Self-Managing Associative Memory for Dynamic Acquisition of Expertise in High-Level Domains

Jacob Beal
IJCAI 2009
SOMs as Associative Memory

- Fast, parallel content retrieval
- Generalize to representative models
 - Higher resolution for more frequent categories
- Unsupervised organization of inputs
 - Episodic memory, analogical retrieval, sensory maps
- Dynamics poorly understood
Self-Organizing Map

Set of models M_i, arranged in Euclidean space

(normally k-vectors in a grid)

Generalization of [Kohonen, '82]
Self-Organizing Map

Example ξ_t: find highest match quality $Q(M_p, \xi_t)$

(association = match w. incomplete example)

Generalization of [Kohonen, '82]
Self-Organizing Map

Blend into nearby models with $B(M_i, \xi_i, w(d(b,i)))$

(initial organization may use time-varying weight)

Generalization of [Kohonen, '82]
High-Level Domain Distributions

- Structured high-level models are very sparse
- Assumption: hierarchical clustering → “spikes”
 - m_i = probability of draw from ith spike
Growth of a cluster

- Blend: linear, $w(d) = \max(0, \alpha(1-d/r))$
- Free parameters: α, r
Analysis of Cluster growth

- Assume homogeneity
 - All growth on boundary
- Unconstrained, size n
 - boundary area = $O(\sqrt{n})$
 - $dn/dt = k/\sqrt{n} \rightarrow O(t^{2/3})$
 - Linear in α, r, m_0
- Eventual equilibrium
 - Size based only on m_i
 - Converge exponentially
Experiment: Initial Growth

- 100x100 SOM, 40 trials, 5x10^4 examples
Experiment: Initial Growth

- 100x100 SOM, 40 trials, 5x10^4 examples
Experiment: Convergence

- 100x100 SOM, 40 trials, 10^7 examples
Experiment: Convergence

- 100x100 SOM, 40 trials, 10^7 examples

Effect of SOM size on saturated area

Effect of mass on saturated area

Mass is quadratic?
Change of distribution

- Experiment with three cases:
 - Join: green added to red
 - Shift: green instead of red
 - Decay: no spike
Dynamics: Time Response

- 40x40 SOM, 40 trials, 10^6 old then 10^6 new
Dynamics: Parameter Variation

- Large SOMs grow similarly; m_2 speeds growth
Dynamics: Parameter Variation

- Large SOMs decay slower; m_2 slows decay
Erosion of Prior Knowledge

- New knowledge erodes the old unevenly
 - More similar knowledge is more likely to be lost
Contributions

- Analytic and experimental measure of SOM dynamics for high-level associative memory:
 - Growth of expertise set by boundary interactions
 - Initial $O(t^{2/3})$ growth fast enough w. high sample rate
 - Growth/decay ratio can support long-term retention of expertise
- Learning erodes prior knowledge unevenly