
JBuilder® 2005

Developing
Database Applications

Borland Software Corporation
100 Enterprise Way
Scotts Valley, California 95066-3249
www.borland.com

Refer to the file deploy.html located in the redist directory of your JBuilder product for a complete list
of files that you can distribute in accordance with the JBuilder License Statement and Limited
Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1997–2004 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. All other marks are the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JB2005database 10E13R0804
0405060708-9 8 7 6 5 4 3 2 1
PDF

i

Contents

Chapter 1
Introduction 1
Chapter summaries 2
Database tutorials. 3
Database samples 3
Related documentation 4
Documentation conventions 6
Developer support and resources. 7

Contacting Borland Developer Support 7
Online resources. 7
World Wide Web 8
Borland newsgroups 8
Usenet newsgroups 8
Reporting bugs 8

Chapter 2
Understanding JBuilder database
applications 11

Database application architecture 11
DataExpress components 12

Key features and benefits 13
Overview of the DataExpress components 14

DataExpress for EJB components 17
InternetBeans Express 17
XML database components. 17
dbSwing. . 17
Data modules and the Data Modeler 18
Database Pilot . 18
JDBC Monitor . 19
JDataStore and JBuilder 19

When to use JDataStore versus JDBC drivers . . 19
Additional advantages of a JDataStore 20
Using the JDataStore Explorer 20

JDataStore explorer operations 21
InterBase and JBuilder 21

Chapter 3
Importing and exporting data
from a text file 23

Adding columns to a TableDataSet in the editor . . . 23
Importing formatted data from a text file 24
Retrieving data from a JDBC data source 24
Exporting data . 25

Exporting data from a QueryDataSet to a
text file . 25

Saving changes from a TableDataSet to a
SQL table. . 25

Saving changes loaded from a
TextDataFile to a JDBC data source 26

Chapter 4
Connecting to a database 27
Connecting to databases 28

Adding a Database component to your
application 28

Setting Database connection properties 29
Setting up JDataStore 31
Setting up InterBase and InterClient. 31

Using InterBase and InterClient with JBuilder . . 32
Tips on using sample InterBase tables 32

Adding a JDBC driver to JBuilder 33
Creating the .library and .config files 33
Adding the JDBC driver to projects. 34

Connecting to a database using InterClient
JDBC drivers . 35

Using the Database component in your
application . 37

Prompting for user name and password 38
Pooling JDBC connections 38

Optimizing performance of JConnectionPool. . . 40
Logging output 40
Pooling example 40

Troubleshooting JDataStore and InterBase
connections . 43

Common connection error messages 43

Chapter 5
Retrieving data from a data source 45
Querying a database 46

Setting properties in the query dialog box 47
The Query page 47
The Parameters page 48
Place SQL text in resource bundle 49

Querying a database: Hints & tips 51
Enhancing data set performance 51
Persisting query metadata. 52
Opening and closing data sets 52
Ensuring that a query is updatable 52

Using parameterized queries to obtain data
from your database. 53

Parameterizing a query. 53
Creating the application 53
Adding a Parameter Row 54
Adding a QueryDataSet 54
Add the UI components 55

Parameterized queries: Hints & tips 57
Using parameters 57
Re-executing the parameterized query

with new parameters. 59
Parameterized queries in master-detail

relationships 59

ii

Chapter 6
Using stored procedures 61
Stored procedures: hints & tips 62

Escape sequences, SQL statements, and
server-specific procedure calls 62

Using vendor-specific stored procedures. 63
Using JDataStore stored procedures and

user-defined functions 63
Using InterBase stored procedures 63
Using parameters with Oracle PL/SQL stored

procedures. 64
Using Sybase stored procedures 65
Sample application with database-server

specific stored procedures. 65
Writing a custom data provider 65

Obtaining metadata 66
Invoking initData 66

Obtaining actual data 67
Tips on designing a custom data provider . . . 67
Understanding the provideData() method

in master-detail data sets. 67

Chapter 7
Working with columns 69
Understanding Column properties and metadata . . 69

Non-metadata Column properties 69
Viewing column information in the column

designer . 70
Generate RowIterator Class button 71
Using the column designer to persist

metadata. . 71
Making metadata dynamic using the

column designer 72
Viewing column information in the

Database Pilot 72
Optimizing a query 73

Setting column properties 73
Setting Column properties using

JBuilder’s visual design tools 73
Setting properties in code 73

Persistent columns 73
Combining live metadata with persistent

columns . 74
Removing persistent columns 74

Using persistent columns to add empty
columns to a DataSet. 75

Controlling column order in a DataSet 75

Chapter 8
Saving changes back to your data
source 77

Saving changes from a QueryDataSet 78
Adding a button to save changes from a

QueryDataSet 79
Saving changes back to your data source with

a stored procedure 80
Saving changes using a QueryResolver 80

Coding stored procedures to handle data
resolution .81

Saving changes with a ProcedureResolver 81
Example: Using InterBase stored

procedures with return parameters83
Resolving data from multiple tables83

Considerations for the type of linkage
between tables in the query 84

Table and column references (aliases) in a
query string84

Controlling the setting of the column properties . .85
What if a table is not updatable?85
How can the user specify that a table

should never be updated? 85
Using DataSets with RMI (streamable data sets) . . .85

Example: Using streamable data sets 85
Using streamable DataSet methods86

Customizing the default resolver logic. 87
Understanding default resolving 87

Adding a QueryResolver component87
Intercepting resolver events. 88
Using resolver events89

Writing a custom data resolver90
Handling resolver errors 90
Resolving master-detail relationships. 91

Chapter 9
Establishing a master-detail
relationship 93

Defining a master-detail relationship 94
Creating an application with a master-detail

relationship94
Fetching details .97

Fetching all details at once97
Fetching selected detail records on demand. . . .97

Editing data in master-detail data sets 98
Steps to creating a master-detail relationship99
Saving changes in a master-detail relationship . . . 100

Resolving master-detail data sets to a
JDBC data source 100

Chapter 10
Using data modules to simplify
data access 103

Creating a data module using the design tools . . . 104
Create the data module with the wizard 104
Add data components to the data module 104
Adding business logic to the data module 106
Using a data module 106

Adding a required library to a project 106
Referencing a data module in your

application 107
Understanding the Use DataModule

wizard . 108
Creating data modules using the Data Modeler. . . 109

Creating queries with the Data Modeler 109
Opening a URL 110
Beginning a query. 110

iii

Adding a Group By clause 112
Selecting rows with unique column values . . 113
Adding a Where clause. 113
Adding an Order By clause 114
Editing the query directly 114
Testing your query 114
Building multiple queries 115
Specifying a master-detail relationship 115
Saving your queries 116

Generating database applications 117
Using a generated data module in

your code 118

Chapter 11
Filtering, sorting, and locating data 121
Retrieving data for the examples 122
Filtering data . 124

Adding and removing filters 124
Sorting data . 127

Sorting data in a JdbTable 127
Sorting data using the JBuilder visual

design tools 128
Understanding sorting and indexing 129

Sorting data in code 130
Locating data . 130

Locating data with a JdbNavField 130
Locating data programmatically 132
Locating data using a DataRow 133
Working with locate options 133
Locates that handle any data type 134
Column order in the DataRow and DataSet . . . 134

Chapter 12
Adding functionality to
database applications 135

Using pick lists and lookups. 136
Data entry with a pick list 136
Adding a pick list field 136
Removing a pick list field 137
Create a lookup using a calculated column . . . 138
Create a lookup using the PickListDescriptor

parameters 140
Using calculated columns. 142

Create a calculated column in the designer . . . 143
Aggregating data with calculated fields 144

Example: Aggregating data with
calculated fields 144

Setting properties in the AggDescriptor 147
Creating a custom aggregation event

handler . 147
Adding an Edit or Display Pattern for data

formatting . 148
Display masks 149
Edit masks . 149
Using masks for importing and exporting

data . 149

Data type dependent patterns 150
Patterns for numeric data 150
Patterns for date and time data 150
Patterns for string data 151
Patterns for boolean data 152

Presenting an alternate view of the data 152
Ensuring data persistence 153

Making columns persistent 154
Using variant data types 155

Storing Java objects 155

Chapter 13
Using other controls and events 157
Synchronizing visual components 157
Accessing data and model information from a

UI component 158
Displaying status information 158

Building an application with a
JdbStatusLabel component 158

Running the JdbStatusLabel application 159
Handling errors and exceptions 159

Overriding default DataSetException
handling on controls 160

Chapter 14
Creating a distributed database
application using DataSetData 161

Understanding the sample distributed database
application (using Java RMI and DataSetData) . . 161

Setting up the sample application 162
What is going on? 163
Passing metadata by DataSetData 163
Deploying the application on multiple tiers . . 164

Chapter 15
Database administration tasks 165
Exploring database tables and metadata

using the Database Pilot 165
Browsing database schema objects 166
Setting up drivers to access remote and

local databases 166
Executing SQL statements 167
Using the Explorer to view and edit table data . . 168

