
Proceedings of the ASME 2015 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2015
August 2-5, 2015, Boston, Massachusetts, USA

DETC2015-48039

FOLDING FLAT CREASE PATTERNS WITH THICK MATERIALS

Jason S. Ku∗
Field Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: jasonku@mit.edu

Erik D. Demaine
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: edemaine@mit.edu

ABSTRACT
Modeling folding surfaces with nonzero thickness is of prac-

tical interest for mechanical engineering. There are many exist-
ing approaches that account for material thickness in folding ap-
plications. We propose a new systematic and broadly applicable
algorithm to transform certain flat-foldable crease patterns into
new crease patterns with similar folded structure but with a facet-
separated folded state. We provide conditions on input crease
patterns for the algorithm to produce a thickened crease pattern
avoiding local self intersection, and provide bounds for the max-
imum thickness that the algorithm can produce for a given input.
We demonstrate these results in parameterized numerical simu-
lations and physical models.

INTRODUCTION
While much of the research in computational origami ap-

plies to folded surfaces with zero thickness (particularly struc-
tures that fold flat), modeling folding surfaces with nonzero
thickness is of practical interest for mechanical engineering. De-
sign approaches for folding thick material have many varied ap-
plications from kinetic architecture [1] and solar panel deploy-
ment [2], to robotics [3] and nano-fabrication [4]. These applica-
tions have motivated research into the mathematics and mechan-
ics of rigidly folding thick materials [5–7]. We discuss some of
the existing techniques for taking into account material thickness
in the following section.

In this paper, we propose a new approach for accommodat-

∗Address all correspondence to this author.

ing thickness that modifies certain existing crease patterns into
new planar folding patterns, preserving some structure of the old
crease pattern while folding a form whose facets are separated
from one another in the final state. We describe a systematic and
broadly applicable algorithm to transform an input flat-foldable
crease pattern into a new crease pattern having a facet-separated,
nearly flat folded state.

Our approach for converting flat foldings into facet-
separated foldings replaces each flat crease in the input crease
pattern by two parallel creases symmetrically offset about the
original at a distance proportional to an assigned crease width
satisfying certain properties of the original crease pattern. In-
stead of one crease folding flat with a turn angle of 180◦, the
two new creases have a turn angle of 90◦. This crease widening
creates difficulties at crease-pattern intersections since the offset
creases no longer converge to a point. Material in the vicinity
around each crease-pattern vertex is thus discarded to accommo-
date crease widening. While this modification creates holes in
the material, it introduces extra degrees of freedom that can al-
low the widened creases to fold. Additionally the algorithm iden-
tifies and removes some surface material on one side of creases
to avoid self-intersections.

We provide conditions on input flat folded states for the
algorithm to produce a thickened crease pattern avoiding local
self intersection, namely that crease-pattern faces are convex and
creases do not touch the insides of other creases in the input. We
also provide bounds for the maximum thickness that the algo-
rithm can produce for a given input. We demonstrate our results
in parameterized numerical simulations and physical models.
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FIGURE 1. EXISTING THICK FOLDING TECHNIQUES: (A)
HINGE SHIFT, (B) VOLUME TRIMMING, (C) OFFSET PANEL,
AND (D) OFFSET CREASE.

EXISTING THICK FOLDING TECHNIQUES
There are many existing approaches that seek to account for

material thickness in folding applications, each with their own
strengths and weaknesses. We discuss the techniques below,
which are also illustrated in order in Figure 1.

A: Hinge Shift
The hinge shift strategy shifts hinges out of plane to accom-

modate material thickness [9]. While readily useful in creat-
ing one-dimensional foldings of thick material, this technique is
harder to apply to 2D crease-pattern networks. Hinges start out
of plane so cannot build on existing design techniques starting
from a coplanar folding pattern. In addition full range of folding
motion is restricted.

B: Volume Trimming
The strategy presented in [1] trims the edges of a thickened

surface to overcome many of the difficulties of the hinge shift
technique. However, this method also suffers from decreased
range of motion and the slanted surfaces can be difficult to fabri-
cate in practice.

C: Offset Panel
The offset panel technique [10] is probably the most promis-

ing in application because it is very flexible while accommo-
dating full range of motion. This method retains hinges at the
folding plane but shifts the thick material away from the fold-
ing plane. While promising, fabricating such structures can be
difficult requiring robust standoffs to connect thick material to
hinges.

