove that it self-stabilizes in O(diameter)
time—more specifically, in 4 ·diameter/c+ k seconds, where k is a small
constant and c is the minimum speed of multi-hop message propagation.

1 Context

A common building block for distributed computing systems is a gradient—a
biologically inspired operation in which each device estimates its distance to
the closest device designated as a source of the gradient (Figure 1).3 Gradients
are commonly used in systems with multi-hop wireless communication, where
the network diameter is likely to be high. Applications include data harvesting
(e.g. Directed Diffusion[2]), routing (e.g. GLIDER[3]), distributed control (e.g.
co-fields[4]) and coordinate system formation (e.g. [5]), to name just a few.

In a long-lived system, the set of sources may change over time, as may the
set of devices and their distribution through space. It is therefore important that
the gradient be able to self-heal, shifting the distance estimates toward the new
correct values as the system evolves.

Self-healing gradients are subject to the rising value problem, in which local
variation in effective message speed leads to a self-healing rate constrained by the
shortest neighbor-to-neighbor distance in the network. As a result, self-healing
gradient algorithms have suffered from potentially very slow repair, distorted
estimates, or large transients during repair. The CRF-Gradient algorithm[1,
6] addresses these problems using a metaphor of “constraint and restoring force.”

In this paper, we prove that the CRF-Gradient algorithm self-stabilizes in
O(diameter) time—more specifically, in 4·diameter/c+k time, where k is a small

3 Note that “gradient” can mean either the vector operator or a value that changes
over space (e.g. chemical concentration in a developing embryo). Historically, the
operation we discuss has inherited its name from the latter use, due to its common
use in biologically-inspired systems.



constant and c is the minimum speed of multi-hop information propagation.
Section 2 and Section 3 review gradients, the rising value problem, and the
CRF-Gradient algorithm. Section 4, the bulk of the paper, is devoted to formal
analysis of the CRF-Gradient algorithm.

2 Gradients and the Rising Value Problem

Gradients are generally calculated through iterative application of a triangle
inequality constraint. In its most basic form, the calculation of the gradient
value gx of a device x is simply

gx =

{

0 if x ∈ S
min{gy + d(x, y)|y ∈ Nx} if x /∈ S

where S is the set of source devices, Nx is the neighborhood of x (excluding
itself) and d(x, y) the estimated distance between neighboring devices x and y.
Whenever the set of sources S is non-empty, repeated fair application of this
calculation will converge to the correct value at every device.

3

4

4 5

7

7

4

4

4

0.5

0 4

7

4

3 0
7

4.5

Fig. 1. A gradient is a scalar field where the value at each device is the shortest distance
to a source region (blue). The value of a gradient on a network approximates shortest
path distances in the continuous space containing the network.

2.1 Network Model

The gradient value of a device is not, however, instantaneously available to its
neighbors, but must be conveyed by a message, which adds lag. We will use the
following wireless network model:

– The network of devices D may contain anywhere from a handful of devices
to tens of thousands. Devices are immobile and are distributed arbitrarily
through space (generalization to mobile devices is relatively straightforward,
but beyond the scope of this paper). The diameter of this network is the
maximum graph distance between devices.



– Memory and processing power are not limiting resources.
– Every device has a copy of the same program, which is executed periodically

to update the state of the device. Execution happens in partially synchronous
rounds, once every ∆t seconds; each device has a clock that ticks regularly,
but frequency may vary slightly and clocks have an arbitrary initial time
and phase.

– Devices communicate via unreliable broadcasts to all other devices within r
meters distance. These devices within r are called neighbors. Broadcasts are
sent once per round, halfway between executions.

– Devices are provided with estimates of the distance to their neighbors, but
naming, routing, and global coordinate services are not provided.

– Devices may fail, leave, or join the network at any time, which may change
the connectedness of the network.

Note that, although we use the simplistic unit disc model for communication
and assume no measurement error, the it is straightforward to extend the results
in this paper to more realistic models. The results derive from the relationship
between the speed at which information propagates through the network and the
rate at which distance estimates increase as it propagates. Adjusting the model
will only change that constants (in the algorithm and in its convergence time)
that are derived from this relationship.