Using the Database Pilot for database
administration tasks 170

Creating the SQL data source 170
Populating a SQL table with data using

JBuilder . 172
Deleting tables in JBuilder 172

Monitoring database connections 172
About the JDBC Monitor 172
Using the JDBC Monitor in a running

application 174
Adding the MonitorButton to the Palette. . . . 174
Using the MonitorButton Class from code. . . 174
Understanding MonitorButton properties . . . 174

iv

Chapter 16
Tutorial: Importing and exporting
data from a text file 175

Step 1: Creating the project 176
Step 2: Creating the text file 176
Step 3: Generating an application 177
Step 4: Adding DataExpress components to

your application 177
Step 5: Adding dbSwing components to

create a user interface 178
Step 6: Adding a JButton Swing component 180
Step 7: Compiling and running your application . . 181
Step 8: Using patterns for exporting numeric,

date/time, and text fields 182

Chapter 17
Tutorial: Creating a basic
database application 185

Step 1: Creating the project 187
Step 2: Generating an application 187
Step 3: Adding DataExpress components to

your application 188

Step 4: Designing the columns for the
application . 190

Adding columns and editing column
properties . 190

Specifying calculations for the calculated
columns. . 191

Step 5: Adding dbSwing components to
create a user interface 192

Step 6: Aggregating data with calculated fields . . . 194

Index 197

v

Figures

2.1 Diagram of a typical database application . . 12
2.2 JDataStore Explorer 20
4.1 Database component displayed in

structure pane. 29
4.2 Connection Descriptor dialog box. 30
5.1 Query property editor 47
5.2 Parameters page 49
5.3 Resource Bundle dialog 49
8.1 UI for saving changes from a

QueryDataSet. 79
10.1 Data Modeler 109
10.4 Group By page 112
10.5 Where page 113
10.6 Order By page 114
10.7 Link Queries dialog box 115
10.8 Arrow showing relationship between

queries 116
10.9 Editor showing code generated by

Data Modeler 116
10.10 Data Module Application wizard 117
11.1 Running database application 123
11.2 Application running filters 126
11.3 Click on column header to sort at runtime . 127

11.4 Sort property editor 128
11.5 Sorted application at runtime 129
11.6 Sample application with JdbNavField 131
12.1 Lookup application. 140
12.2 Calculated columns 144
12.3 Column designer. 154
15.1 Database Pilot 165
15.2 Enter SQL page of the Database Pilot. . . . 168
15.3 JDBC Monitor 173
15.4 JDBC Monitor with output 173
16.1 Import/export database application 175
16.2 Import/Export application at runtime. 180
16.3 Exporting data to text file application

at runtime 181
17.1 Basic database application 186
17.2 Query dialog box. 189
17.3 queryDataSet1 node expanded 189
17.4 queryDataSet1 columns in the column

designer 191
17.5 JdbTable component in the UI designer . . . 193
17.6 Basic database application with

navigation bar and status label 194
17.7 Agg dialog box 195

vi

Tutorials

Importing and exporting data from a text file 175 Creating a basic database application 185

Chapter 1 : Introduct ion 1

C h a p t e r

1
Chapter 1Introduction

Developing Database Applications provides information on using JBuilder’s
DataExpress database functionality to develop database applications. It also describes
how to use dbSwing components to create a user interface (UI) for your application.
Basic features that are commonly included in a database application are explained by
example so you can learn by doing. Conceptual information is provided, followed with
examples as applicable, with cross-references to more detailed information wherever
possible.

Be sure to check for documentation additions and updates at http://www.borland.com/
techpubs/jbuilder. Also, check the JBuilder online help. The information in the online
help is more up-to-date than the printed material.

If you have questions about creating database applications using JBuilder, visit the
database newsgroup at news://newsgroups.borland.com/
borland.public.jbuilder.database. This newsgroup is dedicated to issues about writing
database applications in JBuilder and is actively monitored by our support engineers as
well as the JBuilder Development team. For discussions about dbSwing components,
borland.public.jbuilder.dbswing newsgroup is a good source for getting help creating
database application UIs. A helpful DataExpress FAQ is currently located on the
Borland Community Web site from http://community.borland.com/.

Note All versions of JBuilder provide direct access to SQL data through Sun’s JDBC API.
JBuilder Enterprise provides additional DataExpress components that greatly simplify
development of database applications, as described in this book. Many of these
components can be accessed easily from the DataExpress page of the component
palette.

DataExpress stores data in memory. Most of the sample applications and tutorials
described in this book use sample data that is stored in a JDataStore and is accessed
through a JDBC driver. JDataStore’s plug-in replacement for in-memory storage
provides a permanent storage of data. JDataStore can be treated like any SQL
database—you can connect to it as you would to any server, run SQL queries against
it, etc. For more information on JDataStore, see the JDataStore Developer’s Guide.

For an explanation of documentation conventions, see “Documentation conventions”
on page 6.

If you are unfamiliar with JBuilder, we suggest you start with Getting Started with
JBuilder. If you are unfamiliar with Java, we suggest you start with Getting Started with
Java.

2 Developing Database Appl icat ions

Chapter summar ies

Chapter summaries
This book details how database technologies and tools are surfaced in JBuilder and
how you work with them in the IDE and the editor. It also explains how these
technologies fit together in a database application. Choose one of the following topics
for more information:

� Chapter 2, “Understanding JBuilder database applications”

Introduces the technologies, components, and tools used to create database
applications in JBuilder, including elements of the DataExpress Component Library,
Database Pilot, JDBC Monitor, Data sources, JDataStore, and InterBase.

� Chapter 3, “Importing and exporting data from a text file”

Explains how to provide data to your application from a text file, and how to save the
data back to a text file or to a SQL data source.

� Chapter 4, “Connecting to a database”

Describes how to connect your database components to a server. Includes
information on using JDBC and ODBC database drivers, and specific information for
connecting to JDataStore and InterBase databases.

� Chapter 5, “Retrieving data from a data source”

Describes how to create a local copy of the data from your data source, and which
DataExpress package components to use. This phase (called providing) makes the
data available to your application.

� Chapter 6, “Using stored procedures”

Describes to how to create and use stored procedures to execute SQL statements
for providing or resolving data.

� Chapter 7, “Working with columns”

Describes how to make columns persistent, how to control the appearance and
editing of column data, how to obtain metadata information, how to add a column to
a data set, and how to define the order of display of columns.

� Chapter 8, “Saving changes back to your data source”

Describes how to save the data updates made by your JBuilder application back to
the data source (a process called resolving). Covers multiple methods for resolving,
including the basic resolver handling provided by DataExpress components, saving
changes with stored procedures, resolving data from multiple tables, using DataSet
objects with RMI, and customizing the default resolver logic.

� Chapter 9, “Establishing a master-detail relationship”

Provides information on linking two or more data sets to create a parent/child (or
master-detail) relationship.

� Chapter 10, “Using data modules to simplify data access”

Describes how to use data modules to simplify data access in your applications,
while at the same time standardizing database logic and business rules for all
developers accessing the data. Also provides information on using the Data
Modeler wizard to create data modules.

� Chapter 11, “Filtering, sorting, and locating data”

Provides information on how to implement data filtering, sorting, and locating in
database applications, using standard DataExpress components and the JBuilder
design tools. These features Explains the differences between these features, and
provides a tutorial for each as well.

Chapter 1 : Introduct ion 3

Database tutor ials

� Chapter 12, “Adding functionality to database applications”

Includes information on the following tasks:

� Formatting and parsing data with edit or display patterns

� Creating calculated columns

� Aggregating data (minimum, maximum, sum, count)

� Creating a lookup field

� Creating an alternate view of the data

� Creating persistent, or pre-defined, fields

� Chapter 13, “Using other controls and events”

Discusses additional methods for easing the development of the user-interface
portion of your application. Includes information on displaying status information in
your application, and application error handling.

� Chapter 14, “Creating a distributed database application using DataSetData”

Discusses using DataExpress components in a distributed object computing
environment (using Java RMI).

� Chapter 15, “Database administration tasks”

Provides information about common database tasks, including:

� Browsing and editing data, tables, and database schema using the Database
Pilot

� Creating and deleting tables

� Populating tables with data

� Monitoring JDBC traffic using the JDBC Monitor

Database tutorials
The following tutorials illustrate useful database application development techniques.

� Chapter 16, “Tutorial: Importing and exporting data from a text file”

Shows how to use the TableDataSet component to import and export data from a text
file. This tutorial also shows how to use dbSwing components and the JBuilder
design tools to build a user interface for the database application.

� Chapter 17, “Tutorial: Creating a basic database application”

Shows how to build a simple database application that connects to a SQL database.
You will see how to set database connection properties, add a search field for
locating data, and add calculated fields to total values in a column.

Database samples
There are many samples that demonstrate specific database application technologies
or techniques. Most database-specific samples can be found in the following
directories:

� <jbuilder>/samples/DataExpress: contains a variety of projects that demonstrate
useful techniques for using DataExpress components to develop database
applications.

� <jbuilder>/samples/dbSwing: contains projects that illustrate how to use dbSwing
components to create effective user interfaces for database applications.

4 Developing Database Appl icat ions

Related documentat ion

� <jbuilder>/samples/JDataStore: contains sample code, database files, and JBuilder
projects to demonstrate the use of JDataStore databases and JDataStore database
drivers with JBuilder. These sample files complement tutorials and samples
discussed in the JDataStore Developer’s Guide.

Many of the applications access data from the JDataStore sample database,
employee.jds, and from the InterBase sample database employee.gdb. For more
information on JDataStore, see the JDataStore Developer’s Guide. For more
information on InterBase Server, refer to its online documentation.

Throughout this guide, individual samples are referenced if they demonstrate a specific
concept introduced in the text.

