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Abstract—We present the ColoredPower algorithm, which
is designed to provide collaborative electricity demand shaping
for residential and small-business customers. Demand shaping
for this market sector is an important and challenging problem,
since the vast number of such customers collectively account
for a large fraction of total electricity consumption, yet each
individual’s consumption is small. Under the PACEM system,
customers participate by “coloring” their appliances with a
qualitative priority such as “can be shut off at peak power.”
Demand shaping for this system must be scalable to millions
of appliances, operate quickly and fairly across customers, and
act on any given appliance infrequently. This last constraint
is particularly challenging: if an appliance that switches on
or off must not be switched again for many minutes, then
at any instant, a large fraction of appliances may not be
controllable. The ColoredPower algorithm addresses these
challenges using randomized local actions. When the action
distribution is adjusted to compensate for currently uncontrol-
lable appliances, standard feedback controllers can be used to
produce local actions that combine to create the desired global
effect. Experiments in simulation verify that the algorithm
provides fair control that is fast, scalable, and robust enough
to be realistically deployable.

Keywords-electricity demand management; demand shaping;
peak-shaving; distributed algorithms; spatial computing; amor-
phous computing;

I. INTRODUCTION

Demand shaping is a pressing problem in energy delivery.

Not only is there a general environmental motivation for

reducing energy consumption, but peaks in demand are

extremely costly, requiring generation capacity that goes

largely unused, and can cause blackouts or brownouts.

Residential and small business consumers make up a large

fraction of total electricity consumption, and studies have

shown that their energy needs are fairly flexible (e.g. [1]),

implying a large potential for demand shaping.

However, demand shaping for this market sector is ex-

tremely challenging. The number of customers is extremely

high, often in the millions, so a system must be highly

scalable. The energy consumption per customer is low, how-

ever, so the per-customer cost of deployment and operation

must also be extremely low. Moreover, small customers are

not typically available or motivated to devote significant

effort to managing their energy use, so the system must

require negligible ongoing attention from the customer. As

a result, existing demand shaping solutions of the sort

already being deployed for for large electricity consumers

like manufacturers and municipal stadiums (e.g. EnerNOC)

do not scale to the small customer market.

The Proto/Amorphous Cooperative Energy Management

(PACEM) system[2] aims to address the challenges of small

customer demand shaping by means of distributed control

and a simple qualitative preference interface. In the PACEM

system, customers participate by “coloring” their appliances

with a qualitative priority such as “can be shut off at

peak power.” Participating appliances communicate with

one another and with a gateway device that connects to

other households, forming a regional demand management

network. The participating appliances then self-organize

over this network to perform collective control, shutting off

some appliances in order to adjust their aggregate energy

consumption to match a global demand shaping command.

Besides scaling to millions of appliances, demand shaping

for this system must operate quickly enough to be useful—

on the order of a few minutes. Also, the set of appliances

shut off must be distributed fairly across customers over

time. Finally, if a given appliance is switched on or off,

it must not be switched again for many minutes—both to

avoid damaging the appliance and to avoid “flickering” that

irritates a customer. This low-frequency switching constraint

is particularly challenging, for it means that at any instant a

large fraction of appliances may not be controllable.

We have developed the ColoredPower algorithm as a

controller for the PACEM system, addressing these chal-

lenges using randomized local actions. When the action

distribution is adjusted to compensate for currently uncon-

trollable appliances, standard feedback controllers can be

used to produce local actions that combine to create the

desired global effect. In this paper, we first give an overview

of the PACEM system and describe the ColoredPower
algorithm in detail. We then analyze the algorithm to de-

termine that it satisfies its design goals. Finally, we verify

our analysis in simulation, demonstrating that the algorithm

provides fair control that is fast, scalable, and robust enough

to be realistically deployable.
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Figure 1: Overview of PACEM: utilities supply power and request decreases in demand. Customers specify their flexibility

in exchange for lower energy prices. In each home, smart appliances and outlets communicate to decide which will volunteer

to decrease demand. A demand controller for each home connects homes into a network, on which a distributed control

algorithm manages the overall demand and distributes volunteerism fairly.

