A Basis Set of Operators for Space-Time Computations

Jacob Beal
3rd Spatial Computing Workshop
SASO 2010
Problem: Analysis for Spatial Computing

- Model-to-model: comparison: MGS, Proto, TOTA, LDP, etc... equivalent? complete?
- Platform-to-platform comparison: can we prove algorithms in the continuous model instead?

Continuous model = super-Turing?
Talk Outline

- General definition of space-time computation
- Basis set of operators
- Is Proto universal?
Amorphous Medium

<table>
<thead>
<tr>
<th>Var.</th>
<th>Definition</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Spatial region</td>
<td>compact Reimannian manifold</td>
</tr>
<tr>
<td>T</td>
<td>Time interval</td>
<td>$T \subseteq (-\infty, \infty)$</td>
</tr>
<tr>
<td>d</td>
<td>Distance fn on M</td>
<td>$d : M \times M \to \mathbb{R}$</td>
</tr>
<tr>
<td>c</td>
<td>Max speed of information</td>
<td>meters per second</td>
</tr>
<tr>
<td>$N(m)$</td>
<td>Neighborhoods on M</td>
<td>$N : M \to P(M)$</td>
</tr>
</tbody>
</table>
Computation as Function

- **Computed state:**
 - Instant: $S_t : M \rightarrow V$
 - Initial: $S_0 : M \rightarrow V$
 - Interval: $S_T : M \times T \rightarrow V$

- **Sensing:**
 - $E : M \times T \rightarrow V$

- **Computation:**
 - $C : M \times T \times E \times S_0 \rightarrow S_T$

<table>
<thead>
<tr>
<th>Var.</th>
<th>Definition</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Spatial region</td>
<td>compact Reimannian manifold</td>
</tr>
<tr>
<td>T</td>
<td>Time interval</td>
<td>$T \subseteq (-\infty, \infty)$</td>
</tr>
<tr>
<td>d</td>
<td>Distance fn on M</td>
<td>$d : M \times M \rightarrow \mathbb{R}$</td>
</tr>
<tr>
<td>c</td>
<td>Max speed of information</td>
<td>meters per second</td>
</tr>
<tr>
<td>$N(m)$</td>
<td>Neighborhoods on M</td>
<td>$N : M \rightarrow P(M)$</td>
</tr>
<tr>
<td>V</td>
<td>Function values</td>
<td>$\bigcup_{k \geq 0} \mathbb{R}^k$</td>
</tr>
<tr>
<td>S_t</td>
<td>State at time t</td>
<td>$S_t : M \rightarrow V$</td>
</tr>
<tr>
<td>S_0</td>
<td>Initial state</td>
<td>$S_0 : M \rightarrow V$</td>
</tr>
<tr>
<td>S_T</td>
<td>State on interval T</td>
<td>$S_T : M \times T \rightarrow V$</td>
</tr>
<tr>
<td>E</td>
<td>Environmental state</td>
<td>$E : M \times T \rightarrow V$</td>
</tr>
<tr>
<td>C</td>
<td>Computation</td>
<td>$C : M \times T \times E \times S_0 \rightarrow S_T$</td>
</tr>
</tbody>
</table>
Space-Time Universality

• Definition: a computation C' \textbf{implements} computation C if there is a restriction of S_T that is equal to S_t almost everywhere, and if for any non-equal point p, there is a sequence of points p_i converging on p such that
\[
\lim_{i \to \infty} S'_T(p_i) = \lim_{i \to \infty} S_T(p_i).
\]

• A basis set of operators B is \textbf{space-time universal} if, for any computation C that can be specified by some basis set of operators (we need not know what or how), it is possible to implement an equivalent computation C' using operators in B.

\textit{Note: definition of universality not dependent on a model.}
A computation C is causal if at every point (m,t), the value depends only on the past light cone.

A computation is finitely-approximable if all countable sequences of ε_i-approximations C_i with decreasing ε_i converge to an implementation of C.
Examples of Finitely-Approximable Causal Computation

Elapsed time since environmental cue

Distance to nearest environmental cue

Is an environmental cue currently present?
Talk Outline

- General definition of space-time computation
- **Basis set of operators**
- Is Proto universal?
Basis Set of Operators

- Pointwise Turing-universal: P
- Metric: n_d, g
- Neighborhood: n_v, n_r, n_m

metric tensor

g

n_d

n_v

n_r

n_m
Universality of Basis

Theorem: any finitely-approximable causal computation C can be implemented using the basis set of operators $\{g, n_d, n_v, n_r, n_m\} \cup P$.

Intuition:

- Use n_* to sample past state, environment, g
- Use P to compute approximate value
- Increasing sampling resolution converges
Talk Outline

- General definition of space-time computation
- Basis set of operators
- Is Proto universal?
Proto: Computing with fields

gradient -> source
gradient -> destination

width

+ 10

<= 37

dilate
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
 (<= (gradient src) n))
(def channel (src dst width)
 (let* ((d (distance src dst))
 (trail (<= (+ (gradient src)
 (gradient dst))
 d)))
 (dilate trail width)))
Application to Proto

Most operators are directly implemented:

- P implemented by Proto's point-wise operators
- $n_d = \text{nbr-vec}$
- $n_v = \text{nbr}$
- $n_r = \text{if}$ applied to field types
- $n_m = \text{min-hood}$

Missing: g ... but Proto has other metric ops, e.g. density, nbr-lag ... partial gap cover?
Open Problems

- What are appropriate computational cost models, and what finitely-approximable operators minimize cost?
- How can we do “Nyquist rate” approximation analysis?
- Can we establish function approximability bounds?
- What families of continuous proofs can be automatically translated to discrete proofs?
- Extension of theory to dynamic manifolds?
- How can Proto be extended to cover \(g \)?
- How powerful are other spatial computing models?
Contributions

- Direct-proof motivation for super-Turing models
- Operator-free definitions for space-time computation
- Basis operators for finitely-approximable causal computations: \(\{g, n_d, n_v, n_r, n_m\} \cup P \)
- Gap analysis for universality of Proto