Note If you want to examine the sample applications in the JBuilder designer, you should
build the project for each sample before bringing it into the designer. To build a project,
choose Project|Rebuild Project.

Related documentation
The following Borland documentation contains useful information for developing
database applications:

� DataExpress Component Library Reference is the online API documentation for
DataExpress packages used for data access. It includes the following individual
component package references:

� DataExpress Reference:

Contains API documentation for the packages that provide basic data access.
The com.borland.dx.dataset package provides general routines for data
connectivity, management, and manipulation. The com.borland.dx.sql.dataset
package provides data connectivity functionality that is JDBC specific. The
com.borland.dx.text package contains classes and interfaces that control
alignment and formatting of objects and the formatting of data and values. This
package also handles formatting and parsing exceptions and input validation.

� dbSwing Reference:

Contains API documentation for the com.borland.dbswing package, which
contains components that allow you to make Swing components capable of
accessing database data through DataExpress DataSets.

� JDataStore Reference:

Contains API documentation for the packages used for connecting to and
performing transactions with JDataStore databases. The com.borland.datastore
package provides basic connectivity and transaction support for local JDataStore
databases. The com.borland.datastore.jdbc package contains the JDBC
interface for the DataStore, including the JDBC driver itself, and classes for
implementing your own DataStore server for multi-user connections to the same
DataStore. The com.borland.datastore.javax.sql package provides functionality
for distributed transaction (XA) support. The classes in this package are used
internally by other Borland classes. You should never use the classes in this
package directly.

� Javax Classes Reference:

Contains API documentation for the com.borland.javax.sql package, which
provides implementations of JDBC 2.0 DataSource and connection pooling
components. These classes can be used with any JDBC driver, but have
additional functionality that is specific to the JDataStore JDBC driver.

Chapter 1 : Introduct ion 5

Related documentat ion

� InternetBeans Express Reference:

Contains API documentation for the com.borland.internetbeans and
com.borland.internetbeans.taglib packages that provide components and a JSP
tag library for generating and responding to the presentation layer of a web
application.

� SQL Adapter Classes Reference:

Contains API documentation for the com.borland.sql package. This package
contains the SQLAdapter interface, which can be implemented by any JDBC class
which can be adapted for improved performance.

� SQL Tools Classes Reference:

Contains API documentation for the com.borland.sqltools package, which
contains classes for retrieving report output using SQL queries specified in XML
format.

� CORBA Express Reference:

Contains API documentation for the com.borland.cx package, which contains
CORBA connection classes for CORBA-based distributed applications.

� DataExpress EJB Reference:

Contains API documentation for the com.borland.dx.ejb package. This package
contains DataExpress for EJB components that allow you to use entity beans
with DataExpress DataSets to resolve and provide data. Some of these
components can be added from the EJB page of the component palette in the UI
designer.

� XML Database Components Reference:

Contains API documentation for XML database components in the
com.borland.jbuilder.xml.database.xmldbms,
com.borland.jbuilder.xml.database.template, and
com.borland.jbuilder.xml.database.common packages. Many of the components in
these packages can be added from the XML page of the component palette in
the UI designer.

� Developing Web Applications contains information on using InternetBeans Express
components to create web applications for data access. Developing Web
Applications includes tutorials that show how to use InternetBeans Express
components with JSPs and servlets.

� Working with XML explains how to use the XML model and template bean
components for database queries and transfer of data between XML documents
and databases. Working with XML also includes tutorials that demonstrate the use
of the XML database components.

� Developing Applications with Enterprise JavaBeans describes how to use
DataExpress for EJB components transfer data from entity beans deployed on a
server to a client application and back again.

� “MIDP database programming” in Developing Mobile Applications for MIDP gives a
brief overview of use of the Record Management System (RMS) for creating mobile
database applications, and provides links to related information.

� JDataStore Developer’s Guide contains comprehensive reference information to
help you use JDataStore with database applications that you develop.

6 Developing Database Appl icat ions

Documentat ion convent ions

Documentation conventions
The Borland documentation for JBuilder uses the typefaces and symbols described in
the following table to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj (Borland
Compiler for Java), and compiler options. For example: javac, bmj,
-classpath.

Italics Italicized words are used for new terms being defined, for book titles, and
occasionally for emphasis.

Keycaps This typeface indicates a key on your keyboard, such as “Press Esc to
exit a menu.”

Monospaced type Monospaced type represents the following:

� text as it appears onscreen

� anything you must type, such as “Type Hello World in the Title field
of the Application wizard.”

� file names

� path names

� directory and folder names

� commands, such as SET PATH

� Java code

� Java data types, such as boolean, int, and long.

� Java identifiers, such as names of variables, classes, package
names, interfaces, components, properties, methods, and events

� argument names

� field names

� Java keywords, such as void and static

[] Square brackets in text or syntax listings enclose optional items. Do not
type the brackets.

< > Angle brackets are used to indicate variables in directory paths,
command options, and code samples.

For example, <filename> may be used to indicate where you need to
supply a file name (including file extension), and <username> typically
indicates that you must provide your user name.

When replacing variables in directory paths, command options, and code
samples, replace the entire variable, including the angle brackets (< >).
For example, you would replace <filename> with the name of a file, such
as employee.jds, and omit the angle brackets.

Note: Angle brackets are used in HTML, XML, JSP, and other tag-based
files to demarcate document elements, such as and
<ejb-jar>. The following convention describes how variable strings are
specified within code samples that are already using angle brackets for
delimiters.

Italics, serif This formatting is used to indicate variable strings within code samples
that are already using angle brackets as delimiters. For example,
<url="jdbc:borland:jbuilder\\samples\\guestbook.jds">

... In code examples, an ellipsis (…) indicates code that has been omitted
from the example to save space and improve clarity. On a button, an
ellipsis indicates that the button links to a selection dialog box.

Chapter 1 : Introduct ion 7

Developer suppor t and resources

JBuilder is available on multiple platforms. See the following table for a description of
platform conventions used in the documentation.

Developer support and resources
Borland provides a variety of support options and information resources to help
developers get the most out of their Borland products. These options include a range of
Borland Technical Support programs, as well as free services on the Internet, where
you can search our extensive information base and connect with other users of Borland
products.

Contacting Borland Developer Support

Borland offers several support programs for customers and prospective customers.
You can choose from several categories of support, ranging from free support upon
installation of the Borland product, to fee-based consultant-level support and extensive
assistance.

For more information about Borland’s developer support services, see our web site at
http://www.borland.com/devsupport/, call Borland Assist at (800) 523-7070, or contact
our Sales Department at (831) 431-1064.

When contacting support, be prepared to provide complete information about your
environment, the version of the product you are using, and a detailed description of the
problem.

For support on third-party tools or documentation, contact the vendor of the tool.

Online resources

You can get information from any of these online sources:

Table 1.2 Platform conventions

Item Meaning

Paths Directory paths in the documentation are indicated with a forward slash (/).

For Windows platforms, use a backslash (\).

Home directory The location of the standard home directory varies by platform and is
indicated with a variable, <home>.

� For UNIX and Linux, the home directory can vary. For example, it could
be /user/<username> or /home/<username>

� For Windows NT, the home directory is C:\Winnt\Profiles\
<username>

� For Windows 2000 and XP, the home directory is C:\Documents and
Settings\<username>

Screen shots Screen shots reflect the Borland Look & Feel on various platforms.

World Wide Web http://www.borland.com/
http://info.borland.com/techpubs/jbuilder/

Electronic newsletters To subscribe to electronic newsletters, use the online form at:
http://www.borland.com/products/newsletters/index.html

8 Developing Database Appl icat ions

Developer suppor t and resources

World Wide Web

Check the JBuilder page of the Borland website, www.borland.com/jbuilder, regularly.
This is where the Java Products Development Team posts white papers, competitive
analyses, answers to frequently asked questions, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

� http://www.borland.com/jbuilder/ (updated software and other files)

� http://info.borland.com/techpubs/jbuilder/ (updated documentation and other
files)

� http://bdn.borland.com/ (contains our web-based news magazine for developers)

Borland newsgroups

When you register JBuilder you can participate in many threaded discussion groups
devoted to JBuilder. The Borland newsgroups provide a means for the global
community of Borland customers to exchange tips and techniques about Borland
products and related tools and technologies.

You can find user-supported newsgroups for JBuilder and other Borland products at
http://www.borland.com/newsgroups/.

Usenet newsgroups

The following Usenet groups are devoted to Java and related programming issues:

� news:comp.lang.java.advocacy
� news:comp.lang.java.announce
� news:comp.lang.java.beans
� news:comp.lang.java.databases
� news:comp.lang.java.gui
� news:comp.lang.java.help
� news:comp.lang.java.machine
� news:comp.lang.java.programmer
� news:comp.lang.java.security
� news:comp.lang.java.softwaretools

Note These newsgroups are maintained by users and are not official Borland sites.

Reporting bugs

If you find what you think may be a bug in the software, please report it to Borland at
one of the following sites:

� Support Programs page at http://www.borland.com/devsupport/namerica/. Click the
Information link under “Reporting Defects” to open the Welcome page of Quality
Central, Borland’s bug-tracking tool.

� Quality Central at http://qc.borland.com. Follow the instructions on the Quality
Central page in the “Bugs Report” section.

� Quality Central menu command on the main Tools menu of JBuilder (Tools|Quality
Central). Follow the instructions to create your QC user account and report the bug.
See the Borland Quality Central documentation for more information.