2.2 Separation in Space and Time

We can reformulate the gradient calculation to take our network model into
account. Let the triangle inequality constraint cx(y, t) from device y to device x
at time t be expressed as

cx(y, t) = gy(t − λx(y, t)) + d(x, y)

where λx(y, t) is the time-lag in the information about y that is available to
its neighbor x. The time-lag is itself time-varying (though generally bounded)
due to dropped messages, differences in execution rate, and other sources of
variability.

The gradient calculation is then

gx(t) =

{

0 if x ∈ S(t)
min{cx(y, t)|y ∈ Nx(t)} if x /∈ S(t)

Our definition of the set of sources S(t) and neighborhood Nx(t) have also
changed to reflect the fact that both may vary over time.

The most important thing to notice in this calculation is that the rate of
convergence depends on the effective speed at which messages propagate through
space. Over many hops, this speed may be assumed to be close to r/∆t (cf. [7]) for
networks where transmission and propagation delay is short compared to ∆t, as
is often the case in wireless networks. Over a single hop, however, messages may
move arbitrarily slowly: the time separation of two neighbors x and y is always



t

3

4

4 5

7

7

4

4

4

0.5

4 4

3 0
7

4.5

2

7

(a) 1 round

3

4

4 5

7

7

4

4

4

0.5

7

0
7

4.5

54

5

4

(b) 2 rounds

3

4

4 5

7

7

4

4

4

0.5

7

07

5

5.5

6

9

4

(c) 3 rounds

4

4 5

7

7

4

4

4

0.5

3

12

8.5 7

4

0
13

12

8

(d) 9 rounds

Fig. 2. The rising value problem causes repair to be limited by the shortest edge in the
network, as when the left-most device in Figure 1 stops being a source. Here updates
are synchronous and unconstrained devices (black edges) attempt to rise at 2 units per
round.



on the order of ∆t, while the spatial separation d(x, y) may be any arbitrary
distance less than r.

A device and its neighbor constrain one another. Thus, when the value of
a device rises from a previously correct value, it can rise no more than twice
the distance to its closest neighbor in one round; if it rises higher, then it is
constrained by the neighbor’s value. This applies to the neighbor as well, so
after each round of rising the constraints are no looser.

Since successive round trips between neighbors must take at least ∆t seconds,
a pair of neighbors constrain one another’s distance estimates to rise at a rate
no greater than 2d(x, y)/∆t meters per second. When a device x has a value less
than the correct value ḡx, its time to converge is at least

max{(ḡx − gx(t))
∆t

2d(x, y)
|y ∈ Nx(t)}

which means that close neighbors can only converge slowly.
Worse, the dependency chains from this retarded convergence can reach ar-

bitrarily far across the network, so that the entire network is limited in its
convergence rate by the closest pair of devices. We will call this phenomenon the
rising value problem (illustrated in Figure 2).

This can be very bad indeed, particularly given that many proposals for large
networks involve some randomness in device placement (e.g. aerial dispersal).
Consider, for example, a randomly distributed sensor network with 100 devices
arranged in a 10-hop network with an average of 50 meters separation between
devices that transmit once per second. Let us assume that the random distri-
bution results in one pair of devices ending up only 50cm apart. If the source
moves one hop farther from this pair, increasing the correct distance estimate by
50 meters, then the close pair and every device further in the network will take
at least 50 1

2·0.5 = 50 seconds to converge to the new value. If they had landed
5cm apart rather than 50cm, it would take over 500 seconds to converge—nearly
10 minutes!

3 The CRF-Gradient Algorithm

The CRF-Gradient algorithm avoids the rising value problem by splitting the
calculation into constraint and restoring force behaviors (hence the acronym
CRF). When constraint is dominant, the value of a device gx(t) stays fixed
or decreases, set by the triangle inequality from its neighbors’ values. When
restoring force is dominant, gx(t) rises at a fixed velocity v0.

The behavior mode is indicated by the “velocity” vx(t) of a device’s value
and the switch between behaviors is made with hysteresis, such that a device’s
rising value is not constrained by a neighbor that might still be constrained by
the device’s old value.