II. PACEM SYSTEM OVERVIEW

PACEM[2] proposes a network that automatically matches

a grid control authority’s requests for demand regulation

with ways customers are willing to decrease demand (Fig-

ure 1). The control authority (e.g. a utility or a municipal

government) sends supply data and regulation requests to

a network of demand controllers. Each controller talks to

a network of smart outlets and appliances in the household

or business that it regulates. A distributed algorithm running

on the network then harvests the potential demand decreases

offered by appliances in order to meet the request from the

control authority as best it can given the available resources.

Customers indicate their demand flexibility by choosing

what to plug into smart outlets and setting when an outlet

is allowed to be regulated. The initial design for PACEM

envisions four categories of flexibility, each associated with a

color: anytime (“green”), peak power (“yellow”), emergency

only (“red”), and never (“black”) (Figure 2). The only other

way that customer needs to interact with the system is

to push a 1-hour override button if they want to use an

appliance that they normally allow to be cut off. The total

available flexibility is thus the sum of all of the individual

consumers’ flexibility colorings. When the control authority

requests a demand decrease, the system must select a set

devices to shut off such that the aggregate consumption

drops to the target level.

More information on PACEM’s incentivization, feasibility

of deployment, and variation by category of appliance can be

found in [2] and [3]: in this paper, we focus on the problem

of actually controlling devices in response to commands

Figure 2: Under PACEM, consumers “color” their power

demand with flexibility designations indicating when it can

be controlled. The goal of control is to shut off devices such

that the global measured power consumption Qm is reduced

from the global total demand Qd to the global target Qt.

from the control authority.

A. Control Algorithm Requirements

We consider PACEM’s demand response as a problem

of feedback control: we need to closely follow (“track”) the

global target for energy consumption, which we will call Qt

and which generally needs to match the available supply of

power. We want our measured global power consumption
Qm to follow the global target Qt as closely as possible.

The total supplied power has many different factors that go

into how it changes over time, including economics of the

power companies supplying the power, the capacities and

overhead of the generators producing the power, government

regulations, and of course the global demand for power Qd.

Note that when the supply and demand are not restricted,

Qm = Qd.

Any algorithm to control the distributed network of small

customer electrical devices must satisfy the following re-

quirements:



1) Demand Flexibility: At any given point in time, the

demand for power should have as much flexibility

as possible—either to shut down devices that are

currently on, or to relax and turn back on devices that

were shut down for demand response.

2) Dynamic Response: The algorithm must be able to

control the measured global power consumption Qm

such that it tracks a changing global target Qt quickly

and reliably. For the current electrical grid, this means

a significant response on the order of minutes.

3) Fairness: Because PACEM depends on weakly in-

centivized participation, we do not want users of the

system to perceive it as unfair, or else they may stop

participating. For example, a user may get upset if his

air conditioner gets shut off more than his neighbor’s.

To satisfy this, we require that over a sufficiently long

period of time, the expected total power consumption

by two identically colored devices should be the same,

and that if at any given time two devices have the same

state, they should have an equal chance of deviating

from their state.

4) Privacy: Fine-grained power consumption data is a

significant privacy concern, so the data about differ-

ent users and their devices should remain private.

We thus require that global computations operate

on many-consumer aggregates (which are by nature

anonymized), and that no single device should ever

have information about a large number of other indi-

vidual devices.

5) Scalability: The algorithm must be scalable to very

large numbers of devices. For instance, a large city

grid might have tens of millions of devices.

6) Non-intrusiveness: The devices running the algorithm

should only switch on or off occasionally, with many

minutes between switchings. A user should always be

able to “override” the system on a particular device at

any time.

B. Related Projects

PACEM draws inspiration from other, smaller scale en-

ergy demand regulation projects. One such example is

Hewlett-Packard’s “Smart Cooling” project, which includes

temperature control through the spatial distribution of

processes[4]. Another is the market-based time-shifting of

refrigerator cooling decisions envisioned by Ogston et al[5].