When you report a bug, please include all the steps needed to reproduce the bug,
including any special environmental settings you used and other programs you were

Chapter 1 : Introduct ion 9

Developer suppor t and resources

using with JBuilder. Please be specific about the expected behavior versus what
actually happened.

If you have comments (compliments, suggestions, or issues) for the JBuilder
documentation team, you may email jpgpubs@borland.com. This is for documentation
issues only. Please note that you must address support issues to developer support.

JBuilder is made by developers for developers. We really value your input.

10 Developing Database Appl icat ions

Chapter 2 : Understanding JBui lder database appl icat ions 11

C h a p t e r

2
Chapter 2Understanding JBuilder database

applications
A database application is any application that accesses stored data and allows you to
view and perhaps modify or manipulate that data. In most cases, the data is stored in a
database. However, data can also be stored in files as text, or in some other format.
JBuilder allows you to access this information and manipulate it using properties,
methods, and events defined in the DataSet packages of the DataExpress Component
Library in conjunction with the dbSwing package.

A database application that requests information from a data source such as a
database is known as a client application. A DBMS (Database Management System)
that handles data requests from various clients is known as a database server.

Database application architecture
JBuilder’s DataExpress architecture is focused on building all-Java client-server
applications, applets, servlets, and JavaServer Pages (JSP) for the inter- or intranet.
Because applications you build in JBuilder are all-Java at run time, they are cross-
platform.

JBuilder applications communicate with database servers through the JDBC API, the
Sun database connectivity specification. JDBC is the all-Java industry standard API for
accessing and manipulating database data. JBuilder database applications can
connect to any database that has a JDBC driver.

12 Developing Database Appl icat ions

DataExpress components

The following diagram illustrates a typical database application and the layers from the
client JBuilder DataExpress database application to the data source:

Figure 2.1 Diagram of a typical database application

The next section, “DataExpress components,” discusses the components of the
DataExpress architecture in more detail.

DataExpress components
DataExpress is a package, com.borland.dx.dataset, of Borland classes and interfaces that
provide basic data access. This package also defines base provider and resolver classes
as well as an abstract DataSet class that is extended to other DataSet objects. These
classes provide access to information stored in databases and other data sources. This
package includes functionality covering the three main phases of data handling:

� Providing

General functionality to obtain data and manage local data sets. (JDBC specific
connections to remote servers are handled by classes in the
com.borland.dx.sql.dataset package.)

� Manipulation

Navigation and editing of the data locally.

� Resolving

General routines for the updating of data from the local DataSet back to the original
source of the data. (Resolving data changes to remote servers through JDBC is
handled by classes in the com.borland.dx.sql.dataset package.)

Chapter 2 : Understanding JBui lder database appl icat ions 13

DataExpress components

Key features and benefits

DataExpress components were designed to be modular to allow the separation of key
functionality. This design allows the DataExpress components to handle a broad variety
of applications. Modular aspects of the DataExpress architecture include:

� Core DataSet functionality

This is a collection of data handling functionality available to applications using
DataExpress. Much of this functionality can be applied using declarative property and
event settings. Functionality includes navigation, data access/update, ordering/
filtering of data, master-detail support, lookups, constraints, defaults, etc.

� Data source independence

The retrieval and update of data from a data source, such as an Oracle or Sybase
server, is isolated to two key interfaces: Provider/Resolver. By cleanly isolating the
retrieval and updating of data, it is easy to create new Provider/Resolver
components for new data sources. There are two Provider/Resolver
implementations for standard JDBC drivers that provide access to databases such
as Oracle, Sybase, Informix, InterBase, DB2, MS SQL Server, Paradox, dBase,
FoxPro, Access, and other databases. You can also create custom Provider/
Resolver component implementations for EJB, application servers, SAP, BAAN,
IMS, CICS, etc.

� Pluggable storage

When data is retrieved from a Provider it is cached inside the DataSet. All edits made
to the cached DataSet are tracked so that Resolver implementations know what
needs to be updated back to the data source. DataExpress provides two options for
this caching storage: MemoryStore (the default), and JDataStore.

MemoryStore caches all data and data edits in memory. JDataStore uses an all Java,
small footprint, high performance, embeddable database to cache data and data
edits. The JDataStore is ideally suited for disconnected/mobile computing,
asynchronous data replication, and small footprint database applications.

� Data binding support for visual components

DataExpress DataSet components provide a powerful programmatic interface, as well
as support for direct data binding to data-aware components by way of point and
click property settings made in a visual designer. JBuilder ships with Swing-based
visual components that bind directly to DataSet components.

The benefits of using the modular DataExpress Architecture include:

� Network computing

As mentioned, the Provider/Resolver approach isolates interactions with arbitrary
data sources to two clean points. There are two other benefits to this approach:

� The Provider/Resolver can be easily partitioned to a middle tier. Since Provider/
Resolver logic typically has a transactional nature, it is ideal for partitioning to a
middle tier.

� It is a “stateless” computing model that is ideally suited to network computing.
The connection between the DataSet component client and the data source can
be disconnected after providing. When changes need to be saved back to the
data source, the connection need only be re-established for the duration of the
resolving transaction.

� Rapid development of user interfaces

Since DataSet components can be bound to data-aware components with a simple
property setting, they are ideally suited for rapidly building database application user
interfaces.

14 Developing Database Appl icat ions

DataExpress components

� Mobile computing

With the introduction of the DataStore component, DataExpress applications have a
persistent, portable database. The DataStore can contain multiple DataSet
components, arbitrary files, and Java Objects. This allows a complete application
state to be persisted in a single file. DataSet components have built-in data
replication technology for saving and reconciling edits made to replicated data back
to a data source.

� Embedded applications

The small footprint, high performance JDataStore database is ideal for embedded
applications and supports the full functionality and semantics of the DataSet
component.

For more information on the DataExpress architecture, visit the Borland web site at
http://www.borland.com/jbuilder/ for a white paper on this topic.

Overview of the DataExpress components

The core functionality required for data connectivity is contained in the
com.borland.dx.dataset, com.borland.dx.sql.dataset, and com.borland.datastore
packages. The components in these packages encapsulate both the connection
between the application and its source of the data, as well as the behavior needed to
manipulate the data. The features provided by these packages include that of database
connectivity as well as data set functionality.

The main classes and components in the Borland database-related packages are
listed in the table below, along with a brief description of the component or class. The
right-most column of this table lists frequently used properties of the class or
component. Some properties are themselves objects that group multiple properties.
These complex property objects end with the word Descriptor and contain key
properties that (typically) must be set for the component to be usable.

Component/Class Description Frequently used properties

Database A required component when accessing data stored on a
remote server, the Database component manages the JDBC
connection to the SQL server database.

See Chapter 4, “Connecting to a database” for more
description and instructions for using this component.

The ConnectionDescriptor object
stores connection properties of
driver, URL, user name, and
password. Accessed using the
connection property.

DataSet An abstract class that provides basic data set behavior,
DataSet also provides the infrastructure for data storage by
maintaining a two-dimensional array that is organized by
rows and columns. It has the concept of a current row
position, which allows you to navigate through the rows of
data and manages a “pseudo record” that holds the current
new or edited record until it is posted into the DataSet.
Because it extends ReadWriteRow, DataSet has methods to
get and put field values.

The SortDescriptor object
contains properties that affect the
order in which data is accessed and
displayed in a UI component. Set
using the sort property. See
“Sorting data” on page 127 for
usage information.

The MasterLinkDescriptor object
contains properties for managing
master-detail relationships between
two DataSet components.
Accessed using the masterLink
property on the detail DataSet. See
Chapter 9, “Establishing a master-
detail relationship” for usage
instructions.

Chapter 2 : Understanding JBui lder database appl icat ions 15

DataExpress components

StorageDataSet A class that extends DataSet by providing implementation
for storage of the data and manipulation of the structure of
the DataSet.

You fill a StorageDataSet component with data by extracting
information from a remote database (such as InterBase or
Oracle), or by importing data stored in a text file. This is
done by instantiating one of its subclasses: QueryDataSet,
ProcedureDataSet, or TableDataSet.

The tableName property specifies
the data source of the
StorageDataSet component.

The maxRows property defines the
maximum number of rows that the
DataSet can initially contain.

The readOnly property controls
write-access to the data.

DataStore The DataStore component provides a replacement for
MemoryStore that gives a permanent storage of data. A
JDataStore provides high performance data caching and
compact persistence for DataExpress DataSets, arbitrary
files, and Java Objects. The DataStore component uses a
single file to store one or more data streams. A JDataStore
file has a hierarchical directory structure that associates a
name and directory status with a particular data stream.
JDataStore can be treated like any SQL database—you can
connect to it as you would to any server, run SQL queries
against it, etc.

See “JDataStore and JBuilder” on page 19, and the
JDataStore Developer’s Guide, for more description of the
DataStore component.

Caching and persisting
StorageDataSet components in a
DataStore is accomplished through
two required property settings on a
StorageDataSet called store and
storeName. By default, all
StorageDataSets use a
MemoryStore if the store property
is not set. Currently MemoryStore
and DataStore are the only
implementations for the store
property. The storeName property is
the unique name associated with
this StorageDataSet in the
DataStore.

DataStoreDriver DataStoreDriver is the JDBC driver for the JDataStore.
The driver supports both local and remote access. Both
types of access require a user name (any string, with no
setup required). A non-null password is required by default.