This switch is implemented by defining the subset of neighbors N ′

x(t) allowed
to exert constraint as:

N ′

x(t) = {y ∈ Nx(t)|cx(y, t) + (λx(y, t) + ∆t) · vx(t − ∆t) ≤ gx(t − ∆t)}



The hysteresis comes from the vx term: when rising, vx(t − ∆t) is positive and
the constraint is loosened by the amount a device’s value might rise while in-
formation is making a round trip between the device and its neighbor. Then
CRF-Gradient may be formulated

gx(t) =







0 if x ∈ S(t)
min{cx(y, t)|y ∈ N ′

x(t)} if x /∈ S(t), N ′

x(t) 6= ∅
gx(t − ∆t) + v0∆t if x /∈ S(t), N ′

x(t) = ∅

vx(t) =







0 if x ∈ S(t)
0 if x /∈ S(t), N ′

x(t) 6= ∅
v0 if x /∈ S(t), N ′

x(t) = ∅

These update equations avoid the rising value problem: the value of a device
rises smoothly, overshoots by a small amount, then snaps down to its correct
value.

3.1 Other Self-Healing Gradients

Self-healing gradients be categorized into two general approaches: either incre-

mental repair or invalidate and rebuild. CRF-Gradient is an example of incre-
mental repair: at each step, devices attempt to move their values up or down
towards the correct value. Other work on incremental repair (by Clement and
Nagpal[8] and Butera[9]) has measured distance using hop-count—effectively set-
ting d(x, y) to a fixed value and therefore producing a consistent message speed
through the network—and suffer from the rising value problem if generalized to
use distance instead of hop-count. A hybrid solution in [10] adds a fixed amount
of distortion at each hop, exchanging the rising value problem for inaccurate
values.

An invalidate and rebuild gradient discards previous values and recalculates
sections of network from scratch, avoiding the rising value problem by only
allowing values to decrease. For example, GRAB[11] uses a single source and
rebuilds when its error estimate is too high, and TTDD[12] builds the gradient
on a static subgraph, which is rebuilt in case of delivery failure. These approaches
work well in small networks and are typically tuned for a particular use case, but
the lack of incremental maintenance means that there are generally conditions
that will cause unnecessary rebuilding, persistent incorrectness, or both.

4 Analysis

We show that CRF-Gradient converges in O(diameter) time by proving self-
stabilization, where the network converges to correct behavior from an arbitrary
starting state. Self-stabilization also gives an upper bound on the rate at which
the algorithm can adapt to changes in the network or the source region. In
other work[1], we have verified the expected behavior of CRF-Gradient both
in simulation and on a network of Mica2 Motes. A technical report[6] outlines a
proof of self-stabilization under a continuous space/time abstraction.



4.1 Algorithm State

In order to prove self-stabilization, we must first make explicit what state is
stored at devices—the mathematical formulation leaves this implicit. There are
a total of nine variables used by CRF-Gradient, plus the phase timer used to
schedule the next event on a device, all summarized in Table 1.

Variable Type Range

∆t Constant (0,∞)
v0 Constant (0,∞)

S(t) Input {true, false} per device
gx(t − ∆t) State [0,∞)
vx(t − ∆t) State {0, v0}

Nx(t) State [see below]
λx(y, t) State [0,∞)

gy(t − λx(y, t)) State [0,∞)
d(x, y) State (0, r]
phase State [0, ∆t)

Table 1. Variables and ranges used by CRF-Gradient: self-stabilization begins with
arbitrary values in all state variables.

These state variables may be considered in three different categories: local,
neighborhood, and algorithmic. Since the phase just determines relative order
of execution, any possible value of phase is consistent with the algorithm. The
neighborhood variables can be implemented several different ways. For this dis-
cussion, we assume that the messages broadcast by each device contain its unique
ID, gx(t), and whatever localization information is needed to allow the receiver
to compute d(x, y). Nx(t) is then the set of unique IDs in a device’s record of
its neighborhood. When a message arrives from a neighbor, a device adds the
information to its neighborhood with λx(y, t) = −phase + ∆t/2, replacing any
previous information about that neighbor. Before each execution, ∆t is added
to the λx(y, t) of each neighbor. If λx(y, t) goes above a fixed timeout T , the
neighbor is deleted. Neighborhood state is correct if the values for each neighbor
reflect the history and physical location of that device, and this simple mech-
anism guarantees that, from arbitrary state, this will become the case once T
seconds have elapsed: neighbors refresh their state each round and entries for
non-existent neighbors are flushed after T seconds. We shall assume that T is a
small constant and neglect it henceforth.

