Does Geographic Clustering Still Benefit High Tech New Ventures? The Case of the Cambridge/Boston Biotech Cluster

Thomas J. Allen Ornit Raz Peter Gloor

In this age of ubiquitous broadband connectivity, one might expect that the effect of separation distance on communication might have disappeared or at least be diminished.

If this is true, then one of its effects would be to nullify the arguments for similar firms, especially those newly formed and technology-based to cluster geographically. Now there are many arguments for the benefits of geographic clustering, not the least of which is that a concentration of firms will attract resources, particularly of the human kind into an area. Still, the potential for synergy among like firms is considered a strong factor for locating in what often becomes a high rent district. It is widely believed that propinquity will stimulate communication and scientific exchange among firms, especially among small firms formed on the basis of a common technology. This is one of the basic premises supporting the argument for the geographic clustering of newly-formed high technology firms (Powell et. al, 1996). Extensive research in recent years has demonstrated economic benefits for firms sharing a common technology within the same geographic cluster. Researchers identify different benefits to be derived from clustering. It will be easier to attract specialized staff, because the qualified pool of applicants is much larger. It is also easier to find venture capital, suppliers, and support services within a cluster (Saxenian, 2003). Claims have also been made for the synergistic benefits of firms sharing scientific knowledge, especially if there are university laboratories near the cluster (Saxenian, 2003).

Several studies have inferred inter-firm communication from the evidence of copublishing and co-patenting across firms, (Schilling & Phelps, 2005; Porter & Powell (2006); Porter, Whittington & Powell, 2007). This is certainly a valid and effective way of detecting inter-firm communication, however a good amount of scientific exchange may occur that does not result in such products and does not therefore appear in such publicly accessible records. This less formal scientific exchange across firms while resulting in a patent or paper may still produce value for the communicating companies.

Of course, the arguments for communication being related to proximity, in other contexts have been around for a long time. Allen (Allen and Henn, 2006), for example, has shown the probability of regular technical communication among engineers to decline as the inverse square of the distance between their work stations.

This decline in probability was predicated on the need for face to face contact. So it does nothing to dispel the belief that modern media have diminished that need. This is in spite of the fact, that Hauptman and Allen (1987) showed face-to-face to be the preferred medium for complex or abstract messages, such as those typifying scientific communication. We are now in a new millennium and their work is more than twenty years old. Technology has advanced since their time and, probably more importantly, a new generation of scientists, more at home with modern media, has arrived on the scene. So today we may find less need for companies to cluster geographically. Scientists can potentially communicate effectively across firms through media other than face to face.

Many contemporary observers are now telling us that the day has arrived when we can forget about distance in its effect on communication. In fact, an eminent economist, Frances Cairncross has declared (in the title of her book) that distance is dead, "...new communications technologies are rapidly obliterating distance as a relevant factor in how we conduct our business and personal lives..." (Cairncross, 2001).

Does Distance Really No Longer Matter?

If Cairncross and others are really correct, there is no longer a rationale for the geographic clustering of new venture firms. Therefore one of our purposes in this research is to measure the effects of geographic proximity on communication among firms. Allen's work is both dated and based upon the study of communication among

engineers and scientific all working within single organizations. A question remains whether Allen's observations carry through to communication among scientists in separate firms and living in a new millennium. The availability of an already existing biotechnology cluster in parts of Cambridge and Boston, Massachusetts provides a convenient opportunity to test this question.

This biotechnology cluster developed adjacent to MIT in Cambridge, Massachusetts. This so-called 'cluster' of mostly newly-formed biotechnology firms has come about over the past 20 to 30 years and continues to grow. Depending upon one's definition of what a biotech firm is, the number can range from 80 to over 200 firms. The Massachusetts Biotechnology Council, an industry trade association lists over 500 companies as members. We will be a bit more conservative and restrict our selection on the basis of location and the nature of the firm's principal activity. We thus end up with fewer than 100 companies. Nevertheless, this is a sufficient size for a meaningful study.