However, such market-based planning approaches:

1) may not be able to react quickly enough to unexpected

situations like a power generator failure,

2) may not scale to the complexity of highly heteroge-

neous systems. For example, Ogston et al. point out

the difficulty of computing optimal solutions even in

their limited planning scope.

3) require reliable design of a complex artificial mar-

ket, which is an open problem for domains of this

complexity, particularly given the interaction with ir-

rational human users.

A more similar approach to PACEM is the EnviroGrid con-

troller, which uses non-market control to locally desynchro-

nize periodic loads[6], but which does not change overall

demand.

There is much active commercial research and devel-

opment in the area of demand control as well, largely

focused around either large consumers, as in the case of

EnerNOC[7], or centralized solutions, as in Google’s Pow-

erMeter or the Tendril platform. A brief survey of existing

demand response programs, as of 2006, can be found in the

FERC report in Chapter VI[8]. A fully developed PACEM

would be able to support many of these programs that are

currently executed manually.

III. THE ColoredPower ALGORITHM

We have designed the ColoredPower algorithm to ful-

fill these requirements via distributed probabilistic control.

The reasons for choosing a distributed probabilistic approach

are threefold: speed, robustness, and privacy.

The basic idea is this: rather than attempt to gather fine-

grained data back to a central point, the ColoredPower
algorithm maintains an aggregate model of global system

state, which is shared with all devices. When the target

consumption Qt changes, each device computes from this

model what percentage of devices that should change state

overall, then flips a coin to determine whether it is one

of those devices. Although random variance and consumer

heterogeneity make it extremely unlikely that this control

will immediately succeed, the aggregate consumption is

likely to be much closer to the target, and with feedback can

quickly arrive. What is more, by the law of large numbers,

the more consumers that participate in the system, the better

that probabilistic control is expected to perform. Note that

we will never consider the amount of power consumed by

an individual device in determining whether to switch that

device off; this is done to help satisfy the perceived fairness

constraint, because it means that a user’s experience will not

be significantly affected by their coloring choices.

Decentralized probabalistic control also provides robust-

ness, since it does not requires critical points in the network

where a small number of failing devices can cripple the sys-

tem. Finally, since control is local, data can be aggressively

aggregated to preserve privacy.

We will now explain the ColoredPower algorithm

using a step by step build up, starting with the algorithm

for the simplest system and adding refinements to produce

the full ColoredPower algorithm.

A. Base Local and Global State

Let us begin by defining the base information that we

assume is available for the network of devices. For now,

as we begin with the simpler control algorithms, we will



(a) Estimation (b) Control

Figure 3: The “ColoredPower” algorithm estimates total flexibility using information aggregated from throughout the

city (a). The control authority (e.g. a utility or municipal government) then sets a target blend of colors and each consumer’s

household randomly chooses a color, shutting off any appliances more flexible than its chosen color (b).

ignore power coloring and consider all consumption to be

in a single category. This means that each device is an actual

electrical appliance.

Each device i holds the following state information:

• n, the total number of devices on the network

• Qt, the current global target (i.e. total supplied power).

• Qm, the total measured power consumption on the

network (which we wish to control to equal Qt)

• Qd, the total power demand from all the devices on the

network

• di, the device’s own measured power demand

• mi, the device’s own measured power consumption (we

assume it zero when off, di when on)

• tflip, the time remaining until the device is next allowed

to flip a coin to decide whether to change state.

Each device is also assumed to have a clock that measures

elapsed time with no more than a small error, and to evaluate

its control algorithm frequently. Whenever tflip reaches

zero, a device will execute its probabilistic control step, then

reset tflip to an expected value of Tflip (see Section III-C

for more on how the value is chosen).

The global state (n, Qt, Qm, and Qd) is assumed to

be provided by a distributed aggregation algorithm, and is

therefore delivered at a lag. This lag cannot be less than

Ω(diameter/c), where diameter is the number of hops

across the network and c is the maximum speed of informa-

tion flow per hop. In the ColoredPower implementation

for this paper, we use a distance-based spanning tree as our

aggregator. We chose this aggregator for simplicity and its

Θ(diameter/c) lag, but it is not robust to network changes

and we expect that much more robust aggregator is both

possible and necessary for a real deployment.