QueryDataSet The QueryDataSet component stores the results of a query
string executed against a server database. This component
works with the Database component to connect to SQL
server databases, and runs the specified query with
parameters (if any). Once the resulting data is stored in the
QueryDataSet component, you can manipulate the data
using the DataSet API.

See “Querying a database” on page 46 for more description
and instructions for using this component.

The QueryDescriptor object
contains the SQL query statement,
query parameters, and database
connection information. Accessed
using the query property.

ProcedureDataSet The ProcedureDataSet component holds the results of a
stored procedure executed against a server database. This
component works with the Database component in a manner
similar to the QueryDataSet component.

See Chapter 6, “Using stored procedures” for more
information and usage instructions for this component.

The ProcedureDescriptor object
contains the SQL statement,
parameters, database component,
and other properties. Accessed
using the procedure property of the
ProcedureDataSet component.

TableDataSet Use this component when importing data from a text file.
This component extends the DataSet class. It mimics SQL
server functionality, without requiring a SQL server
connection.

See Chapter 3, “Importing and exporting data from a text
file” and the related tutorial, Chapter 16, “Tutorial: Importing
and exporting data from a text file” for more description and
usage instructions for this component.

The (inherited) dataFile property
specifies the file name from which
to load data into the DataSet and to
save the data to.

DataSetView This component presents an alternate “view” of the data in
an existing StorageDataSet. It has its own (inherited) sort
property, which, if given a new value, allows a different
ordered presentation of the data. It also has filtering and
navigation capabilities that are independent of its associated
StorageDataSet.

See “Presenting an alternate view of the data” on page 152
for more description and usage instructions for this
component.

The storageDataSet property
indicates the component which
contains the data of which the
DataSetView presents a view.

Component/Class Description Frequently used properties

16 Developing Database Appl icat ions

DataExpress components

There are many other classes and components in the com.borland.dx.dataset,
com.borland.dx.sql.dataset, and com.borland.datastore packages as well as several
support classes in other packages such as the util and view packages. Detailed
information on the packages and classes of DataExpress Library can be found in the
DataExpress Component Library Reference documentation.

Column A Column represents the collection from all rows of a
particular item of data, for example, all the Name values in a
table. A Column gets its value when a DataSet is instantiated
or as the result of a calculation.

The Column is managed by its StorageDataSet component.

See Chapter 7, “Working with columns” for more description
and usage instructions for this component.

You can conveniently set properties
at the Column level so that settings
which affect the entire column of
data can be set at one place, for
example, font. JBuilder design
tools include access to column-
level properties by double-clicking
any StorageDataSet in the content
pane, then selecting the Column
that you want to work with. The
selected Column component’s
properties and events display in
either the column designer
(properties only) or in the Inspector
and can be edited in either place.

DataRow The DataRow component is a collection of all Column data for
a single row where each row is a complete record of
information. The DataRow component uses the same
columns of the DataSet it was constructed with. The names
of the columns in a DataRow are field names.

A DataRow is convenient to work with when comparing the
data in two rows or when locating data in a DataSet. It can
be used in all DataSet methods that require a ReadRow or
ReadWriteRow.

ParameterRow The ParameterRow component has a Column for each
column of the associated data set that you may want to
query. Place values you want the query to use in the
ParameterRow and associate them with the query by their
parameter names (which are the ParameterRow column
names).

See “Using parameterized queries to obtain data from your
database” on page 53 for more description and instructions
for using this component.

DataModule The DataModule is an interface in the
com.borland.dx.dataset package. A class that implements
DataModule will be recognized by the JBuilder designer as a
class that contains various dataset components grouped
into a data model. You create a new, empty data module by
double-clicking the Data Module icon in the object gallery
(File|New). Then using the component palette and content
pane, you place into it various DataSet objects, and provide
connections, queries, sorts, and custom business rules
logic. Data modules simplify reuse and multiple use of
collections of DataSet components. For example, one or
more UI classes in your application can use a shared
instance of your custom DataModule.

See Chapter 10, “Using data modules to simplify
data access” for more description and instructions for using
this component.

Component/Class Description Frequently used properties

Chapter 2 : Understanding JBui lder database appl icat ions 17

DataExpress for EJB components

DataExpress for EJB components
This is a feature of

JBuilder Enterprise
The DataExpress for EJB package, com.borland.dx.ejb package contains the
DataExpress for EJB components. These components allow you to provide data from
EJB entity beans to DataExpress DataSets, and then resolve changes made to the
DataSets back to entity beans.

The DataExpress for EJB package is not covered in this book. For more information
about using components from the DataExpress for EJB package to develop data-
aware enterprise applications, see “Using the DataExpress for EJB components” in the
Developing Applications with Enterprise JavaBeans. For reference information, refer to
the API documentation for the com.borland.dx.ejb package.

InternetBeans Express
This is a feature of
JBuilder Developer

and Enterprise

The InternetBeans Express package, com.borland.internetbeans, provides components
and a JSP tag library for generating and responding to the presentation layer of a web
application.

The InternetBeans Express package is not covered in this book. For more information
about using components from InternetBeans Express package to develop data-aware
JSP and servlet applications, see “InternetBeans Express” in the Developing Web
Applications. For reference information, refer to the API documentation for the
com.borland.internetbeans package.

XML database components
This is a feature of
JBuilder Developer

and Enterprise

JBuilder’s XML database components support the development of XML database
applications. The components can be added to your application from the XML page of
the component palette in the UI designer. There are model-based components and
template-based components. Model-based components use a map document that
determines how the data transfers between an XML structure and the database
metadata. To use template-based components, you supply a SQL statement, and the
component generates an XML document. The SQL you provide serves as the template
that is replaced in the XML document as the result of applying the template.

The use of XML database components is not covered in this book. For more
information, see “Using JBuilder’s XML database components” in Working with XML.
For reference information, refer to the API documentation for the
com.borland.jbuilder.xml.database.common,
com.borland.jbuilder.xml.database.template,
com.borland.jbuilder.xml.database.xmldbms packages.

dbSwing
The dbSwing package allows you to build database applications that take advantage of
the Java Swing component architecture. In addition to pre-built, data-aware subclasses
of most Swing components, dbSwing also includes several utility components
designed specifically for use in developing DataExpress and JDataStore-based
applications.

To create a database application, you first need to connect to a database and provide
data to a DataSet. “Retrieving data for the examples” on page 122 sets up a query that
can be used as a starting point for creating a database application and a basic user
interface.

18 Developing Database Appl icat ions

Data modules and the Data Modeler

To use the data-aware dbSwing components,

1 Open the Frame file, and select the Design tab.

2 Select one of the dbSwing pages: dbSwing, More dbSwing, or dbSwing Models.

3 Click a component on the component palette, and click in the UI designer to place
the component in the application.

4 Select the component in the component tree or the UI designer.

Depending on the type of component, and the layout property for the contentPane
containing the component, the designer displays black sizing nibs on the edges of a
selected component.

Some of the component’s (JdbNavToolBar and JdbStatusLabel) automatically bind to
whichever data set has focus. For others (like JdbTable), set the component’s
dataSet and/or columnName properties in the Inspector to bind the component to an
instantiated DataSet.

The following list contains a few of the dbSwing components available from the
dbSwing page of the component palette:

� TableScrollPane
� JdbTable
� JdbNavToolBar
� JdbStatusLabel
� JdbTextArea
� JdbComboBox
� JdbLabel
� JdbList
� JdbTextPane
� JdbTextField

With increased functionality and data-aware capabilities, dbSwing offers significant
advantages over Swing. Also, dbSwing is entirely lightweight, provides look-and-feel
support for multiple platforms, and has strong conformance to Swing standards. Using
dbSwing components, you can be sure all your components are lightweight.

For more information about the dbSwing package, refer to the dbSwing API
documentation.

Data modules and the Data Modeler
Data modules provide a container for data access components. Data modules simplify
database application development by modularizing your code and separating the
database access logic and business rules in your applications from the user interface
logic. You can also maintain control over the use of the data module by delivering only
the class files to application developers.

The Data Modeler is a wizard that can help you build data modules that encapsulate a
connection to a database and the queries to be run against the database.

For more information about data modules and the Data Modeler, refer to Chapter 10,
“Using data modules to simplify data access.”

Database Pilot
This is a feature of
JBuilder Developer

and Enterprise

The Database Pilot (Tools|Database Pilot) is a hierarchical database browser that also
allows you to edit data.

The Database Pilot presents JDBC-based meta-database information in a two-paned
window. The left pane contains a tree that hierarchically displays a set of databases

Chapter 2 : Understanding JBui lder database appl icat ions 19

JDBC Monitor

and its associated tables, views, stored procedures, and metadata. The right pane is a
multi-page display of descriptive information for each node of the tree. In certain cases,
you can edit data in the right pane as well.

For more information about the Database Pilot, refer to Chapter 15, “Database
administration tasks.”

JDBC Monitor
This is a feature of
JBuilder Developer

and Enterprise

The JDBC Monitor (Tools|JDBC Monitor) is a graphical tool that can be used to monitor
JDBC traffic. JDBC Monitor will monitor any JDBC driver (that is, any subclass of
java.sql.Driver) while it is in use by JBuilder. The JDBC Monitor monitors all output
directly from the JDBC driver.

For more information about the JDBC Monitor, including usage instructions, see
“Monitoring database connections” on page 172.

