Near-Optimal Distributed Failure Circumscription

Jake Beal
MIT CSAIL
Why is this cool?

* Powerful Network Primitive

 “Quarantine” zone for interim atomic transactions
 Patch-repair for routing tables
 Improved bounds for self-stabilizing algorithms
 Abstraction barrier for integrating “error mode” and “normal mode”

Exception handling for networks?
Why is this different?

- Self-organizing distributed algorithm
- No infrastructure assumptions
- Scalable to million/billion range
- General exception framework
- Spatially embedded network (less important)
Talk Outline

✝ Problem: Failure Circumscription
✝ Context: Amorphous Computing
✝ Detecting Circumscription Locally
✝ The Algorithm
✝ Further Directions
BostonNet Scenario

(Metropolitan Ad-Hoc Network)

+ ~10^7 Nodes
+ ~10^3 hops diameter
+ Peer-to-peer
+ No central control
Network Model

* Embedded in Euclidean space
* Spatially local links (e.g. wireless)
* Perfect communication (via threshold)
* Partial synchrony (drifting clocks)
* Stopping failures (crashes)

 No partitions
What is “Failure Circumscription”?

Connected set containing boundary of a connected or almost-connected failure.
Long-Distance Circumscription
“Near-Optimal Distributed”

+ Optimality

 Minimum diameter circumscription

 May be difficult to determine!

 + Minimum spanning tree problem

 + Big problems swamp small problems

 Goal is actually smooth scaling

+ Distributed

 Self-Organizing, Peer-to-Peer

 Centralized = Vulnerable
Context: Amorphous Computing

Persistent Nodes: A Family Tree

- Persistent Node
- Robust Hierarchy
- Ad Hoc Routing
- Distributed Hash Table
- Failure Circumscription
- RAMBO Node
Anatomy of a Persistent Node

1. Outward gradient defines regions
2. Reflector returns movement heuristic
3. Particles compete to name successor
4. Winning particle chooses a successor
PNHierarchy

Level 1

Level 2

Level 3
Hierarchy Requirements

† Uniform depth - “levels”
† O(lg diam) levels
† Maximum cluster diameter $d_i = kb^i$
 $$d_i \leq b \times diam \text{ at root}$$
† Neighbor relation within $3d_i$
 “Tight” within d_i
Big Idea

Neighbors ≈ topology sketch
“Provably Dead”

A set of groups D is provably dead if:

- D forms a tight clique
- The tight neighbors of D can be connected
- No tight neighbor is still a neighbor of a group in D
Theorem: Following a failure F, let i be a level of hierarchy in which, for every member of the border clusters C_{Bi}, all of its pre-failure tight neighbors are either still neighbors or else provably dead. Then the union of neighborhoods of border clusters, $C_{Bi} \cup N(C_{Bi})$, contains a connected component which circumscribes the failure F.

Provable Death \rightarrow Circumscription
Corollary: Following a failure F, let i be a level where some member of the border clusters C_{Bi} is no longer related to a pre-failure tight neighbor which is not provably dead. Then every cluster in C_{Bi} is related by a chain of neighbor relations to a cluster missing a non-provably dead neighbor.
Theorem: Following a failure \(F \), let \(d(B_F) \) be the maximum distance between any two machines in the border \(B_F \) following the failure, and \(d'(F \cup B_F) \) be the maximum distance between any two failing or border machines, before the failure. Then \(F \) is circumscribed by \(C_{\bigcup N(C_{\bigcup N(C_{\bigcup N(C_{\bigcup N(C_{\bigcup N(C_{\bigcup N(C_{\bigcup...}}}}}}}}}} \) for every level \(i \) where \(d_i \geq \max(d(B_F),d'(F \cup B_F)) \)
\[d_i \geq \text{diam} \rightarrow \text{Circumscription} \]

Corollary: Under the above conditions, any cluster contained entirely within \(F \) is provably dead following the failure.

Corollary: Under the above conditions, for any member of \(C_{B_i} \), every pre-failure tight neighbor is either still a neighbor or else provably dead.
k-Competitive for Convex Failures

Theorem: For a convex failure F, let i be the minimum level for which $d_i \geq d(B_F)$. The diameter of the circumscription component of $C_{B_i} \cup N(C_{B_i})$ is $11b$-competitive with the diameter of an optimal circumscription (e.g. 22-competitive if d_i is powers of 2).
Non-Convex Failures

This is the optimal circumscription

But the whole net will get tapped!

Don't care because it's a disaster!
The Algorithm

* For each machine in the border:
 * Wake up level i neighborhood
 * Machines in level i neighborhood:
 * Add self to circumscription
 * Discover neighbor liveness
 * Propagate neighbor info via gossip
 * If some neighbor in B_i is not provably dead or alive
 * Increment i and start again
Contributions

- Failure Circumscription Algorithm
 Competitive with optimal for convex failures
 Proportional to diameter for concave failures
- Powerful new tool for engineering failure response in distributed algorithms
 Self-organizing, not centralized
 Establish “Quarantine Zones” for failures
Further Directions

- Applications
 - Local Patch Repair for Routing
 - Interim Atomic Data Storage
- Continuous Failure Analysis
- Partition Tolerance
- Distributed “Try-Catch”
Acknowledgements

Thank you for lots of help from:

- Seth Gilbert
- Tim Shepard
- Nancy Lynch
- Gerry Sussman & Hal Abelson