B. Simple Local Probabilistic Control

The simplest probabilistic control for Qm to track Qt is to

have each device i flip a coin with probability psimple = Qt

Qd

of turning heads. If the coin falls heads, the device chooses

Figure 4: The simplest block of local probabilistic control

in order to achieve the desired global result in the expected

case.

to turn on and consume di power, if not, it chooses to turn off

and consume 0 power. If each device does this the expected

total consumption will be

E[mi] = psimple × di

=
Qt

Qd
× di

E[Qm] = E[
∑

i

mi]

=
∑

i

E[mi]

=
∑

i

Qt

Qd
× di

=
Qt

Qd
× Qd

= Qt

For example, consider 100 devices, each consuming 1 unit

of energy (thus the global demand is 100), and the global

target is 70. If each device turns on with 70% probability

then our expected global power consumption is equal to the

global target.

There are two major problems with this design:

1) From iteration to iteration of the local control, there

is nothing that prevents an individual electrical device

from switching on and off very rapidly; this is not



an acceptable solution since the rapid oscillation of a

single device is undesirable.

2) This simple probabilistic control does not account for

the variance that comes with randomization or the fact

that different devices consumer different amounts of

power. It is thus unlikely that the global consumption

actually hits exactly Qt.

C. Timed Local Probabilistic Control

To address the first problem we add timers to every device

that ensure that once a device turns on or off, it stays that

way for a period of time. We thus introduce the following

new state for each device:

• tfall the time remaining until the device is allowed to

decrease its power consumption mi

• trise the time remaining until the device is allowed to

increase its power consumption mi

Every time a device increases power consumption, tfall gets

reset to an expected value of Tfall. Similarly, if a device

decreases consumption, trise gets reset to an expected value

of Trise. Those devices that have recently changed state

are thus “timed out” and cannot change state again in the

opposite direction soon.

When a timer tx is reset to an expected value of TX , it

is important that there be a large amount of variance in the

value it is reset to. This effectively desynchronizes devices

form one another, ensuring that in the expected case, there

are always some devices that are allowed to change their

state, and therefore some demand flexibility. Therefore, at

each reset of a timer tx, its new value is selected from a

uniform random distribution on the interval [Tx

2 , 3×Tx

2 ].
With the addition of these timers, our prior simple proba-

bilistic control will no longer operate correctly, since timed-

out devices are capable of changing state. We thus need to

adjust psimple in some way that will depend on the number

of devices that are not-timed-out, in order to maintain the

accuracy of our expected global power consumption. To do

this we aggregate new global state information about the

state of the network. Each device is classified into exactly

one of three states (Figure 5):

• 1-fixed devices are devices unable to fall at that instant

(i.e. recently turned on). The total demand for these

devices is denoted by Q1

• 0-fixed devices are devices unable to rise at that instant

(i.e. recently turned off). The total demand for these is

denoted by Q0

• flippable devices are the remainder: those that are avail-

able for local probabilistic control. The total demand for

these is denoted by Qf , and is a measure of the current

demand flexibility of the system.

The 1-fixed and 0-fixed terminology comes from the status

of the devices as on(1) or off(0). Note that by definition,

Q1 + Q0 + Qf = Qd

Figure 5: Division of devices into three categories based on

their fall, rise, and flip timers: if a device is unable to turn

off, it is 1-fixed, and if it is unable to turn on, it is 0-fixed.

If it is neither, then it is flippable.

Figure 6: Census adjusted probabilistic control

As opposed to the Simple Local Probabilistic Control,
where the demand flexibility is Qd, the demand flexibility

is Qf , reflecting the fact that the control itself temporarily

impinges on flexibility. Further, Q1 demand is already fixed

as on, which means that Q1 power is already being con-

sumed regardless of the control at that moment. In order for

the expected consumption to be psimple ∗ Qd, the devices

modified local probabilistic control:

ptimed =
(psimple ∗ Qd) − Q1

Qf

Each device which is not timed out flips a coin with

probability ptimed. If the coin falls heads, the device turns

on and consumes di power; if not, it turns off and consume

0 power. It is easy to see that if Qf = Qd, i.e. all devices are

flippable, then ptimed = psimple. Note also that if there is

not enough demand flexibility to achieve the target, ptimed

will be outside of [0, 1]: in this case, we clip it to [0, 1] to

get as close as possible to the target.