Our Basic Hypothesis:

When firms locate near one another a number of factors potentially influencing communication come into play. First of all, formal intentional communication is easier. Walking across the street is certainly easier than traveling a greater distance by car or plane. Informal communication is also more likely due to chance encounters. Finally, and influencing chance encounters, is the use of common facilities and locations such as restaurants, coffee shops, fitness centers, etc.

As far as we know, measurement similar to what Allen and his colleagues did for personto-person communication has never been made for inter-firm communication. However, we see no reason that such communication would not be negatively affected by physical distance. We will in several ways test that hypothesis in this paper:

First we will ask whether those firms located within the geographic bounds of the cluster communicate more themselves and show greater centrality in the communication network

among organizations than do firms in the general region but outside the geographically defined boundaries. Then we will test whether the total amount of scientific communication reported by any organization with other organizations in the study will decline with the mean geographic distance between that organization and those other organizations.

Research Method

The Geographic Cluster

The geographic extent of the cluster is defined through the use of postal zones (Zip Codes). We choose these on the basis of the concentration of firms shown in the MIT Sloan School of Management Entrepreneurship Center's map of the location of firms (Figure 1).

Some of these postal zones cover part of Cambridge and others were in the City of Boston. They were generally in the vicinity of Harvard University, MIT, Boston University or Harvard Medical School. Organizations located outside of these regions will be employed as a control group.

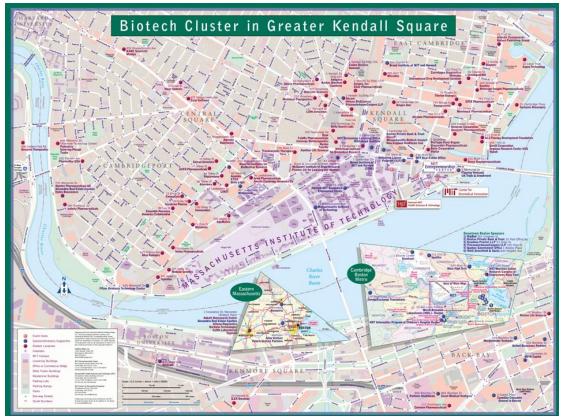


Figure 1 A Street Map of Cambridge and Boston, Massachusetts Showing the Locations of Biotech Companies. (Courtesy of MIT Sloan School of Management Entrepreneurship Center).

Biotechnology Companies

We were able to create an accurate listing of firms with the kind assistance of the Massachusetts Biotechnology Council and the MIT Entrepreneurship Center. We compiled a database listing of Boston's' biotechnology firms, pharmaceutical firms, hospitals and universities. Around 90 firms, hospitals and universities are located within the geographic cluster (Boston and Cambridge) while another 100 firms are located in a variety of suburbs. In order to focus our attention onto those firms working on human therapeutic applications of biologically-derived pharmaceuticals, we eliminated all companies that were in the agricultural, veterinary, and environmental products and services fields from the initial listings. We also eliminated those with a primary focus on diagnostics as opposed to therapeutics. This left us with a final sample of around 70

firms. Of these, we received data from 40¹ companies. In each of the cooperating companies, we select a random listing of approximately ten percent² of their bench-level scientists. The chosen scientists must have at least a PhD or MD level of education and be actively engaged in research.

Big Pharma

A number of 'Big Pharma' or large broadly-based traditional pharmaceutical firms have recently located research operations in the Cambridge/Boston area. The goal of these larger firms is undoubtedly to tap into the scientific communication network that may exist among the smaller, newly-formed firms. Their longer-term goal is probably to acquire new technology and products through licensing from or acquisition of the firms owning the intellectual property. The large pharmaceutical firms are also included in our sample, to determine the degree to which they are successful in attaining this goal³.

A Control Group

Many of the firms, from which we collected data, are located outside of our selected postal zones. These more distant firms provide a convenient control group for comparison with the experimental group located within the selected postal zones.

_

¹ The failure to reach all 70 companies is not due to low response from the companies. In fact, only one company declined to participate. It was instead due to our inability to reach all 70. This, in turn, was due to a lack of resources and time. There were only two of us working at that point in the study.