D: Offset Crease
In this paper we expand on the ideas presented in [8] which

accommodates material thickness by widening creases with flex-
ible material. We propose an offset crease technique that widens
creases in a systematic way without relying on flexible materi-
als. While this technique does not preserve exact structure of the
input crease pattern, it creates a structure that can be easier to
fabricate than other techniques. We describe this technique in
detail in the following sections, concentrating first on definitions
and then the algorithm itself.

DEFINITIONS
We would like to take as input a surface that has been folded

flat and output a “thickened” version. In order to perform this
task, we must first specify the input precisely, namely the flat
folded state. We will describe input flat folded states by way of
crease patterns and valid layer ordering graphs.

Let a crease pattern Ξ be a finite straight-line planar graph
embedding in R2. Call crease-pattern edges boundary edges if
they bound the exterior face, and call them creases otherwise.
Similarly, call crease-pattern vertices exterior if they bound the
exterior face with all other vertices interior. When we speak of
angles around an interior vertex v, we are referring to the cycli-
cally ordered set of angles between adjacent edges connected to
v. A crease pattern is said to be locally flat-foldable if the al-
ternating sum of angles around every interior vertex is zero. As
discussed later, we will also restrict locally flat-foldable crease
patterns to have only convex interior faces.

Certainly if we are given as input a flat folded surface, the
network of creases on the unfolded surface define a crease pattern
which will be locally flat foldable. The next thing to pin down is
the ordering of layers in the folded state.

Given a locally flat-foldable crease pattern Ξ, a flat mapping
function fΞ : Ξ→ R2 is a piecewise isometric mapping under
which each interior face of Ξ is congruent, interior faces that
share an edge in Ξ share the same edge in fΞ(Ξ), and exactly one
of any two adjacent interior faces in fΞ(Ξ) is reflected from its
orientation in Ξ (i.e. each crease has been folded). This func-
tion uniquely exists for a locally flat-foldable crease pattern up
to isometry (see Figure 2).

Here we adapt the work on layering ordering presented in
[11]. Given an existing flat folded surface with crease pattern Ξ

a layer ordering graph Λ is a directed graph on the faces of Ξ

with an edge between faces A and B if and only if there exists
some points a ∈ A and b ∈ B such that fΞ(a) = fΞ(b) (the faces
overlap in the folding). The direction of the edges in the directed
graph are given by arbitrarily calling the surface normal of some
face in the flat folding ‘up’ and drawing edges to point to the
face on top of the other. Such a layer ordering may not be well
defined if faces are not convex (parts of a face may exist above
and below another); as such we will restrict ourselves to crease
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FIGURE 2. FROM LEFT TO RIGHT: (1) GENERIC CREASE PAT-
TERN Ξ0, (2) LOCALLY FLAT FOLDABLE CREASE PATTERN Ξ

WITH LAYER ORDERING GRAPH Λ, (3) WITH REDUCED LAYER
ORDERING GRAPH Γ, AND (4) FLAT FOLDING fΞ(Ξ).

patterns with convex faces for the remainder of the paper. Addi-
tionally, constructing the desired face offset folded state will be
impossible if the faces of the layering ordering graph contains
a directed cycle because some faces could not be ordered. We
will thus restrict to only flat folded surfaces with acyclic layer
ordering graphs whose faces can be partially ordered.

Layer ordering graphs can be very complicated, typically
containing edges on the order of the squared number of crease-
pattern faces. However, they often contain significant redun-
dancy with respect to providing layer ordering information. For
example, consider an edge of a layer ordering graph (A,B) from
crease-pattern face A to B (B is on top of A), for which there
exists some other directed path L from A to B. Transitivity en-
sures that L enforces the ordering condition imposed by (A,B),
so edge (A,B) is redundant and can be removed from the graph
without losing any layer ordering information. We then implic-
itly construct the reduced layer ordering graph Γ from the layer
ordering graph Λ by identifying any such redundant edge and re-
moving it from the graph. This process terminates and results in
a unique output since it is a transitive reduction.

Lastly, we define a flat folded state (Ξ,Γ) as a locally flat-
foldable crease pattern together with a reduced layer ordering
graph. This object will serve as the input to our thickening algo-
rithm. Note that a flat-folded state implies a crease assignment to
each crease (either mountain or valley) by comparing the orien-
tation and order of faces according to the flat mapping function
fΞ and Γ. Further, we call the reflex side of a creased surface the
outside of the crease, and similarly we call the convex side of a
creased surface the inside of the crease.

A restriction on our approach is if two creases in a crease
pattern wrap around each other in the flat folded state, specifi-
cally if one crease touches the inside of another crease, self in-
tersection can become a problem. We will go into more detail as
we describe the algorithm, but for now we will call an input flat
folded state valid if no crease of the input touches the inside of
another crease.