In general, we have:

E[mi∈flippable] = ptimed × di

E[mi∈1−fixed] = di

E[mi∈0−fixed] = 0

E[Qm] = Q1 +
∑

i∈flippable

E[mi]

= Q1 +
∑

i∈flippable

ptimed × di

= Q1 + ptimed × Qf

= Qt

This timer dependent and census-adjusted local proba-

bilistic control give us the desired expected global power

consumption, while neatly allowing each device to be

switched between on and off at a non-intrusively low fre-

quency.



D. Timed Local Probabilistic Feedback Control

We still need to address the problem of variance. We will

do this with feedback control based on the global consump-

tion Qm. For this paper, we have chosen to use a simple PID

controller. This long-established generic controller, which

incorporates a (P)roportional term to address instantaneous

error, an (I)ntegral term to address accumulating “past”

error, and a (D)erivative term to to predict likely “future”

error, is a simple and well-understood starting point for

adding feedback control to a system (though we shall see

in Section IV-D that a more sophisticated controller will

eventually be needed).

At any point in time, the error in tracking is given by

Δ(Q) = Qt − Qm

Using a PID controller, the desired error correction is:

ΔPID(Q) = GP ∗ Δ(Q) + GI

∫ t

0

Δ(Q) + GD ∗ d

dt
Δ(Q)

This can be converted into a local probability of change in

much the same way as before: pfeedback = ΔP ID(Q)
Qf

. The

expected new value after an expected set of flips (from time

t0 to time t1 = t0 + Tf ) is thus:

E[Qm(t1)] = Qm(t0) +

E[
∑

i∈flippable

pfeedback · di]

= Qm(t0) + pfeedback · Qf (t0)
= Qm(t0) + Δ(Q)

If the gains for the PID controller are stable with respect

to the delay in obtaining the aggregate state variables, then

may be expected to converge to Qt. Unusual in the design

of a controller, however, it is important that the control

be significantly overdamped. This is because “timed out”

devices generally make the system very slow to recover from

overshoots. Thus the controller must be overdamped enough

that it approaches the target in a series of steps, adjusting

the flipping probability using the census as well as the error

at every step, and where the probability of random variance

causing a significant overshoot on any step is small.

E. Adapting to a four color system

With Timed Local Probabilistic Feedback Control, we

now have an algorithm that can control power for a sin-

gle PACEM “color.” All that remains is to extend it to

a multiple-color system. Note that while we discuss this

algorithm in terms of the four colors in the PACEM proposal,

it generalizes trivially to a k-color algorithm.

Each applicance is set to exactly one color. Each house-

hold is represented by a demand controller device holding

the aggregate information of the different colored energy

demand of all the applicances within.

Figure 7: The distributed control algorithm, given the global

desired and current consumption, produces a global com-

mand for the new level. This command must then be

translated into a weighted coin-flip, to occur independently

at each device, scaled to take into account the fact that the

switching-frequency limitation means that some devices not

currently controllable.

To generalize from one to multiple colors, we introduce

the concept of Range. The Range is always a real number

between 0 (black) and 3 (green), and serves as a numerical

relation between an amount of power and the total power

demand, which is pre-divided into the four colors. Let

Qd = Q3
d +Q2

d +Q1
d +Q0

d denoting the division of the total

demand into the four colors, green, yellow, red, and black

respectively. Each household demand controller device sim-

ilarly controls four different demands di = d3
i +d2

i +d1
i +d0

i ,

and has four different kinds of local power consumption

mi = m3
i +m2

i +m1
i +m0

i . Note that each mj
i is a discrete

block of power, i.e. mj
i ∈ {dj

i , 0}. The maximum i for which

mj
i = dj

i is the color c of the device, e.g. c = 2 would

indicate the color “yellow.”

