6.090, IAP 2007—Problem Set 4 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.090—Building Programming Experience
TAP 2007

Problem Set 4
Due Wednesday January 17, 1pm

Problems

1. Write the procedure square-1list, which takes in a list of numbers and returns a list of their

squares.

(square-list (list 1 2 3))
;Value: (1 4 9)
(square-list (list 3))

;Value: (9)
(square-list null)
;Value: ()

2. Write the procedure stutter-1list, which takes in a list and returns a list that contains each
element of the original list twice:

(stutter-list (list 1 2 3))
;Value: (11 2 2 3 3)
(stutter-list (list 1)

;Value: (1 1)
(stutter-list null)
;Value: ()

3. Write the procedure only-even, which takes in a list of numbers and returns a new list
containing only the even numbers from the original list.

(only-even (list 1 2 3 4 5))

;Value: (2 4)

(only-even (list 1 3 57 9))
;Value: ()

(only-even null)

;Value: ()

(only-even (list 2))

;Value: (2)

(only-even (list 3))
;Value: ()



6.090, IAP 2007—Problem Set 4 2

4. Write the procedure add-1lists, which takes in two lists of the same length and adds the
elements of each of the lists together:

(add-lists (list 1 2 3) (list 4 5 6))
;Value: (5 7 9)

(add-lists null null)

;Value: ()

5. Write the procedure palindrome-1list, which takes a list as input and outputs a palindromic
list with those elements. A palindrome reads the same forwards as backwards. Examples:
12321, "yay”, and A man, a plan, a canal: panama” (just the letters not the spaces or
punctuation). Do this to a list by doubling the length of the list and inverting the order of
the second half without duplicating the last element of the list. No recursive solution needed.
You may assume the list is non-empty. You may use any of the procedures we have written
in class.

(palindrome-list (list 1 2 3))
;Value: (1 2 3 2 1)
(palindrome-list (list 1))
;Value: (1)

6. Write the procedure replace-elem, which takes in a list of numbers, a number to replace,
and a value to replace it with, and returns a list with the number replaced by the value.

(replace-elem (list 1 21 2 1 2) 1 5)
;Value: (6 2 52 5 2)

(replace-elem (list 1 2 3 4) 3 7)
;Value: (1 2 7 4)

(replace-elem (list 1 2 3) 7 77)
;Value: (1 2 3)

7. Write the procedure 1list-average, which computes the average value of a list of numbers.
You may use any procedures that you have written previously (two in particular will come in
handy, making this a 1 liner). You may assume that the list is non-empty.

(list-average (list 1 2 3))

;Value: 2
(list-average (list 1))
;Value: 1

(list-average (list 12 34 56 78 90))
;Value: 54



6.090, IAP 2007—Problem Set 4 3

8. Download and load the file hw4def.scm from the website. In the rest of this problem, you
will create a new compound data structure, polygon.

(a)

(b)

Define the procedure make-polygon that takes a list of points and returns a polygon.
You should represent a polygon as a list of points. For each procedure, show several
tests to show that your procedure works as expected.

Define two accessors:

i. (get polygon-point poly n) — This procedure takes a polygon and an index n
and returns the nth point. Calling it with n = 0 should return the first point.

ii. (get polygon-point-list poly) — This procedure takes a polygon and returns a
list of the points in the polygon.

Using make-segment from the website, define the procedure polygon->segments that
takes a polygon and returns a list of the line segments in the polygon. The polygon
should be closed, so there should be a segment connecting the first and last points.

Define a procedure polygon-lower-left-point. This procedure should take a polygon
and return a point that is below and to the left of every point in the polygon. The z
coordinate of this point should be the minimum of all the xz-coordinates in the polygon.
Similarly, the y-coordinate of this point should be the minimum of all the y-coordinates
in the polygon.