ALGORITHM
The goal of this paper is to construct a thickened version of

a given a valid flat folded state (Ξ,Γ). The strategy is to offset
crease-pattern faces from their flat folded state consistent with
their layer ordering and create new creases to accommodate the
offset. First, we must define an offset distance between every
pair of faces which implies a width for each crease. Second, we
construct scalable polygons at each interior crease-pattern vertex
from which material will be removed to accommodate widened
creases. Third, we refine the polygons to ensure that each ef-
fective vertex does not exhibit local self intersection. Fourth,
we calculate a range for allowable scale factors such that vertex
polygons do not intersect. Fifth, we lay out the new crease pat-
tern with holes having a non-flat folded state according to a cho-
sen scale in the allowable range. Lastly, we address constructing
the thickness of each face based on satisfying local self intersec-
tion. Additional adjustments may have to be made to account for
global self intersections.

Step 1: Crease Width
The first goal of the algorithm is to specify a width for each

crease in a flat folded state (Ξ,Γ), with all mutually consistent
with the layering order of offset faces. Intuitively, we want to
separate the layers of the input by nonzero amounts and assign
a crease width based on the distance between adjacent faces. If
crease widths are chosen small, we can think of the desired out-
put as an “almost flat” version of the original that allows for
nonzero space between layers. The concept of crease width is
related to the same term applied to the one-dimensional stamp
folding problem [12], but we apply it to 2D flat-foldable crease
patterns with sortable layer orderings. For our purposes, given
reduced layer ordering graph Γ it suffices to choose a positive
weight for each directed edge such that given any two interior
crease-pattern faces A and B, every path from A to B in Γ has
the same weight sum. We will call such a weight assignment
ω : ξ ∈ Ξ→ R+.

Such a weight assignment always exists; particularly one
can be constructed by choosing an arbitrary linearization of the
partial order prescribed by Γ to create a total order, and defining
the weight along a crease to be the absolute difference between
the layer ordering numbers of the crease’s incident faces. By giv-
ing a weight to each crease of Γ, we can calculate a crease width
for every crease of Ξ by summing the total weight along any path
from one face incident to the crease, to the other.

The choice of ω can be viewed as a design choice for the
algorithm implementer. One might strive to choose an ω that
optimizes some natural metric such as minimizing the maximum
thickness of any crease, but the work in [12] and related works
seem to suggest such questions may be NP-hard even for one-
dimensional graphs. As such, we do not attempt to optimize the
choice of ω here, and leave the exploration in this area as an open
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problem.
Once we have assigned a crease width to each crease, the

construction involves replacing each crease in the input crease
pattern with two parallel creases symmetrically offset about the
original, separated at a distance proportional to the assigned
crease width. This replacement creates difficulties at crease in-
tersections since the offset creases will no longer converge to a
point. Material in the vicinity around each crease-pattern vertex
will need to be discarded to accommodate the widened creases.
Next, we will discuss the construction of the region to be dis-
carded.

Step 2: Polygon Construction
Now that crease widths have been defined, we must interface

widened creases with each other in the vicinity of crease-pattern
vertices. To do this, for each vertex we construct a polygon
that will interface with widened crease lines around the vertex.
These polygons will be scalable based on how thick we would
like to make the material with respect to the crease pattern, up to
a point. We will deal with the allowable range of scaling factor
later. First, we must define the geometry of these vertex polygons
so they will align with all the crease widths around the vertex.

We want a vertex polygon to contain one vertex per face
adjacent to the crease-pattern vertex at a distance from each ad-
jacent crease proportional to the crease width of the crease. Con-
sider crease-pattern vertex v with face A adjacent to it, bounded
by adjacent creases {u,v} and {v,w} with crease widths 2a and
2b respectively. Let the angle between these creases be θ . Then
the location of the polygon vertex p in this face must be a dis-
tance a from crease {u,v} and distance b from crease {v,w}. This
point is uniquely defined and can be parameterized by the length
h of segment {v, p} and the angles α and β between this segment
and creases {u,v} and {v,w} respectively (see Figure 3). Some
trigonometry reveals that these angles are given by

tanα =
sinθ

b/a+ cosθ
, tanβ =

sinθ

a/b+ cosθ
(1)

with domains α,β ∈ [0,π], and h = a/sinα = b/sinβ . Repeat-
ing this procedure for each face adjacent to an interior crease-
pattern vertex constructs points that when connected based on
facet adjacency form a polygon. For exterior crease-pattern
vertices, the same construction applies except we include the
original vertex and intersections between crease width lines and
boundary edges in our polygons. Unfortunately, edges of a con-
structed vertex polygon may properly cross as in Figure 4. How-
ever, we can easily modify the vertex polygon to be weakly sim-
ple, or even convex, by clipping any facet sector crossing the
polygon. Convexity is not required for our algorithm, so we will
only trim enough to avoid proper crossing.