² In companies with fewer than 10 scientists, we sample all of those engaged in bench level research. Cooperation is, of course, voluntary and the overall research plan has been reviewed and approved by the MIT Committee on the Use of Human Experimental Subjects.

³ While the presence of the larger firms in many ways is a benefit to the startups, since they bring resources in the form of much needed money for licensing or even outright acquisition, this is not universally viewed in a positive light. One entrepreneur described the relationship of firms such as his with 'Big Pharma' as "...a bunch of monkeys playing with gorillas". He was very concerned with protecting his intellectual property or at least getting what he considered a fair price for it.

Universities

There are five large research-based universities located within the selected postal codes. These are included in the study in a less direct way. Instead of asking scientists in the universities to report their communications, we rely on the reports of those in firms, who communicate with university scientists. Our reasoning for this is nothing more complex than ease of data collection. The initial phase of collecting data only on communication will be followed by a web survey in which we will seek further information on the exact university laboratories with which communication took place, the origins of the contact, etc. In looking at the universities, we hope to find the degree to which firms originating from these universities retain their connection with their 'mother' organizations as well as the degree to which firms born elsewhere are able to develop relations with universities within the region.

Measuring the Structure of Communication Networks; A Web-based Research Method

As noted before, many current studies rely upon patent and publication databases and therefore are unable to detect communication that while significant may not result in such products. To capture this type of communication, we adapted a tool that we had previously used in the study of communication among individual scientists within organizations. In addition to being sensitive enough to capture much of this additional communication the web-based tool is also easy to use and is able to sense the dynamic aspect of the communication network as it evolves.

An email message with a link to a web page is sent once each week to each scientist. The web page contains a list of the names of the biotech/pharmaceutical organizations (including universities and hospitals) in the area. An example is shown in Figure 2. A scientist has merely to open the page and by mouse-click indicate which organizations (if any) that scientist had contact with on *that particular day*. This simple exercise, which can be completed in one minute or less, is then repeated on randomly chosen days, approximately once per week for a period of six months. The results collected with this

tool provide a measure of the pattern of communication among the organizations and this can be related to measures of success.

The software tool we use to analyze the network is called *CONDOR*⁴. CONDOR reveals the evolution of interaction patterns in social networks. It provides an environment for the visual identification and analysis of the dynamics of communication in social spaces⁵. (Gloor, 2006).

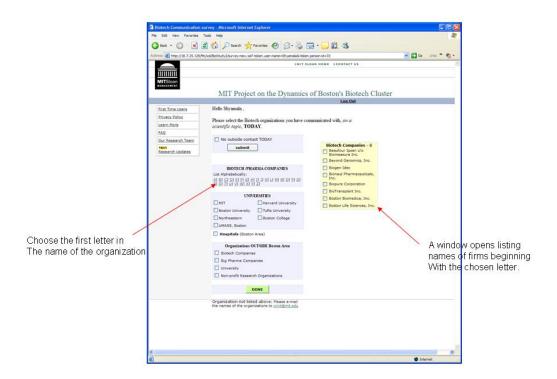


Figure 2 An Example of the Structure of the Web Page Used in Collecting Communication Data.

⁴ Formerly TeCFlow. ⁵ The framework is based on a multi-year research project on Collaborative Knowledge Networks by a global group of universities under the leadership of the MIT Center for Collective Intelligence and the Center for Digital Strategies at the Dartmouth Tuck School of Management (see http://www.ickn.org/ickndemo/). In this analysis, we will not use the dynamic capabilities of CONDOR, simply the static analysis of the network that emerges from our measurement of communication patterns reports.

Data Analysis

The first step in our data analysis is to plot the network of communication among scientists in the organizations in our sample (Figure 3). In this plot, each organization is represented as a network node. Pairs of nodes are connected if there is any communication reported between them. The length of each connection is inversely proportional to the amount of communication reported over the six month period of the study⁶.