This leaves only the algorithmic variables, gx(t − ∆t) and vx(t − ∆t). The
latter is correct whenever it reflects the amount that gx changed in the last
update, and thus becomes correct after a single round. The correct behavior
of gx(t − ∆t) depends on the source region S(t). If the source region is non-
empty, then its value must be equal to d(x, S(t)). If the source region is empty,
then every value in the network must float upwards: formally, there must exist
a time tf such that for every x ∈ D, the gradient value rises at v0 thereafter:



gx(t) ≥ gx(tf ) + v0(t − tf − ∆t). Subtracting v0∆t in the expression allows the
rise to occur in discrete steps.

The next section is devoted to showing the self-stabilization of gx.

4.2 Proof of Self-Stabilization

From any arbitrary starting state, the network of devices converges to correct
behavior in O(diameter) time—specifically, in time less than 4 ·diameter/c+ k,
where c is the minimum speed of message propagation in meters per second and
k is a small constant.

We prove this by first finding upper and lower bounds on how quickly infor-
mation propagates through the network. We use these bounds to show that the
minimum values of a network quickly constrain the values of all other devices,
and that without a constraining source the minimum values rise steadily. To-
gether, these lead to a proof that the network rapidly converges to either correct
values or a steady rise, depending on whether any sources exist.

For the purposes of this proof, we will assume that the source region remains
fixed, there are no failures, that clock frequency does not vary between devices,
and that neighbor distance estimates have no error.

A reminder of terms from the network model in Section 2.1: D is the network
of devices that execute once every ∆t seconds, broadcasting to all neighboring
devices within r meters on the half-round. We will additionally augment our
network model with the following definitions and assumptions:

– Messages are assumed to arrive instantly, with overhead time absorbed into
the 1/2 round delay between execution and transmission.

– The distance between non-neighbors is defined recursively, through the net-
work: d(x, y) = min({d(x, z) + d(z, y)|z ∈ Nx(t)}). The distance between
regions will be the minimum of the distance between pairs of devices in each
region.

– No device has two neighbors on any ray emanating from itself.4 This ensures
that the release of constraint propagates quickly across multiple hops.

– gX(t) is the set of gradient values in a set of devices X ⊆ D at time t.
Likewise, dX(Y, Z) is the minimum distance between devices in Y and Z on
paths confined to X .

– We will define the forward lag Lx(y, t) to be the time-lag between an event
at device x at time t and the next equivalent event at device y where the
value gx(t) can constrain gy(t) along a path equal to d(x, y). For neighboring
devices, Lx(y, t) is always in the range 1

2∆t to 3
2∆t, and Lx(y, t) = λy(x, t +

Lx(y, t)). Across multiple hops, we define Lx(y, t) recursively as Lx(y, t) =
min({Lx(z, t)+ Lz(y, t + Lx(z, t))|z ∈ Nx(t) s.t. d(x, z) + d(z, y) = d(x, y)})

– The restoring velocity v0 is bounded by v0 ≤ c/4.

Given these definitions, we can begin the proofs, starting with a bounding of
speeds over multi-hop distances.

4 Such a network can be produced by adding a small amount of randomness to location.



Lemma 41 (Multi-Hop Speed) Given devices x, y ∈ D at time t, where x
and y are not neighbors, the speed at which information propagates across the

shortest path between them is bounded below by c = 1
3

r
∆t

and above by C = 2 r
∆t

.

Proof. Assume without loss of generality that information is propagating from
x to y, and consider the chain of hops between x and y along the shortest path.

Each pair of successive hops must move more than r distance or else the first
element of the pair could be omitted. Thus the total number of hops is strictly
less than 2d(x, y)/r.