FIGURE 3. POLYGON CONSTRUCTION. A GENERIC INTER-
NAL CREASE PATTERN VERTEX SHOWING RELATIONSHIP BE-
TWEEN OFFSETS AND ANGLES.

FIGURE 4. A NON-SIMPLE VERTEX POLYGON AND REFINE-
MENT BY CLIPPING CROSSINGS.

Locally, this polygon divides the area around the vertex into
three region types: the polygon, widened creases, and reduced
faces (the cardinality of the latter two equaling the number of
creases adjacent to the crease-pattern vertex). We will use this
terminology to talk about these regions in the following sections.

Step 3: Refinement
The newly constructed creases and polygons in the previous

sections serve to locally satisfy isometry between offset faces by
removing material at a vertex and adding new creases to accom-
modate the offset. However, creases with larger crease width
require more paper to be absorbed into widened crease regions,
reducing the size of surrounding reduced facets. The interac-
tion of this tradeoff between different regions creates the poten-
tial for intersection between widened creases and reduced facets.
We fix this type of self intersection by checking each widened
crease/reduced facet pair for intersection. If they intersect, trim
the reduced facet along the widened crease boundary and refine
the vertex polygon to reflect this change (see Figure 5).

There is a worry that this procedure could remove material
that is not a bounded distance from the vertex. For example,
the crease pattern shown in Figure 6 contains two creases that
when widened have an intersection that extends to infinity. For-
tunately, this type of situation only occurs locally when some
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FIGURE 5. TRIMMING INTERSECTING REGION (SHOWN IN
RED).

FIGURE 6. UNBOUNDED INTERSECTION FOR INSIDE
TOUCHING CREASES IN INPUT FLAT FOLDED STATE.

crease of the input touches the inside of another crease, which
we have restricted by requiring a valid input. Reduced facets
can only be trimmed a finite number of times because trimming
cannot increase the number of intersections, thus the refinement
terminates.

Step 4: Scale Factor
After creating vertex polygons and local widened

crease/reduced facet regions that locally do not self inter-
sect, we can determine how large these polygons can be before
intersecting each other. Each widened crease edge is bounded
on either side by a vertex polygon. Consider crease ξ with
length is d. Then each widened crease edge of ξ is shorter than
d according to the size of each incident vertex polygon. Let
(ha,α) and (hb,β ) define the locations of the vertex polygon
vertices on either side of ξ contained in the same face F . If we
let the size of all vertex polygons scale by a factor s, then the
length `ξ of the widened crease segment in F is given by the
following function of s (see Figure 7):

`ξ (s) = d− s(ha cosα +hb cosβ ). (2)

For (ha cosα +hb cosβ ) negative, `ξ (s)> 0 for all s > 0 so this
crease ξ does not restrict scale. For (ha cosα+hb cosβ ) positive,

FIGURE 7. SCALE FACTOR CALCULATION SHOWING
RELEVENT QUANTITIES.

there exists some sξ strictly positive for which `ξ (sξ ) = 0. This
event corresponds to neighboring vertex polygons intersecting
which we would like to forbid. Taking the minimum sξ over all
creases ξ ∈ Ξ yields a strictly positive upper bound s∗ on scale
factors by which vertex polygons can be scaled without overlap.
Note that for s= 0, the crease pattern is not offset at all and facets
remain coplanar, and the folded form cannot be produced with
material of any finite thickness. The strictly positive s, such as
s∗ calculated above, allows the modified pattern to accommodate
some finite thickness, with a larger s accommodating a larger
thickness relative to the geometry of the input crease pattern.

Step 5: Final Construction
Now given a flat folded state (Ξ,Γ) and width assignment

ω , we can calculate the upper bound s∗ on scale and choose a
scale s in the range (0,s∗) to construct our modified crease pat-
tern. Quite simply the construction is placing vertex polygons
scaled by s and adding widened crease lines parallel to the orig-
inal creases between vertex polygons. The process is shown in
Figure 8.