JDataStore and JBuilder
JDataStore is a high-performance, small-footprint, all Java multifaceted data storage
solution. JDataStore is,

� An embedded relational database, with both JDBC and DataExpress interfaces, that
supports non-blocking transactional multi-user access with crash recovery

� An object store, for storing serialized objects, datasets, and other file streams
� A JavaBean component, that can be manipulated with visual bean builder tools like

JBuilder

An all-Java visual JDataStore Explorer helps you manage your datastores.

For the most complete and up-to-date information on using a DataStore, refer to the
JDataStore Developer’s Guide.

When to use JDataStore versus JDBC drivers

There are unique advantages to configuring a database application to access a
relational database management system with JDBC drivers versus configuring the
application to use JDataStore. The following sections outline some of the advantages
associated with either approach.

You may want to use a JDBC driver to:

� Use a standards-based JDBC API
� Work with live SQL data—you can use a QueryProvider to query a SQL database

and work with live data, saving changes as necessary
� Take advantage of remote access using RemoteJDBC

Note JDataStore can be used with or without JDBC drivers. In fact, most of the samples and
tutorials referenced in this book, JDataStore is used with JDBC drivers. See the
“Offline editing with JDataStore” tutorial in the JDataStore Developer’s Guide for an
example of how a DataStore component can be used for offline editing of data, instead
of making a JDBC connection to a JDataStore server.

You may want to use a JDataStore to,

� Work off-line—you can save and edit data within the JDataStore file system, resolve
edits back when you are reconnected to the data source

� Store objects, as well as data
� Work with larger sets of data

20 Developing Database Appl icat ions

JDataStore and JBui lder

Additional advantages of a JDataStore
You may want to use a JDataStore for any of the following reasons:

� Organization.

To organize an application’s StorageDataSet components, files, and serialized
JavaBean/Object state into a single all Java, portable, compact, high-performance,
persistent storage.

� Asynchronous data replication.

For mobile/offline computing models, StorageDataSet has support for resolving/
reconciling edited data retrieved from an arbitrary data source (i.e. JDBC,
Application Server, SAP, BAAN, etc.).

� Embedded applications.

JDataStore foot print is very small. StorageDataSet components also provide excellent
data binding support for data-aware UI components.

� Performance.

To increase performance and save memory for a large StorageDataSet.
StorageDataSet components using MemoryStore will have a small performance edge
over DataStore for small number of rows. DataStore stores StorageDataSet data and
indexes in an extremely compact format. As the number of rows in a StorageDataSet
increases, the StorageDataSet using a DataStore provides better performance and
requires much less memory than a StorageDataSet using a MemoryStore.

For more information on using JDataStores, refer to the JDataStore Developer’s Guide.

Using the JDataStore Explorer
Using the JDataStore Explorer, you can,

� Examine the contents of a DataStore. The store’s directory is shown in a tree control,
with each data set and its indexes grouped together. When a data stream is
selected in the tree, its contents are displayed (assuming it’s a file type like text file,
.gif, or data set, for which the Explorer has a viewer).

� Perform many store operations without writing code. You can create a new
JDataStore, import delimited text files into data sets, import files into file streams,
delete indexes, delete data sets or other data streams, and verify the integrity of the
JDataStore.

� Manage queries that provide data into data sets in the store, edit the data sets, and
save changes back to server tables.

Use the Tools|JDataStore Explorer menu command to launch the JDataStore Explorer.

Figure 2.2 JDataStore Explorer

Chapter 2 : Understanding JBui lder database appl icat ions 21

InterBase and JBui lder

JDataStore explorer operations
To create a new JDataStore,

1 Open the JDataStore Explorer by choosing Tools|JDataStore Explorer.

2 Choose File|New or click the New JDataStore button.

3 Enter a name for the new store and choose OK. The store is created and opened in
the Explorer.

To import a text file into a data set,

1 Choose Tools|Import|Text Into Table.

2 Supply the input text file and the store name of the data set to be created.

The contents of the text file must be in the delimited format that JBuilder exports to,
and there must be a SCHEMA (.schema) file with the same name in the directory to
define the structure of the target data set (to create a .schema file, see “Exporting
data” on page 25). The default store name is the input file name, including the
extension. Since this operation creates a data set, not a file stream, you’ll probably
want to omit the extension from the store name.

3 Click OK.

To import a file into a file stream,

1 Choose Tools|Import|File.

2 Supply an input file name and the store name, and click OK.

To verify the open JDataStore, choose Tools|Verify JDataStore or click the Verify
JDataStore button.

The entire store is verified and the results are displayed in the Verifier Log window.
After you’ve closed the log window, you view it again by choosing View|Verifier Log.

For more information on using the JDataStore Explorer, refer to “JDataStore
Administration” in the JDataStore Developer’s Guide.

InterBase and JBuilder
Borland InterBase is a high-performance, cross-platform, SQL standards-compliant
relational database. InterBase includes its own version of the employee database,
employee.gdb, so you can easily use InterBase instead of JDataStore in the samples
and tutorials. For information on setting up Interbase and InterClient for use in the
tutorials, see “Connecting to a database using InterClient JDBC drivers” on page 35.

For more information about InterBase or to download a free trial version of InterBase,
see the Borland web site at http://www.borland.com/interbase/index.html.

22 Developing Database Appl icat ions

Chapter 3: Import ing and expor t ing data f rom a text f i le 23

C h a p t e r

3
Chapter 3Importing and exporting data from

a text file
In JBuilder, a TableDataSet component is used to store data imported from a text file.
Once the data is provided to the data set, it can be viewed and modified. To save
changes back to the text file, export the data back to the text file.

To import data from a text file, use the TextDataFile component to provide the location
of the text file and parameters specific to its structure. Use a StorageDataSet, such as a
TableDataSet component, to store the data locally for viewing and editing. Create Column
objects so the TableDataSet knows the type of data and the name of the field for each
column of data.

Columns of a TableDataSet are defined by adding columns in the Source window, the UI
designer, or by loading a text file with a valid SCHEMA (.schema) file. This topic
discusses the first two options. Importing data using an existing SCHEMA file is
discussed in Chapter 16, “Tutorial: Importing and exporting data from a text file.” Your
text file has a valid SCHEMA file only if it has previously been exported by JBuilder.

These are the topics covered:

� “Adding columns to a TableDataSet in the editor” on page 23

� “Importing formatted data from a text file” on page 24

� “Retrieving data from a JDBC data source” on page 24

� “Exporting data” on page 25

Adding columns to a TableDataSet in the editor
You can add columns to the TableDataSet in two ways: visually in the UI designer and
with code in the editor on the Source tab. Adding columns in the UI designer is covered
in Chapter 16, “Tutorial: Importing and exporting data from a text file.” If you previously
exported to a text file, JBuilder created a SCHEMA file that provides column definitions
when the text file is next opened; therefore, you do not need to add columns manually.

24 Developing Database Appl icat ions

Import ing formatted data f rom a text f i le

To add the columns using the editor, you define new Column objects in the class
definition for Frame1.java as follows:

1 Select Frame1.java in the content pane, then select the Source tab. You will see the
class definition in the Source window. Add the follow line of code:

Column column1 = new Column();
Column column2 = new Column();

2 Find the jbInit() method in the source code. Define the name of the column and
the type of data that will be stored in the column, as follows:

column1.setColumnName("my_number");
column1.setDataType(com.borland.dx.dataset.Variant.SHORT);

column2.setColumnName("my_string");
column2.setDataType(com.borland.dx.dataset.Variant.STRING);

3 Add the new columns to the TableDataSet in the same source window and same
jbInit() method, as follows:

tableDataSet1.setColumns(new Column[] { column1,column2 });

4 Compile the application to bind the new Column objects to the data set, then add any
visual components.

Importing formatted data from a text file
Data in a column of the text file may be formatted for exporting data in a way that
prevents you from importing the data correctly. You can solve this problem by
specifying a pattern to be used to read the data in an exportDisplayMask. The
exportDisplayMask property is used for importing data when there is no SCHEMA file
associated with the text file. If there is a SCHEMA file, its settings have precedence.
The syntax of patterns is defined in “String-based patterns (masks)” in the DataExpress
Component Library Reference.

Date and number columns have default display and edit patterns. If you do not set the
properties, default edit patterns are used. The default patterns come from the
java.text.resources.LocaleElements file that matches the column’s default locale. If no
locale is set for the column, the data set’s locale is used. If no locale is set for the data
set, the default system locale is used. The default display for a floating point number
shows three decimal places. If you want more decimal places, you must specify a mask.

Retrieving data from a JDBC data source
The following code is an example of retrieving data from a JDBC data source into a
TextDataFile. Once the data is in a TextDataFile, you can use a StorageDataSet, such as
a TableDataSet component, to store the data locally for viewing and editing. For more
information on how to do this, see Chapter 16, “Tutorial: Importing and exporting data
from a text file.”

Database db = new Database();
db.setConnection(new
 com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:oracle:thin:@" +
 datasource, username, password));
QueryDataSet qds = new QueryDataSet();
qds.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(db, "SELECT
 * FROM THETABLE", null, true, Load.ALL));
TextDataFile tdf = new TextDataFile();
tdf.setFileName("THEDATA.TXT");
tdf.save(qds);

This code produces a data file and an associated SCHEMA file.

