Learning from Snapshot Examples

Jacob Beal
MIT CSAIL
April, 2005
Associating a Lemon

Mind

Learner
Associating a Lemon

Mind

Learner
Associating a Lemon

- Space is cluttered with objects
Associating a Lemon

- Space is cluttered with objects
Associating a Lemon

- Time may be skewed externally or internally
Associating a Lemon

- Time may be skewed externally or internally
Associating a Lemon

- Time may be skewed externally or internally
Associating a Lemon

- Time may be skewed externally or internally
Associating a Lemon

- Time may be skewed externally or **internally**
Snapshot Learning Framework

- Bootstrapping feedback cycle
 - better model → better examples → better model
● What are the targets?
● How can it choose good examples?
Targets

“Lemon” would be best, settle for its components

- Each percept is a target
- Learn each target independently

This means we'll learn each association several times
Examples from Samples

Input is DT sampling of evolving perceptual state

- Incrementally select examples from samples
- Can only learn about things coextensive in time

Solvable by buffering with short term memory
Relevance of a Sample

- Create a relevance measure for each channel
 - High-relevance should indicate useful content
Sparseness Assumptions

At the right level of abstraction, the world is sparse

- Percepts are sparse across time

 most of life doesn't involve lemons

- Percepts are sparse at each sample

 most of life doesn't appear when the lemon does
Sparseness \rightarrow Irrelevant periods

Lots of irrelevant periods \rightarrow lots of relevant periods
Be choosy!

Many chances → take only the best
- a few good >> many iffy
- avoid overfitting from closely correlated examples

Relevance peaks?
Are peaks a good idea?

Consider the relevance measures as signals:

- Shape
- Color
- Smell

Projecting to a single measure loses a lot of info...
Top-Cliff Heuristic

- Generalizing “peak” to multiple dimensions
 - Some channel's relevance is falling
 - No channel's relevance is rising
 - All *relevant channels* have risen since their last drop

(channels recently co-active with currently active channels)
Top-Cliff Examples

Time

Relevance

Color

Shape

Smell

snapshot

snapshot

1 2 3 4 5 6

Time
Experiment: Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order
Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order
Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order
Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order
Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order
Learning from Examples

- Sequence of randomly generated examples
- Transition between examples in random order
Applying Snapshot Learning

- Target Model: \{possible associate, confidence\}
- Modified Hebbian Learning
- Relevance = \# of possible associates present
- Extra virtual channel for target percept
 - Relevance 1 if present, 0 if absent
 - Determines if example is positive or negative
Modified Hebbian Learning

• Initial set: percepts from first relevant period
 - Late entry is possible but difficult
• Examples adjust confidence levels
 - Positive Example: +1 if present, -1 if absent
 - Negative Example: -1 if present, 0 if absent
 - Confidence < P → prune out associate!
 • Same channel as target are harder to prune
 • If no associates, restart
Experimental Parameters

- 50 features
- 2 channels
- 1 percept/feature/channel = 100 targets
- Randomly generated examples, 2-6 features/example
- Random transition between examples
Top-Cliff vs. Controls

- 10 trials of 1000 examples each
Predictable Variation w. Parameters
Resilient to Adverse Conditions
...much more than the controls...
Experiment: Learning w/o a Teacher

What if there's no teacher providing examples?

- A teacher guarantees there are associations...
- ... but *world* has lots of structure!

- Without a teacher, the system will still find targets and examples.

Will they teach it anything?
4-Way Intersection Model

• 5 locations (N, S, E, W, Center)

• 11 types of vehicle (Sedan, SUV, etc.)
 – Cars arrive randomly, with random exit goals.
 – Arrive moving, but queue up if blocked.
 – Moving or starting moving takes 1 second.
 – Left turns only when clear.

• 6 lights (NS-red, EW-green, etc.)
 – 60 second cycle: 27 green, 3 yellow, 30 red
 – Go on green, maybe yellow, right on red when clear.
Intersection Percepts

• 6 channels: N, S, E, W, Center, Light
 – Cardinal directions: type of 1st in queue, exiting cars
 – Center: types of cars there
 – Light: two active lights
• Distinguishable copy of previous percepts
• Random transitions, as before

(\text{L NS_GREEN EW_RED PREV_NS_GREEN PREV_EW_RED})
(\text{N}) (\text{S PREV_CONVERTIBLE}) (\text{C CONVERTIBLE})
(\text{E SEDAN PREV_SEDAN}) (\text{W COMPACT PREV_COMPACT})
What does it learn?

- After 16 light cycles:
 - Lights don't depend on cars
 - Stoplight state transitions (97% perfect)

\[
\begin{align*}
\text{EW_GREEN} &= \text{PREV_NS_RED}, \text{PREV_EW_GREEN}, \text{PREV_NS_YELLOW, NS_RED} \\
\text{EW_YELLOW} &= \text{PREV_EW_YELLOW}, \text{NS_RED}, \text{PREV_EW_GREEN}, \text{PREV_NS_RED} \\
\text{EW_RED} &= \text{NS_YELLOW, PREV_EW_RED, PREV_NS_GREEN, NS_GREEN} \\
\text{NS_GREEN} &= \text{PREV_EW_RED, PREV_NS_GREEN, EW_RED, PREV_EW_YELLOW} \\
\text{NS_YELLOW} &= \text{PREV_NS_YELLOW, EW_RED, PREV_NS_GREEN, PREV_EW_RED} \\
\text{NS_RED} &= \text{PREV_NS_RED, PREV_EW_GREEN, EW_GREEN, PREV_NS_YELLOW} \\
\text{PREV_EW_GREEN} &= \text{PREV_NS_RED, NS_RED, EW_GREEN} \\
\text{PREV_EW_YELLOW} &= \text{PREV_NS_GREEN, PREV_NS_RED, NS_GREEN EW_RED} \\
\text{PREV_EW_RED} &= \text{PREV_NS_YELLOW, NS_YELLOW, EW_RED, NS_GREEN, PREV_NS_GREEN} \\
\text{PREV_NS_GREEN} &= \text{PREV_NS_YELLOW, NS_YELLOW, PREV_EW_RED, EW_RED, NS_GREEN} \\
\text{PREV_NS_YELLOW} &= \text{EW_GREEN, NS_RED, PREV_EW_RED, NS_YELLOW} \\
\text{PREV_NS_RED} &= \text{PREV_EW_RED, EW_RED, PREV_EW_YELLOW, NS_GREEN}
\end{align*}
\]
Reconstructed FSM
Summary

• Snapshot learning simplifies a hard problem
 – Top-Cliff finds sparse examples incrementally
 – Feedback improves quality of examples over time
 – It's easier to find good examples for single targets

• Snapshot learning works for sequences of examples or a predictably evolving state

• Pretending there's a teacher helps learn!