Step 6: Adding Thickness
The above construction creates a modified thin crease pat-

tern that separates faces in the folded form to make room for
thick panels. Adding material to the constructed thin surface is
relatively easy. In general, if crease widths are chosen arbitrar-
ily, facets can be assigned a range of thicknesses to either side
that can be accommodated by the crease widths. However, a
simpler and more practical assignment might be to assign the
same max thickness to the entire crease pattern as many man-
ufacturing processes could benefit from this kind of uniformity
(nano-fabrication, sheet metal construction, etc.). We can simply
define the max panel thickness tmax as the smallest crease width
assigned to the flat folded state.

Obviously however, this panel thickness cannot be added ev-
erywhere or material would self intersect. There are many ways
to solve this problem by removing material. The authors sug-
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FIGURE 8. CONSTRUCTION PROCESS.

gest keeping full panel thickness on widened crease regions to
strengthen these traditionally weak interfaces. To accommodate
widened crease panel thickness on both sides, we must remove
a strip of material of width tmax/2 on either side of the widened
crease from the reduced facets adjacent to the crease, only on the
crease’s inside surface. This modification will ensure that mate-
rial in the vicinity of creases do not locally self intersect.

The problem of global material self intersection is a more
difficult computational task, though there are existing computa-
tional methods for addressing this issue. The offset panel tech-
niques of [10] also point out this problem. We are looking into
more efficient techniques to perform these global adjustments to
aid real world design applications.

MODELS
We developed numerical and physical models to demon-

strate the algorithm presented above. The algorithm described

FIGURE 9. NUMERICAL FOLDING SIMULATION OF TWO
THICKENED CREASE PATTERNS USING FREEFORM ORIGAMI.
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FIGURE 10. PARAMETERIZED THICK SINGLE VERTEX CON-
STRUCTION IN MATHAMATICA.

was used to modify two existing rigid-foldable flat-foldable
crease patterns, the traditional bird base and a modified rigid
foldable flapping bird designed by Robert Lang as shown in Fig-
ure 9. These modified crease patterns were input into a numerical
origami simulator called Freeform Origami [14]. This simula-
tor is able to fold a crease pattern incrementally through fold-
ing configuration space while seeking to maintain developability
and planarity constraints converging iteratively to within double
precision. Folding these crease patterns in the simulator demon-
strated multiple rigid folded states throughout the folding process
to very high accuracy. These simulations provide evidence that
a path through the configuration space might exist for complex
crease patterns between the unfolded and folded states produced
by this algorithm.

A Mathematica model shown in Figure 10 was also used to
apply the algorithm to single vertex crease patterns to try and find
a path in the folding configuration space between the unfolded
and facet offset folded states produced by this algorithm. Our re-
sults in this area are preliminary, but we have strong evidence to
support that single vertex crease patterns thickened with this al-
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FIGURE 11. FOAM CORE MODEL OF A THICKENED TRADI-
TIONAL BIRD BASE.

gorithm have a rigid foldable path between unfolded and folded
states. We conjecture that the state space for thickened single
vertex crease patterns is a sphere embedded in the multidimen-
sional parameterized space and will leave further discussion in
this area to future work.

Lastly, a physical model of a thickened version of the tra-
ditional bird base was fabricated using 3/8” foam core pasted
on either side of thin paper. Some views of the physical model
can be seen in Figure 11. The folding action observed with this
model agrees well with the folded states of numerical simula-
tion, and the motion feels tightly constrained in contrast to the
folding mechanisms described in [8]. Empirically fixing the di-
hedral angle between sector faces while adjusting the angle ratio
at one crease, a continuous adjustment of the other crease ratios
was observed, also supporting the spherical configuration space
conjecture.

CONCLUSION
In this paper we have presented a new method for creat-

ing thick folded structures from flat folded states. The algo-
rithm proposed has many benefits over existing thick folding
techniques. Facet surfaces in the produced structure’s unfolded
state are coplanar allowing for ease of fabrication in layer-by-
layer manufacturing processes. These same surfaces are paral-
lel in the produced structure’s folded state allowing any surface
mounted components to mate naturally. Panel thicknesses can be
adjusted according to material and scale within bounds provided
by the algorithm. Further, every finite area of the algorithm’s
produced surface may be assigned non-zero thickness, allowing
for the production of strong and tightly constrained mechanisms.

The offset crease method provides a thickened folded state
suggesting a full range of folding motion as well as parallel facets
when fully folded. Assigning crease widths to comply with the
acyclic layer ordering of the input flat folded state provides a
flexible design space for varied applications, while still con-
structing one non-trivial folded state with planar facets. While
it is still open whether a path of rigid folded states exists through
the configuration space in general, there is evidence that one ex-
ists for single vertex crease patterns given our numerical models.
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