High-Level BioDesign Automation

Jacob Beal

SemiSynBio
February, 2013
Is biology too hard for abstraction?
High-Level BDA is possible now!

- Tool-chains for BDA
- Compiling from HLL to biological circuits
- Building computational device libraries
Vision: WYSIWYG Synthetic Biology

Bioengineering should be like document preparation:
Why is this important?

- Breaking the complexity barrier:
 - Multiplication of research impact
 - Reduction of barriers to entry

Sampling of systems in publications with experimental circuits
This gap is too big to cross with a single method!
The TASBE tool-chain architecture:

Organism Level Description

- **High level simulator**
- If detect explosives: emit signal
- If signal > threshold: glow red

High Level Description

- Coarse chemical simulator

Abstract Genetic Regulatory Network

- Detailed chemical simulator

DNA Parts Sequence

- Assembly Instructions

Cells

- Modular architecture also open for flexible choice of organisms, protocols, methods, ...

Collaborators:

- Ron Weiss
- Douglas Densmore
A Tool-Chain Example

(def simple-sensor-actuator ()
 (let ((x (test-sensor)))
 (debug x)
 (debug-2 (not x))))

If detect explosives:
emit signal
If signal > threshold:
glow red

Mammalian Target

E. coli Target
A Tool-Chain Example

If detect explosives:
emit signal
If signal > threshold:
glow red

Mammalian Target

E. coli Target
A Tool-Chain Example

Mammalian Target E. coli Target
A Tool-Chain Example

If detect explosives:
emit signal
If signal > threshold:
glow red

Mammalian Target

E. coli Target
A Tool-Chain Example

If detect explosives:
emit signal
If signal > threshold:
glow red

Mammalian Target E. coli Target
A Tool-Chain Example

If detect explosives:
emit signal
If signal > threshold:
glow red

Mammalian Target

Uninduced

Induced

E. coli Target

Uninduced

Induced
Focus: BioCompiler

Compilation & Optimization

High Level Description

If detect explosives: emit signal
If signal > threshold: glow red

Coarse chemical simulator

Abstract Genetic Regulatory Network

Detailed chemical simulator

DNA Parts Sequence

Other tools aiming at high-level design:
Cello, Eugene, GEC, GenoCAD, etc.

Assembly Instructions

Testing

Cells

Organism Level Description

High level simulator
Transcriptional Logic Computations

Decay

Protein

Signal = Concentration

RNA polymerase

RNA

Ribosome

DNA

promoter

regulatory protein

Alternatives:
PoPS
RNA concentration

Stabilizes at \(\text{decay} = \text{production} \)
Motif-Based Compilation

- Operators translated to motifs:

```
  IPTG → not → green
  ▼   ▼   ▼
  A    B    GFP
```

The diagram illustrates the flow of information, with IPTG activating LacI and then participating in a series of boolean operations (not, arg0) leading to the final output (green). The motif-based compilation approach leverages these operations to achieve the desired biological outcomes.
Design Optimization

(def sr-latch (s r)
 (letfed+ ((o boolean (not (or r o-bar)))
 (o-bar boolean (not (or s o))))
 o))

(green (sr-latch (aTc) (IPTG)))

Unoptimized: 15 functional units, 13 transcription factors
Design Optimization

(def sr-latch (s r)
 (letfed+ ((o boolean (not (or r o-bar)))
 (o-bar boolean (not (or s o))))
 o))

(green (sr-latch (aTc) (IPTG)))

Final Optimized:
5 functional units
4 transcription factors

Unoptimized: 15 functional units, 13 transcription factors
Automated Synthesis of Complex Designs

Example: 4-bit adder

Example: 4-bit counter

Optimized compiler already outperforms human designers
Barriers & Emerging Solutions:

• Barrier: Availability of High-Gain Devices
 – Emerging Solution: combinatorial device libraries based on TALs, ZFs, miRNAs

• Barrier: Characterization of Devices
 – Emerging solution: TASBE characterization method

• Barrier: Predictability of Biological Circuits
 – Emerging solution: EQuIP prediction method
TASBE Method: Calibrated, Precise Characterization

TAL14

TAL21
Characterization → High Quality Predictions

Non-Normalized Cascade–LmrA–TAL14–Interpolated–Prediction transfer

Normalized Cascade–TAL21–TAL14–Interpolated–Prediction transfer

LmrA → TAL14

TAL21 → TAL14
High Quality Cascade Predictions

Non-Normalized Cascade–LmrA–TAL14–Interpolated transfer curve

Non-Normalized Cascade–TAL21–TAL14–Interpolated transfer curve

LmrA \rightarrow TAL14

Distribution + dynamics models \rightarrow good predictions
High-Level BDA is possible now!

• EDA tool-chain approach works for BDA
• Optimized biological circuits can be generated automatically from high-level specifications
• Emerging solutions for key barriers: device libraries, characterization, prediction

• Many opportunities for EDA tool adaptation:
 – Combinatorial device design
 – Flexible protocol automation
 – Device characterization
 – Circuit optimization, verification, safety, debugging
.. and going from cells to processors...

Spatial Computing Process Management

Inference resources focused proportionally on areas of interest

Distortion of computation around temporary and permanent faults

Proto global-to-local compilation & manifold computation model

ASH volumetric region management

[Pruteanu, Dulman & Langendoen, ‘10]
Acknowledgements:

Raytheon
BBN Technologies
Aaron Adler
Joseph Loyall
Rick Schantz
Fusun Yaman

MIT
Ron Weiss
Jonathan Babb
Noah Davidsohn
Ting Lu

Boston University
Douglas Densmore
Evan Appleton
Swapnil Bhatia
Traci Haddock
Chenkai Liu
Viktor Vasilev

DARPA