When a power quantity Qx has a range of rx this means

that it includes all of the power “below” it:

Qx = (rx − �rx�) × Q
�rx�
d +

∑
i≤�rx�

Qi
d

For example, a range of 1.3 would mean that Qx contains

all the power in the “red” and “black” blocks and 30% of

the power from the “yellow” block.

The algorithm uses two ranges: the target range rt cor-

responding to Qt and the measured range corresponding to

Qm (see Figure 2). With regards to control, the fractional

and integer portions are handled separately. The integer

portion is simple: when �rt� changes, every device in the

entire block of power changes to be on or off (as appropriate)

as soon as tfall or trise allow the device to. This portion of

control is naturally quite fast in achieving its goal.

Lets look at tracking the fractional part. There is a Q
�rt�
t

which we need to track using only the m
�rm�
i portion of

power, since our integer tracking is already working to make

sure that �rt� = �rm�. The demand is Q
�rt�
d and there is

already some Q
�rt�
m which is the power consumption within

that block. We just need to use some local probabilistic con-

trol which will push Q
�rt�
m toward Q

�rt�
t . This is exactly the

problem that we solved using the Timed Local Probabilistic

Feedback Control. Instead of Δ(Q) we will introduce the



Figure 8: The distributed control algorithm, given the global

desired and current consumption, produces a global com-

mand for the new level.

corresponding error in range,

Δ(r) = (rt − �rt�) − (rm − �rm�)
This can be plugged into the PID controller as before to

produce a pfeedback which, when combined with integer

control, completes the feedback controller.

The last detail to be filled in, handling of user overrides,

is simple: When a user presses the override button on a

device, it can never be controlled by the algorithm until

the user stops the override. The demand from this device is

then recolored as “black,” which is soon thereafter reflected

in aggregate state variables.

Figure 8 summarizes the ColoredPower algorithm.

Each device receives aggregated data in the form of the

global target, the global demand, and the global consump-

tion, along with a census of demand flexibility. The device

now infers the target range, measured range, and range-error

using this input. The device goes through decision-tree based

on a state table (Figure 9) that takes into account its local

parameters: the timers, the local demand, the local measured

consumption, etc. The integer part of the range tells the

device what its minimum color should be, and the fractional

part is converted into a probability with which it should

turn on the color above the minimum. Finally, each device

supplies the new local energy consumption and device state

(which of the three census categories it falls into) into the

aggregator, leading to an eventual update of the global state

variables.

IV. EXPERIMENTAL VERIFICATION

In this section, we describe as series of experiments by

which we verify that ColoredPower behaves as desired.

We have implemented ColoredPower in Proto[9], a high

level language for distributed algorithms, where programs

are described in continuous regions of space and time, rather

Figure 9: State table for ColoredPower, based on the

target range, measured range, and timers.

(a) Stepping between Green and
Yellow

(b) Stepping between Yellow and
Red with network links shown

Figure 10: A visualization of devices on the PACEM net-

work using the Proto simulator. Each device is a disc. The

color of the disc indicates the power consumption level of

the device.

than individual devices. Proto depends on the amorphous
medium abstraction, which views a network of devices

as an approximation of a computational material with a

processor at every point. This continuous abstraction makes

programs in Proto highly scalable: if a program works for a

neighborhood, it is likely to work for an entire metropolitan

area.

A. Experimental Setup and Parameters

Except where indicated, the following experiments are

conducted using the following parameters:

• The network contains n = 100 devices. These devices

are distributed randomly in a 100 × 100 unit square.

Each device has a communication radius of 50 units.

Thus, the expected diameter of the network is 3.

• Each device has a demand profile of (d3
i , d

2
i , d

1
i , d

0
i ) =

(3, 6, 7, 4) units of power demand in the green, yellow,

red and black blocks respectively. The total possible

consumption in the base system is therefore Qd =
100 × (3 + 6 + 7 + 4) = 2000 units. This also means

that (Q3
d, Q

2
d, Q

1
d, Q

0
d) = (300, 600, 700, 400).