The network of Figure 3 exhibits an interesting characteristic. There is a set of organizations in the center that have a higher than average level of communication among themselves. Thus, there appears to be a sub-cluster, or perhaps a super cluster of high communicating organizations concentrated in the center of the overall network. It will be interesting to examine the membership of this super cluster (Figure 4).

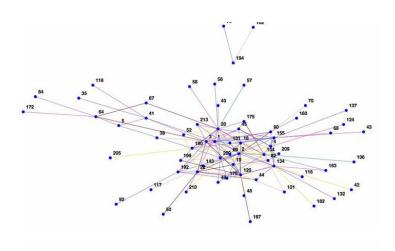


Figure 3 A View of the Interorganizational Scientific Communication Network as Reported by Scientists in a Sample of Biotech Firms and Organizations in the Area of Eastern Massachusetts, USA.

-

⁶ Since it was impossible to visit and recruit all 40 collaborating firms on the same day, we used a sliding window. Data collection began on a slightly different day for each firm and continued for six months. So the six month period of data collection is slightly different (but overlapping) for each firm. This could have had serious for the study had something critical had affected the industry during the study. Fortunately for the investigators, no such untoward event occurred.

However, before we get into the task of identifying membership⁷, let us look at one of our basic hypotheses. If the geographic propinquity of firms in a cluster enables more intense communication, this should be observable in our network. As a first step in testing this, we divided the entire set of organizations into two groupings viz., the previously defined experimental and control groups.

Using the degree centrality of each node within the network (reference) as a metric for communication, we can compare the two groups (Figure 4). This reveals a significant difference in their centrality or embeddedness in the network. Those organizations within the geographically defined cluster region have nearly twice as many connections with other organizations (Figure 4). Since centrality indicates the number of other firms with which a given firm may be in contact but not the amount of contact, we also compare the experimental and control firms on the basis of the amount of communication reported (Figure 5). Here we find that scientists in firms that are within the geographic bounds of the cluster reported that along with distributing communication across a larger number of firms, they also simply communicated more. Thus we have the first elements for a test of our basic hypothesis. Physical propinquity within a cluster may or may not be the cause of greater communication but it certainly correlates very strongly with the amount of inter-organizational scientific communication and assuredly makes it easier to attain greater levels of communication.

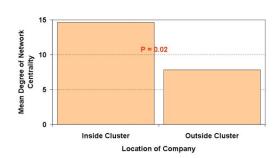
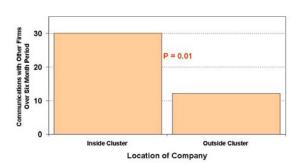



Figure 4 Mean Degree Centrality of Organizations in the Experimental and Control Groups.

No organizations, aside from universities will be specifically identified. Understanding what can result when people can identify high and low communicators, for example, we have had a standard policy, for many years of concealing identities. We will therefore identify only classes of organization.

Figure 5. Mean Level of Communication of Organizations in the Experimental and Control Groups.

With some support for the communication benefits of clustering, let us learn a little more about the nature and makeup of the Cambridge/Boston cluster. We will do this graphically first by arbitrarily defining an area of concentration within

the network of Figure 3. This will tell us the types of organization to be found within the region of intensive communication seen in the center of Figure 3.

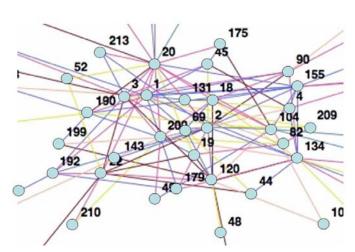


Figure 6. The Center of the Network

Categories of Organization

Now to complicate things but make the analysis more interesting, not all of the organizations in the network of Figure 3 are newly-formed Biotech firms. As previously mentioned, there are also five universities, six⁸ large scale broad-based (traditional)

pharmaceutical firms in the overall network, as well as five larger, more established biotechnology firms. So let us look at each of these classes of organization separately.

⁸ Two of these have merged since the study. However, we will continue to treat them as separate in the study.