Chapter 3: Import ing and expor t ing data f rom a text f i le 25

Expor t ing data

You can use this type of data access to create a database table backup-and-restore
application that works from the command line, for example. To save this information
back to the JDBC data source, see “Saving changes loaded from a TextDataFile to a
JDBC data source” on page 26.

Exporting data
Exporting data, or saving data to a text file, saves all of the data in the current view to
the text file, overwriting the existing data. This topic discusses several ways to export
data. You can export data that has been imported from a text file back to that file or to
another file. You can export data from a QueryDataSet or a ProcedureDataSet to a text
file. Or you can resolve data from a TableDataSet to an existing SQL table.

Exporting data to a text file is handled differently than resolving data to a SQL table.
Both QueryDataSet and TableDataSet are StorageDataSet components. When data is
provided to the data set, the StorageDataSet tracks the row status information (either
deleted, inserted, or updated) for all rows. When data is resolved back to a data source
like a SQL server, the row status information is used to determine which rows to add to,
delete from, or modify in the SQL table. When a row has been successfully resolved, it
obtains a new row status of resolved (either RowStatus.UPDATE_RESOLVED,
RowStatus.DELETE_RESOLVED, or RowStatus.INSERT_RESOLVED). If the StorageDataSet is
resolved again, previously resolved rows will be ignored, unless changes have been
made subsequent to previous resolving. When data is exported to a text file, all of the
data in the current view is written to the text file, and the row status information is not
affected.

Data exported to a text file is sensitive to the current sorting and filtering criteria. If sort
criteria are specified, the data is saved to the text file in the same order as specified in
the sort criteria. If row order is important, remove the sort criteria prior to exporting
data. If filter criteria are specified, only the data that meets the filter criteria will be
saved. This is useful for saving subsets of data to different files, but could cause data
loss if a filtered file is inadvertently saved over an existing data file.

Warning Remove filter criteria prior to saving, if you want to save all of the data back to the
original file.

Exporting data from a QueryDataSet to a text file

Exporting data from a QueryDataSet to a text file is the same as exporting data from a
TableDataSet component, as defined in Chapter 16, “Tutorial: Importing and exporting
data from a text file.” JBuilder will create a SCHEMA file that defines each column, its
name, and its data type so that the file can be imported back into JBuilder more easily.

Note BLOB columns are not exported, they are ignored when other fields are exported.

Saving changes from a TableDataSet to a SQL table

Use a QueryResolver to resolve changes back to a SQL table. For more information on
using the QueryResolver to save changes to a SQL table, see “Customizing the default
resolver logic” on page 87.

Prior to resolving the changes back to the SQL table, you must set the table name and
column names of the SQL table, as shown in the following code snippet. The SQL table
and SCHEMA file must already exist. The applicable SCHEMA file of the TableDataSet
must match the configuration of the SQL table. The variant data types of the
TableDataSet columns must map to the JDBC types of server table. By default, all rows
will have a status of INSERT.

tabledataset1.setTableName(string);
tableDataSet1.SetRowID(columnName);

26 Developing Database Appl icat ions

Expor t ing data

Saving changes loaded from a TextDataFile to a JDBC data source

By default, data is loaded from a TextDataFile with a status of RowStatus.Loaded. Calling
the saveChanges() method of a QueryDataSet or a ProcedureDataSet will not save changes
made to a TextDataFile because these rows are not yet viewed as being inserted. To
enable changes to be saved and enable all rows loaded from the TextDataFile to have
an INSERTED status, set the property TextDataFile.setLoadAsInserted(true). Now
when the saveChanges() method of a QueryDataSet or a ProcedureDataSet is called, the
data will be saved back to the data source.

For more information on using the QueryResolver to save changes to a SQL table, see
“Customizing the default resolver logic” on page 87.

Chapter 4 : Connect ing to a database 27

C h a p t e r

4
Chapter 4Connecting to a database

To operate the database tutorials included in this book, you’ll need to install the
JDataStore JDBC driver. The InterClient JDBC driver can be used, as well. This section
provides information for setting up JDataStore and InterClient for use in the tutorials.

Sun worked in conjunction with database and database tool vendors to create a DBMS
independent API. Like ODBC (Microsoft’s rough equivalent to JDBC), JDBC is based
on the X/Open SQL Call Level Interface (CLI). Some of the differences between JDBC
and ODBC are,

� JDBC is an all Java API that is truly cross platform. ODBC is a C language interface
that must be implemented natively. Most implementations run only on Microsoft
platforms.

� Most ODBC drivers require installation of a complex set of code modules and
registry settings on client workstations. JDBC is an all Java implementation that can
be executed directly from a local or centralized remote server. JDBC allows for
much simpler maintenance and deployment than ODBC.

JDBC is endorsed by leading database, connectivity, and tools vendors including
Oracle, Sybase, Informix, InterBase, DB2. Several vendors, including Borland, have
JDBC drivers. Existing ODBC drivers can be utilized by way of the JDBC-ODBC bridge
provided by Sun. Using the JDBC-ODBC bridge is not an ideal solution since it requires
the installation of ODBC drivers and registry entries. ODBC drivers are also
implemented natively which compromises cross-platform support and applet security.

JBuilder DataExpress components are implemented using the Sun database
connectivity (JDBC) Application Programmer Interface (API). To create a Java data
application, the Sun JDBC sql package must be accessible before you can start
creating your data application. If your connection to your database server is through an
ODBC driver, you also need the Sun JDBC-ODBC bridge software.

For more information about JDBC or the JDBC-ODBC bridge, visit the JDBC Database
Access API web site at http://java.sun.com/products/jdbc/.

28 Developing Database Appl icat ions

Connect ing to databases

Connecting to databases
You can connect JBuilder applications to remote or local SQL databases, or to
databases created with other Borland applications such as C++ Builder or Delphi.

To connect to a remote SQL database, you need either of the following:

� A JDBC driver for your server. Some versions of JBuilder include JDBC drivers. One
of these drivers is InterClient. Check the Borland web site at
http://www.borland.com/jbuilder/ for availability of JDBC drivers in your edition of
JBuilder or contact the technical support department of your server software
company for availability of JDBC drivers.

� An ODBC-based driver for your server that you use with the JDBC-ODBC bridge
software.

Note The ODBC driver is a non-portable DLL. This is sufficient for local development, but
won’t work for applets or other all-Java solutions.

When connecting to local, non-SQL databases such as Paradox or Visual dBASE, use
an ODBC driver appropriate for the table type and level you are accessing in
conjunction with the JDBC-ODBC bridge software.

Note When you no longer need a Database connection, you should explicitly call the
Database.closeConnection() method in your application. This ensures that the JDBC
connection is not held open when it is not needed and allows the JDBC connection
instance to be garbage collected.

Adding a Database component to your application

The Database component is a JDBC-specific component that manages a JDBC
connection. To access data using a QueryDataSet or a ProcedureDataSet component,
you must set the database property of the component to an instantiated Database
component. Multiple data sets can share the same database, and often will.

In a real world database application, you would probably place the Database component
in a data module. Doing so allows all applications that access the database to have a
common connection. To learn more about data modules, see Chapter 10, “Using data
modules to simplify data access.”

To add the Database component to your application,

1 Create a new project and application files using the Application wizard. (You can
optionally follow these instructions to add data connectivity to an existing project and
application.) To create a new project and application files:

a Choose File|Close from the JBuilder menu to close existing applications.

If you do not do this step before you do the next step, the new application files will
be added to the existing project.

b Choose File|New and double-click the Application icon to start the Application
wizard.

Accept or modify the default settings to suit your preferences.

Chapter 4 : Connect ing to a database 29

Connect ing to databases

2 Open the UI designer by selecting the Frame file (for example, Frame1.java) in the
content pane, then select the Design tab at the bottom of the IDE.

3 Select the DataExpress page on the component palette, and click the Database
component.

4 Click anywhere in the designer window to add the Database component to your
application.

This adds the following line of code to the Frame class:

Database database1 = new Database();

The Database component appears in the structure pane, looking like this:

Figure 4.1 Database component displayed in structure pane

Setting Database connection properties

The Database connection property specifies the JDBC driver, connection URL, user
name, and password. The JDBC connection URL is the JDBC method for specifying
the location of a JDBC data provider (for example, SQL server). It contains all the
information necessary for making a successful connection, including user name and
password.

You can access the ConnectionDescriptor object programmatically, or you can set
connection properties through the Inspector. If you access the ConnectionDescriptor
programmatically, follow these guidelines:

� If you set promptPassword to true, you should also call openConnection() for your
database. openConnection() determines when the password dialog is displayed and
when the database connection is made.

� Get user name and password information as soon as the application opens. To do
this, call openConnection() at the end of the main frame’s jbInit() method.

If you don’t explicitly open the connection, it will try to open when a component or
data set first needs data.

30 Developing Database Appl icat ions

Connect ing to databases

The following steps describe how to set connection properties to the sample
JDataStore Employee database through the UI designer.

Note To use the sample database, you will need to make sure your system is set up for
JDataStore. If you have not already done so, see “Setting up JDataStore” on page 31.

1 Select database1 in the component tree.

2 Select the connection property’s value in the Inspector, and click the ellipsis (…)
button to open the Connection property editor.

3 Set the following properties:

The dialog looks like this:

Figure 4.2 Connection Descriptor dialog box

Property Description

Driver The class name of the JDBC driver that corresponds to the URL, for this
example, select com.borland.datastore.jdbc.DataStoreDriver from the
list.