P,I,D Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

0.5,0.08,0.3 700 ± 530 1700 1130 ± 400 1760
0.4,0.1,0.4 920 ± 490 1640 1150 ± 390 1630

Table I: Convergence Times for Homogeneous Demand

• We choose Tflip randomly in the interval of [2, 8]
seconds. with E[Tflip] = 5 seconds

• We choose Trise and Tfall randomly in the interval

[500, 1500] seconds with E[Trise] = E[Tfall] = 1000
seconds

• The PID controller uses two sets of gains:

{0.5, 0.08, 0.3} and {0.4, 0.1, 0.4}, the two best

performing values found via a heuristic parameter

search.

• To prevent over-impact from accumulated error, inte-

gral error is given a window is 50 seconds, and an

exponential backoff filter of coefficient 0.5.

• System state is sampled once every 10 seconds

These parameters are not intended to reflect actual de-

mand models, but to characterize controller performance; the

choice of times for parameters and response goals, however,

is guided by [10].

B. Homogeneous Demand

We begin by verifying that the algorithm works correctly

under homogeneous demand conditions. We examine behav-

ior using two target profiles: square wave and sinusoidal. The

square wave shows us the impulse response of the system

and gives an estimate of behavior in worst case conditions

of the energy grid, e.g. if a power plant suddenly fails, or a

major transmission network failure causes effective demand

to suddenly drop. The sinusoidal case shows the system’s

response to smoother, incremental changes.

We tested impulse response using a square wave with

a period of 8000 seconds, with one experiment for steps

between every possible pair of colors except black (since

the consumption cannot fall below red), using the following

values for Qt: 2200, 1800, 1400, and 500. Impulse response

graphs for each pair are shown in Figure 11. The overall

convergence times are shown in Table I, where we defined

convergence time as the first time after which the measured

consumption stays within 3% of the target for more than 300

seconds, choosing 3% because any smaller percentage would

allow only a single device to be wrong in some situations.

As can be seen, fall times are generally significantly better

than rise times (due to an intentional bias in the construction

of the feedback control), but in all cases the system begins

responding rapidly and is nearly complete within 20 minutes.

We tested incremental tracking using sine waves with

periods 100 to 4000, scaled and offset such that the peak

is at 2000 (Qd) and the trough is at 400 (Q0
d). Each sine

wave was run for 40000 seconds so that we get at least 10

Figure 12: Typical response of ColoredPower to a sinu-

soidal target

Figure 13: Lag times vs. period for sine wave response with

PID gain values of 0.5, 0.08 and 0.3.

periods worth of response data. Figure 12 shows a typical

long-period response: good tracking on the falling curve and

a long delay on the rising curve.

We further measure performance by the phase lag between

the measured consumption and the target, determined by

minimizing root mean squared error between the measured

consumption and a sine wave with the target’s frequency and

amplitude (Figure 13). At long periods, the system tracks

well, improving for longer periods; below period 2000, when

the half-wave period is shorter than the convergence time,

tracking begins to break down, eventually failing completely

at high frequencies.

C. Heterogeneous Demand and Overriding

In the next set of experiments, we move closer to a

real-world situation, in which users have different demand

profiles and a small but changing percentage override the

system, in order to verify that the simplifying assumptions

used in the design of ColoredPower are not disrupted by

a more general case.