Harvard (+Medical School) and MIT

These were the two principal sources from which a majority of the new biotech firms originated. It is therefore not at all surprising to find their 'children' tightly connected to them. The parent locations are probably the chief reason why the newly formed firms located where they did. In fact, our choice of defining the geographic limits of the cluster by postal codes was based upon the locations of the 'parent' universities. We chose postal code zones that included the addresses of the principal universities. In addition, although the communication data cannot tell us this, interviews indicate that proximity to these universities was also a major factor underlying the location decisions of the major pharmaceutical firms.

What about "Big Pharma"?

As stated above, there are five major pharmaceutical companies that have located in or near the experimental region. One of these has R&D activities at two sites about 33 Km apart. So there are really six sites at which these large companies are active in R&D. Certainly, a major reason for these large firms locating in the Boston area is the presence of so many newly-formed Biotech firms in that region. To put it simply, they want to become members of the scientific communication network. In addition to university contact that their location enables, we would speculate that since most major pharmaceutical firms are working to develop new biologically based drugs, that they see membership in the network as an aid toward that goal. So how successful have they been? One does not have to look very long at Figure 6 to conclude that at least four of

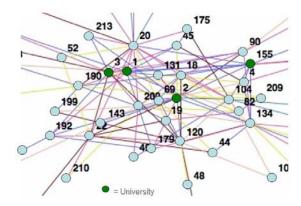


Figure 7. Center of the Network, Highlighting the Universities.

these firms have been very successful in gaining network membership. They are centrally located in the heart of the super cluster. Their scientists are in close communication with scientists in several smaller firms as well as in the universities.

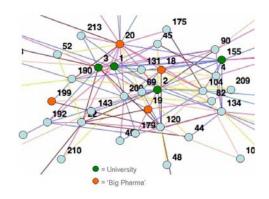


Figure 8. Center of the Network Highlighting the Large Pharmaceutical Firms.

'Big Bio'

We designated a subset of the biotechnology firms as 'Big Bio' simply on the basis of size and age. Such firms as Biogen, Amgen, Serono, Genzyme and Millennium are no longer new ventures. They are all large firms and have been in existence for more than a few years. Where are they in the network? Even a quick look at Figure 9 indicates that they are at least as central to the network as the larger pharmaceutical firms.

Comparisons on the Basis of Type of Organization.

We can see from the network that both 'Big Pharma' and 'Big Bio' are very well connected into the central core. The universities are as well but that is no surprise since they are the parents from which most of the new ventures

originated. We will now look and see in a more quantitative manner, just how embedded

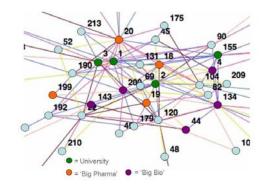


Figure 9. Center of the Network Highlig 1

they are. At least in the case of the 'Big Pharma', this will be a test of how successful

they have been in invading the network originally formed among the new venture firms. That they have been successful can be clearly seen in Figure 10.

Perhaps the most interesting aspect, though, is the low value of mean centrality for the small biotech firms. These are the firms who initially formed the network. Of course the universities were there from the beginning too, so it is no surprise to find them with a high degree of centrality. The larger firms were for the most part later arrivals and they are on average more deeply embedded than the startup firms.

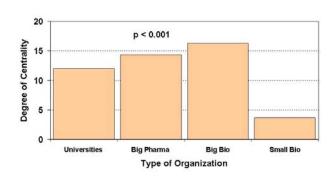


Figure 10. Mean Network Centrality for Four Types of Organization.

This certainly seems strange, but one possible explanation might be that these firms are not as old as we might initially assume. The set might be dominated by newly formed companies that haven't had sufficient time to embed themselves in the network.

However, a closer look at the data

shows this explanation to be invalid. Instead of the younger small companies having lower network centrality, they actually have on average a higher degree centrality than do the older small firms (r = -0.45, p = 0.05).

Network centrality tells us with how many organizations, on average, organizations of a particular type communicate. It does not reveal just how much communication actually occurs. Turning to that measure, we find the smaller firms in a much stronger position (Figure 11). Although the differences that appear in Figure 11 are not significant statistically, we can say that the smaller firms do not appear to be any less active in interorganizational scientific communication than their larger neighbors.