The time-lag across a single hop is at most 3
2∆t, between two devices with

phases in the the worst alignment. Multiplying time per hop by number of hops,
we see that the total time to propagate across distance d(x, y) is strictly less

than 3∆t·d(x,y)
r

.
Speed is distance divided by time, so we may establish a lower bound:

c = d(x, y)/3
∆t · d(x, y)

r

c =
1

3

r

∆t

The upper bound proceeds similarly, with the maximum distance per hop r
and the lowest time-lag across a single hop 1

2∆t, yielding a bound of:

C = 2
r

∆t

We now show a loose bound for how the least values in a region bound the
values of the whole region over time:

Lemma 42 Let R ⊆ D. At time t0, let g0 = min(gR(t0)), and define the mini-

mum region M as the set of devices with minimal value, M = {x|x ∈ R, gx(t0) =
g0}.

Then at time t > t0 + 3
2∆t, every device z ∈ R with dR(z, M) < c · (t − t0)

has value gz(t) < g0 + v0∆t + dR(m, z) + v0 · (4∆t
dR(m,z)

r
+ t − t0)

Proof. Consider a pair of neighboring devices, x, y ∈ D. If x executes at time tx,
producing value gx(tx), then at time t + Lx(y, tx) y executes, producing a value

gy(tx + Lx(y, tx)) < gx(tx) + d(x, y) + v0 · (Lx(y, tx) + 2∆t)

This bound is the decision threshold for constraint, raised by one round of restor-
ing force.

Now consider an arbitrary pair of non-neighboring devices, m ∈ M and
z ∈ D. By Lemma 41, we know that if dR(m, z) < c · (t − t0) (and the elapsed
time is enough to go at least one hop), then values from m will have time to
propagate constraint to z along a shortest path between them.

Because m has value g0 at time t0, we know that at a time tm ∈ (t0, t0 + ∆t]
it must compute a value gm(tm) ≤ g0 + v0∆t. The first execution at z that



can be constrained along the shortest path by the value gm(tm) occurs at time
tm + Lm(z, tm), which we will call tz .

Accumulating the neighbor constraint across at least 2dR(m,z)
r

hops, we thus
have the following constraint on the value of z:

gz(tz) < gm(tm) + dR(m, z) + v0 ·

(

Lm(z, tm) + 4∆t

dR(m, z)

r

)

For an arbitrary t > tz, this can have risen to at most:

gz(t) < gm(tm) + dR(m, z) + v0 · (Lm(z, tm) + 4∆t
dR(m,z)

r
+ ∆t

⌊

(t−tz)
∆t

⌋

)

where the floor is due to the fact that tz is the time of an execution. Elimi-
nating the floor and substituting for tz we have:

gz(t) < gm(tm) + dR(m, z) + v0 ·
(

Lm(z, tm) + 4∆t
dR(m,z)

r
+ t − Lm(z, tm) − tm

)

gz(t) < gm(tm) + dR(m, z) + v0 ·

(

4∆t

dR(m, z)

r
+ t − tm

)

Substituting in the definitions for tm and gm(tm) gives

gz(t) < g0 + v0∆t + dR(m, z) + v0 ·

(

4∆t

dR(m, z)

r
+ t − t0

)

Conversely, we can show how quickly values will rise when there are no con-
straints.

Lemma 43 (Floating Island Lemma) Given a region R ⊆ D − S(t0) with

no sources at time t0, let g0 be the minimum value of gR(t0). Unless acted on

by a constraint from a source outside of R, the gradient value for every device

x ∈ R at time t > t0 is gx(t) ≥ g0 + v0 · (t − t0 − ∆t)

Proof. Assume for contradiction that this is false: then there must be some device
x ∈ R that executes at time t > t0 such that gx(t) < g0 + v0 · (t− t0 −∆t). Since
there are no sources in R, the value gx(t) must have been calculated using either
gx(t − ∆t) (if unconstrained) or gy(t − λx(y, t)) (if constrained). Iterating this,
we can construct a dependency chain for gx(t) of constrained and unconstrained
steps going backward to time t0, grounding in an execution (real or apparent
from phase) that occurs in the range (t0 − ∆t, t0].