To model heterogeneous demand, we change the demand

profile from being fixed at (3, 6, 7, 4), to use (d3, d2, d1, d0)
such that each di is an integer chosen at random between

0 and 10 (inclusive). We measure impulse response using a

square wave as before, over 10 different randomly generated

demand profiles. Results are shown in Figure 14(a) and

Table II: we find that convergence times are comparable to



(a) Between > Green and Green (b) Between > Green and Yellow (c) Between > Green and Red

(d) Between Green and Yellow (e) Between Green and Red (f) Between Yellow and Red

Figure 11: Graphs showing the average case response to a square wave switching between colors in the demand spectrum

P,I,D Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

0.5,0.08,0.3 1240 ± 300 1690 1300 ± 520 1830
0.4,0.1,0.4 1220 ± 420 1780 1300 ± 480 1780

Table II: Convergence Times for Heterogeneous Demand

P,I,D Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

0.5,0.08,0.3 1240 ± 570 2370 1310 ± 490 2250
0.4,0.1,0.4 1250 ± 580 2080 1310 ± 530 2150

Table III: Convergence times for heterogeneous demand with

overrides

homogeneous demand, with the exception of mean fall time,

which is slightly worse. Repeating the sine wave experiment

for periods over 2000, we find that the tracking quality is

analogous as well.

For override, we model a small fraction over overriding by

having each device make occasional independent decision of

whether to override each color di (effectively adding them to

“black”). The likelihood of override is fixed at 5% and the

device decides on average every Toverride seconds, where

Toverride is distributed identically to Tfall and Trise. Results

are shown in Figure 14(b) and Table III: as can be seen, the

mean behavior is the same as without override, but the worse

case is higher, likely due to occasionally small perturbations.

D. Diameter Variance

Finally, we verify that the algorithm is scalable by in-

creasing both the diameter of the network and the number

Diameter Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

15 450 ± 104 590 915 ± 45 1000
20 400 ± 55 450 932 ± 54 1000
25 388 ± 88 540 928 ± 38 970
50 792 ± 382 1120 910 ± 139 1130

100 1138 ± 25 1170 865 ± 45 900

Table IV: Convergence times for varying diameter

of devices. For larger networks with increasing diameters,

we expect that the performance ColoredPower will be

better in terms of convergence time and accuracy for small

steps in the global target (due to higher demand flexibility)

but the lag time for a fast changing global target (like the

sinusoidal family) will be progressively worse.

The experimental setup uses rectangular boxes of increas-

ing area, with a fixed communication radius of 20. We use

a fixed width x = 20 for these experiments, and a varying

length y starting at 100. The number of devices on the

network is equal to y so as to maintain a dense distribution.

Since x is small compared to y we can use an approximation

of the true network diameter as the number of hops required

to cover the length y of the box (density is high enough that

the stretch from indirect travel is only a few percent [11]).

As can be seen from Table IV, performance improves

significantly for larger numbers of devices, but falls again as

lag rises. We expect that the degraded performance may be

partly due to the PID gain parameters being unable to scale

to arbitrary lag, and that a better controller may correct this.



(a) Heterogeneous

(b) Overrides

Figure 14: Comparison of homogeneous demand (top) and

heterogeneous demand response. The graph showing het-

erogeneous demand (center) also has the different demand

values marked with the appropriate colors. The graph show-

ing heterogeneous demand with overrides allowed (bottom)

includes the mean and std. dev. of the global demand values.

Figure 15: Lag times vs. period for sine wave response with

heterogeneous demand and PID gains of 0.5, 0.08 and 0.3.

V. CONTRIBUTIONS

The ColoredPower algorithm provides a scalable

mechanism for distributed shaping of small customer energy

demand. By maintaining a globally distributed summary

model of current system state, the algorithm allows managed

devices to take independent probabilistic actions that rapidly

adjust the total system consumption to match a desired level.

This algorithm thus addresses one of the key obstacles to the

deployment of small-customer energy demand management

systems.

There are many areas in which the algorithm might be

further improved. The feedback control is one obvious place:

the gains might be tuned better, and a more sophisticated

adaptive control could be substituted for the simple PID

controller to provide better scaling with network diameter

and to avoid variance-driven overshoots. We expect that the

fairness model can also be adjusted to allow faster response

by assuring that a smaller percentage of the devices are

waiting for timeouts at any given time. More robust aggre-

gation protocols are possible as well, though our previous

investigations [12] have ruled out some apparently attractive

options. Finally, an obvious next step toward the realization

of PACEM is to deploy the algorithm on prototype devices,

validating that it behaves as expected in a real network

environment before moving toward test deployments with

actual consumers.
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