Once again, however, there are what appear to be anomalous results for the smaller biotech firms. The older firms in this category report significantly less (r = -0.51, p = 0.02) scientific communication outside of the firm than do the larger firms.

What we seem to be seeing here is that the newly formed firms work harder to establish scientific exchange with many neighboring organizations (not just with their university parent) and as they grow older, they narrow the number of targets for this activity and increase the amount of communication with this smaller number of organizations.

Distribution of Communication by Type of Organization.

As we have seen, we are dealing with at least four types of organization in the present network. In addition, we might add hospitals, with which there is a substantial amount of reported communication and several types

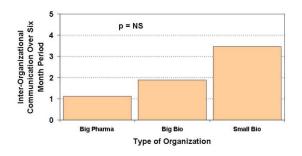


Figure 11. Amount of Interorganizational Scientific Communication Reported by Three Types of Organization.

of organization outside of the area of our attention (Eastern Massachusetts, within 100 Km of Cambridge). There was also reported a high degree of communication with these more distant organizations. So now let us examine the amount and distribution of scientific communication among the organizations in which we sampled communication as well as their communication with other firms and organizations which we did not directly sample.

Aggregating the organizations into the following four classifications:

Universities

Large Pharmaceutical Firms (Big Pharma)
Large Biotechnology Firms (Big Bio)
Small Biotechnology Firms (Small Bio)

We computed the proportional distribution of scientific communication reported with these organizational types (Figure 12). As one would expect, the universities house the most frequently chosen communication partners. This is to be expected for the small biotech firms. Most originated as spin-offs from the universities and their founders and principal staff members maintain their connections with faculty, postdoctoral fellows and graduate students whom they came to know there.

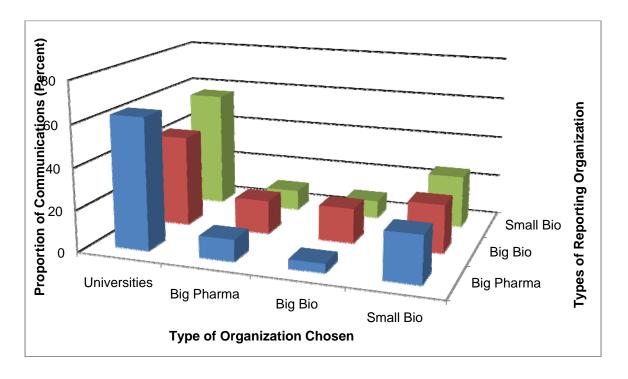


Figure 12. Proportional Distribution of Communication Within Eastern Massachusetts by Type of Recipient Organization.

What is a bit surprising is the indicated preference of the large pharmaceutical firms for communication with the universities over the small biotechs. Certainly the motivation for contact with the universities is understandable. However, the belief of many is that these firms located themselves in the region because of the presence of so many small biotechs there. The belief is that they were looking for licensing and acquisition opportunities. In Figure 12, we can see that there is substantial contact between Big Pharma and Small Bio, but it doesn't approach the degree of contact of either with the universities. Based on their high degree of centrality in the network, we were led at first

to conclude that the large pharmaceutical companies played a major role in the success of the cluster. Upon viewing Figure 12, we are led back to the belief that the universities are the binding force that initiated the cluster and still holds it together. The large firms may now add to this, but even they are in the region primarily because of proximity to the universities. This conclusion will be strengthened by what we see next.

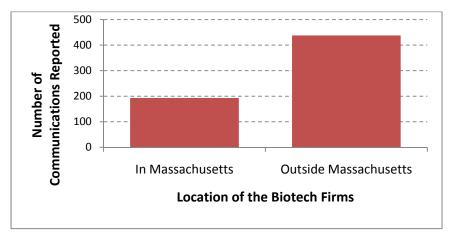


Figure 13. Comparing the Levels of Communication with Biotech Firms Within and 'Outside of the Boston Region'.

Communication Outside of the Region.