Assume this chain consists entirely of unconstrained steps. Each step goes
backward in time ∆t, so the number of steps backward is ⌈ t−t0

∆t

⌉. Each of these
steps decreases the value by v0∆t, so we have

gx(t0) = gx(t) − v0∆t ·

⌈

t − t0
∆t

⌉

Since the ceiling operator may raise the value of t−t0
∆t

by as little as zero, we
know that

gx(t0) ≤ gx(t) − v0∆t ·

(

t − t0
∆t

)



gx(t0) ≤ gx(t) − v0 · (t − t0)

and substituting in our assumption for gx(t) produces

gx(t0) < g0 + v0 · (t − t0 − ∆t) − v0 · (t − t0)

gx(t0) < g0 − v0∆t

which is a contradiction since g0 is the minimum value.
Since each unconstrained step lowers the value by v0∆t, at least two uncon-

strained steps must be replaced by constrained steps. Steps need not be replaced
at a 1:1 ratio, but the replacement steps must cover the same time-span–in this
case at least 2∆t. Each unconstrained step can take a maximum of 3

2∆t seconds,
so there must be at least two such steps. Between them, these steps must cover
a distance of at least r (otherwise the first and last devices would be neighbors,
and since there are no collinear 3-cliques, the dependency chain could not visit
the middle device). Replacing unconstrained steps with constrained steps thus
can only decrease the distance if r < 2v0∆t, which is false by assumption.

Theorem 44 The CRF-Gradient algorithm self-stabilizes in 4·diameter/c+k
time, where k is a small constant.

Proof. First, note that once a device is constrained by the source, it will always
be constrained by the source—it can only relax towards a shorter path. The
relaxation is finished within the transit time of information along the shortest
path to the source.

Let t0 be the time when self-stabilization begins.
If the source region is not empty, then by Lemma 43 we know that every

device x not constrained by a source has a value at time t of gx(t) ≥ v0 · (t −
t0 −∆t). No device in the network needs a value greater than diameter, so they
must rise to at most diameter + 5

2v0∆t in order to become constrained by a
source. Setting gx(t) to this target value,

diameter +
5

2
v0∆t = v0 · (t − t0 − ∆t)

we solve for t − t0:

diameter +
7

2
v0∆t = v0 · (t − t0)

(t − t0) =
diameter

v0
+

7

2
∆t

We thus have a race between two processes, the outward flow of constraint
from the source region and the upward rise of gx(t) value which are below their
ultimate level. By Lemma 41, we know that constraint flows outward across
multiple hops at a minimum speed of c = 1

3
r

∆t

. Since this propagation rate is
much faster than v0, we may expect that any distant device x will be constrained
immediately after it rises above d(x, S) + 7

2v0∆t, bringing the total time for
stabilization to at most

diameter

v0
+

11

2
∆t



(adding in a round to go above the threshold and another to snap down to the
constraint). Given our assumption that v0 ≤ c/4, we take v0 = c/4 to yield a
bound of 4 · diameter/c + 11

2 ∆t

Now consider the case when the source region is empty. Let tf = t0 +
4 diameter

c
. Assume that tf is not an acceptable time: this means there is some

device x ∈ D and time t such that gx(t) < gx(tf )+v0 ·(t−tf −∆t). Constructing
dependency chains, as in Lemma 43, the same logic shows that gx(t) must have
at least one constraint step going through a neighbor y that occurs after time tf .
Since y is a neighbor, either the y is also violating the bound (and thus must be
constrained by a neighbor of its own at an earlier time), or else the execution at
which the constraint is applied happens precisely once, at the time tx during the
period (tf , tf +∆t]. Assume the latter case (the former reduces to it by switching
which device is under consideration).