In Figure 13, we find a surprising set of results. Referring back to Figure 2, the reader will see that there is a section at the bottom of the web page where the scientist can report communication with organizations, "... outside of the Boston Area (i.e., outside of Eastern Massachusetts). A very large amount of communication of this type was reported, particularly with 'biotechnology' firms⁹. In fact, there is more scientific communication reported with biotech firms outside than within the Boston area. Now if this were just scientists in the major pharmaceutical firms who were reporting these communications it would be more understandable. After all, the large firms have only recently transferred large numbers of scientists to Boston and Cambridge and these

-

⁹ The wording on the data collection web page did not distinguish these biotech organizations on the basis of size. It is probably safe to assume that they were mostly small, however and probably of similar size to those found in the cluster.

scientists may have brought their established contacts with them. However, although the large pharmaceutical firms communicate most with the more distant biotechs, even the small biotech firms report more communication with them (Figure 14).

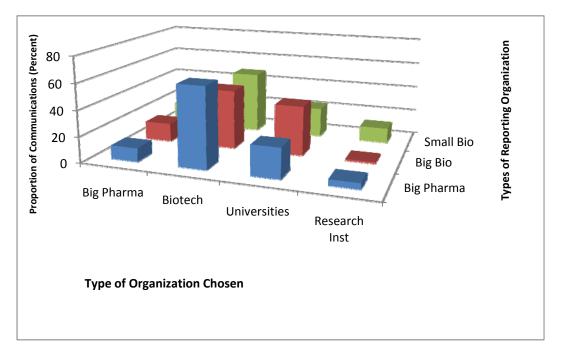


Figure 14. Proportional Distribution of Communication *Outside of the Region* by Type of Recipient Organization.

So we are left with a puzzle.

Now a possible explanation could be that the distribution of communication across firms or individuals is highly skewed. In which case, one or a small number of scientists or firms communicate very heavily outside the region, thereby inflating the mean number of communications. We, of course, checked this possible explanation and found the number of such extraterritorial scientific communications to be pretty evenly distributed across both firms and scientists.

So our puzzle remains. At this point it appears that only further research will enable us to understand this anomaly.

Conclusions.

REFERENCES

Allen, T.J. and O. Hauptman (1987). *The influence of communication technologies on organizational structure, a conceptual model for future research.* Communication Research, 14, (5); pp. 575-578.

Allen, T.J. and G.W. Henn (2006). *Organization and Architecture for Innovative Product Development*. New York: Elsevier.

Cairncross, F. (2001). *The Death of Distance; How the Communications Industry is Changing Our Lives*. Boston: Harvard Business School Press.

Gloor, P. & Y. Zhao (2004). *TeCFlow - A Temporal Communication Flow Visualizer for Social Networks Analysis*. ACM CSCW Workshop on Social Networks. ACM CSCW Conference, Chicago.

Harary, Frank; R.Z. Norman & Dorwin Cartwright. (1965) Introduction to Digraph Theory for Social Scientists, New York: Wiley.

Porter, K.A. & W.W. Powell (2006). *Networks and Organizations*. in S. Clegg, C. Hardy, T. Lawrence and W. Nord (Eds.) The Handbook of Organization Studies: Ten Years On: 776-799. Thousand Oaks, California: Sage Publishing.

Porter, K.A., K.C. Bunker Whittington, & W.W. Powell (2005). *The institutional embeddedness of high-tech regions: Relational foundations of the Boston biotechnology community*. In S. Breschi & F. Malerba (Eds.), Clusters, Networks, and Innovation: 261-296. Oxford, UK: Oxford University Press.

Powell, W.W., K.W. Koput, & L. Smith-Doerr (1996). *Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology*. Administrative Science Quarterly, 41:1, pp. 116-145.

Saxenian, AnnaLee (1994). Regional Advantage: Culture and Competition in Silicon Valley and Route 128. Cambridge, MA: Harvard University Press.

Schilling, M.A. & C.C. Phelps (2005). *Interfirm collaboration networks: the impact of small world connectivity on firm innovation*. Management Science, 53 (7), pp. 1113-1126.