Because y constrains x at tx, y must not have been rising in its previous
execution—otherwise the difference between y and x must have shrunk, meaning
x is not constrained by y, or stayed the same, meaning x was rising also and will
still not be constrained by y. Thus the next step of the dependency chain must
be a constraint step to some neighbor z of y. We can apply the same argument
iteratively to show the dependency chain must be all constraint steps back to the
base time t0. There must be at least 4 diameter

c∆t

of these steps, each pair moving
at least r distance (by the same argument as in Lemma 43). This gives us a
bound on the post-constraint value of x: gx(tx) ≥ g0 + 2r diameter

c∆t

, where g0 is

the minimum gradient value in the network at time t0. Substituting in c = 1
3

r
∆t

,
we can simplify this:

gx(tx) ≥ g0 + 2r
diameter

1
3

r
∆t

∆t

gx(tx) ≥ g0 + 6 · diameter

By Lemma 42, we know that because there is a minimum g0 in the network
at time t0, that at time tf the value of x is bounded by

gx(tf ) < g0 + v0∆t + diameter + v0 ·

(

4∆t

diameter

r
+ tf − t0

)

Since we know that gx(tf ) > gx(tx) + v0∆t (or else it’s not a violation), we can
connect these two equations together to get

g0 +6 ·diameter+v0∆t < g0 +v0∆t +diameter+v0 ·
(

4∆t
diameter

r
+ tf − t0

)

5 · diameter < v0 ·

(

4∆t

diameter

r
+ tf − t0

)

5 · diameter < v0 ·

(

16
diameter

c

)

v0 >
5

16
c

which is false by assumption. Thus the no-source case has a convergence time
bounded above by 4 · diameter/c.



From the structure of these proofs, it appears that they should generalize to
show self-stabilization for CRF-Gradient on devices with error in distance
measurements and clock rate, as well as with non-unit disc communication,
albeit with a great deal more proof complexity and producing slightly worse
bounds. The permissiveness of the algorithm’s constraints will need to be in-
creased slightly to allow for error as well, however.

5 Contributions

We have proved that the CRF-Gradient algorithm self-stabilizes in O(diameter)
time—more specifically, in 4 · diameter/c + k time, where k is a small constant,
c is the minimum speed of multi-hop information propagation, and the restoring
velocity is bounded v0 ≤ c/4. This result also implies fast self-healing following
changes in network structure or source region, and the incremental nature of the
repair means that there will often be useful values even while repair is going on.

In other work[1], we have verified that CRF-Gradient exhibits the predicted
behavior both in simulation and on a network of Mica2 motes. The algorithm can
also be generalized and applied to create other self-healing calculations, such as
cumulative probability fields. This approach may be applicable to a wide variety
of problems, potentially creating more robust versions of existing algorithms and
serving as a building block for many distributed computing applications.

References

1. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In:
ACM Symposium on Applied Computing. (March 2008)

2. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In: Sixth Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCOM ’00). (August
2000)

3. Fang, Q., Gao, J., Guibas, L., de Silva, V., Zhang, L.: Glider: Gradient landmark-
based distributed routing for sensor networks. In: INFOCOM 2005. (March 2005)

4. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: an adaptive approach for
motion coordination. Technical Report 5-2002, University of Modena and Reggio
Emilia (2002)

5. Bachrach, J., Nagpal, R., Salib, M., Shrobe, H.: Experimental results and the-
oretical analysis of a self-organizing global coordinate system for ad hoc sensor
networks. Telecommunications Systems Journal, Special Issue on Wireless System
Networks (2003)

6. Beal, J., Bachrach, J., Tobenkin, M.: Constraint and restoring force. Technical
Report MIT-CSAIL-TR-2007-042, MIT (August 2007)

7. Kleinrock, L., Silvester, J.: Optimum transmission radii for packet radio networks
or why six is a magic number. In: Natl. Telecomm. Conf. (1978) 4.3.1–4.3.5

8. Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Workshop
on Adaptability in Multi-Agent Systems, RoboCup Australian Open. (January
2003)

9. Butera, W.: Programming a Paintable Computer. PhD thesis, MIT (2002)



10. Bachrach, J., Beal, J.: Programming a sensor network as an amorphous medium.
In: Distributed Computing in Sensor Systems (DCOSS) 2006 Poster. (June 2006)

11. Ye, F., Zhong, G., Lu, S., Zhang, L.: Gradient broadcast: a robust data delivery
protocol for large scale sensor networks. ACM Wireless Networks (WINET) 11(3)
(2005) 285–298

12. Luo, H., Ye, F., Cheng, J., Lu, S., Zhang, L.: Ttdd: A two-tier data dissemination
model for large-scale wireless sensor networks. Journal of Mobile Networks and
Applications (MONET) (2003)