URL The Universal Resource Locator (URL) of the database, for this example.
The default value is jdbc:borland:dslocal:directoryAndFile.jds. Click
the Browse button to select the Local JDataStore Database, which is
located in <jbuilder>/samples/JDataStore/datastores/employee.jds.
Use the Browse button to select this file to reduce the chance of making a
typing error. When selected, the URL will look similar to this:

UNIX:

jdbc:borland:dslocal:/usr/local/<jbuilder>/samples/JDataStore/
 datastores/employee.jds

Windows:

jdbc:borland:dslocal:C:\jbuilder\samples\JDataStore\datastores\
 employee.jds

Username The user name authorized to access the server database. For the sample
tutorials, the user name is “SYSDBA”.

Password The password for the authorized user. For the tutorials, the password is
“masterkey”.

Prompt user
for password

Whether to prompt the user for a password when opening the database
connection.

Chapter 4 : Connect ing to a database 31

Set t ing up JDataStore

4 Click the Test Connection button to check that the connection properties have been
correctly set.

The connection attempt results are displayed beside the Test Connection button.

If you cannot successfully connect to the sample database, make sure to set up
your computer to use the JDataStore sample database. See “Setting up
JDataStore” on page 31 for more information.

5 Click OK to exit the Connection dialog box and write the connection properties to the
source code when the connection is successful.

The source code, if the example above is followed, looks similar to this:

database1.setConnection(new
 com.borland.dx.sql.dataset.ConnectionDescriptor(
 "jdbc:borland:dslocal:
 <jbuilder>/samples/JDataStore/datastores/employee.jds", "admin", "",
 false, "com.borland.datastore.jdbc.DataStoreDriver"));

6 Select a DBDisposeMonitor component from the More dbSwing page, and click in the
content pane to add it to the application.

The DBDisposeMonitor will close the JDataStore when the window is closed.

7 Set the dataAwareComponentContainer property of the DBDisposeMonitor to this.

Tip Once a database URL connection is successful, you can use the Database Pilot to
browse JDBC-based meta-database information and database schema objects in the
JDataStore, and to execute SQL statements, and browse and edit data in existing
tables.

Setting up JDataStore
To view and explore the contents of the JDataStore, use the JDataStore Explorer. To
start the JDataStore Explorer, choose Tools|JDataStore Explorer. To open the sample
JDataStore, browse to <jbuilder>/samples/JDataStore/datastores/employee.jds.

For more information on the JDataStore Explorer, see “JDataStore Administration” in
the JDataStore Developer’s Guide.

Setting up InterBase and InterClient
InterBase is a SQL-compliant, relational database management software product that
is easy to use. InterBase is client and tools independent, supporting most of the
popular desktop clients and application builder frameworks.

InterClient is an all-Java JDBC driver for InterBase databases. InterClient contains a
library of Java classes which implement most of the JDBC API and a set of extensions
to the JDBC API. It interacts with the JDBC Driver Manager to allow client-side Java
applications and applets to interact with InterBase databases.

Note The current version of InterClient is a type 4 JDBC driver. Previous, type 3 drivers have
been deprecated, and all development will continue for the type 4 driver only.

32 Developing Database Appl icat ions

Sett ing up In terBase and In terCl ient

Developers can deploy InterClient-based clients in two ways:

� Java applets are Java programs that can be included in an HTML page with the
<APPLET> tag, served by a web server, and viewed and used on a client system
using a Java-enabled web browser. This deployment method doesn’t require
manual installation of the InterClient package on the client system. It does however
require a Java-enabled browser on the client system.

� Java applications are stand-alone Java programs for execution on a client system.
This deployment method requires the InterClient package, and the Java Runtime
Environment (JRE) installed on the client system. The JRE includes the JDBC
Driver Manager.

As an all-Java API to InterBase, InterClient enables platform-independent, client-server
development for the Internet and corporate Intranets. The advantage of an all-Java
driver versus a native-code driver is that you can deploy InterClient-based applets
without having to manually load platform-specific JDBC drivers on each client system
(the web servers automatically download the InterClient classes along with the
applets). Therefore, there’s no need to manage local native database libraries, which
simplifies administration and maintenance of customer applications. As part of a Java
applet, InterClient can be dynamically updated, further reducing the cost of application
deployment and maintenance.

Using InterBase and InterClient with JBuilder

To use InterBase and InterClient with JBuilder, install InterBase and InterClient
following the instructions in the InterBase documentation, then start the InterBase
Server.

If you have trouble connecting, be sure the InterBase database is running. Database
can run on the same machine as your application, or on a different machine. As a
result, there are many possible configurations. It is important that your InterClient
version be compatible with your database version and your JDK. For more information
on these topics, please refer to the InterBase and InterClient documentation.

If InterBase Server is on a different platform than JBuilder, you need to:

� Make sure InterBase is running on the server.

� Make sure InterClient is installed on the client.

� Make sure the URL of the Connection Descriptor on the client has the correct IP
address of the server running InterBase.

After InterClient is installed, add it to JBuilder using Enterprise|Enterprise Setup, then
add it to your required list of libraries for your project in Project|Project Properties. For
more information, see “Adding a JDBC driver to JBuilder” on page 33.

Tips on using sample InterBase tables

For best results, note the following tips for working with the sample tables:

� Make a backup copy of the sample database.

Sample databases are installed by the setup program. You may wish to make a
copy of the database file, employee.gdb, so that you can easily restore the file to its
original condition after experimenting with database programming.

� Do not defy the database constraints.

The sample databases enforce many constraints on data values, as is normal in a
realistic application. These constraints affect all examples where you add, insert, or

Chapter 4 : Connect ing to a database 33

Adding a JDBC dr iver to JBui lder

update data from the employee table and attempt to save the changes back to the
server table.

� The EMPLOYEE table is used extensively in the examples in this manual. The
following constraints apply to the employee table:

� All fields are required (data must be entered) except for PHONE_EXT.

� EMP_NO is generated, so no need to input for new records. It’s also the
primary key, so don’t change it.

� Referential integrity.

� DEPT_NO must exist in Department table.
� JOB_CODE, JOB_GRADE, JOB_COUNTRY must exist in JOB table.

� SALARY must be greater than or equal to min_salary field from job table for
the matching job_code, job_grade and job_country fields in job.

� FULL_NAME is generated by the query so no need to enter anything.

� The CUSTOMER table is also used in the database tutorials. CUST_NO is
generated, so there is no need to input for new records.

When working with the sample tables, it’s safest to modify only the LAST_NAME,
FIRST_NAME, PHONE_EXT fields in existing records.

To view the metadata for the sample tables,

1 Choose Tools|Database Pilot.

The Database Pilot is used for database administration tasks.

2 Double-click the database URL to open a connection to the database.

3 Expand the Tables node to view information about the individual sample tables.

Adding a JDBC driver to JBuilder
After installing your JDBC driver following the manufacturer’s instructions, use the
steps below to set it up for use with JBuilder.

Note Uninstalled drivers are red on the Drivers list in the Connection Property dialog box and
cannot be selected for use in JBuilder. You must install them according to the
manufacturer first before setting them up in JBuilder.

Creating the .library and .config files

There are three steps to adding a database driver to JBuilder:

� Creating a library file which contains the driver’s classes, typically a JAR file, and
any other auxiliary files such as documentation and source.

� Deriving a .config file from the library file which JBuilder adds to its classpath at
start-up.

� Adding the new library to your project, or to the Default project if you want it
available for all new projects.

The first two steps can be accomplished in one dialog box:

1 Open JBuilder and choose Enterprise|Enterprise Setup.

2 Click the Database Drivers tab in the Enterprise Setup dialog box.

The Database Drivers tab displays .config files for all the currently defined database
drivers.

34 Developing Database Appl icat ions

Adding a JDBC dr iver to JBui lder

3 Click Add to add a new driver, then New to create a new library file for the driver.
The library file is used to add the driver to the required libraries list for projects.

Note You can also create a new library under Tools|Configure Libraries, but since you
would then have to use Enterprise Setup to derive the .config file, it is simpler to do
it all here.

4 Type a name and select a location for the new file in the Create New Library dialog
box.

5 Click Add, and browse to the location of the driver. You can select the directory
containing the driver and all it’s support files, or you can select just the archive file
for the driver. Either will work. JBuilder will extract the information it needs.

6 Click OK to close the file browser. This displays the new library at the bottom of the
library list and selects it.

7 Click OK. JBuilder creates a new .library file in the JBuilder /lib directory with the
name you specified (for example, InterClient.library). It also returns you to the
Database Drivers page which displays the name of the corresponding .config file in
the list which will be derived from the library file (for example, InterClient.config).

8 Select the new .config file in the database driver list and click OK. This places the
.config file in the JBuilder /lib/ext directory.

9 Close and restart JBuilder so the changes to the database drivers will take effect,
and the new driver will be put on the JBuilder classpath.

Important If you make changes to the .library file after the .config file has been derived, you must
re-generate the .config file using Enterprise Setup, then restart JBuilder.

Adding the JDBC driver to projects

Projects run from within JBuilder use only the classpath defined for that project.
Therefore, to make sure the JDBC driver is available for all new projects that will need
it, define the library and add it to your default list of required libraries. This is done from
within JBuilder using the following steps:

1 Start JBuilder and close any open projects.

2 Choose Project|Default Project Properties.

3 Select the Required Libraries tab on the Paths page, and click Add.

4 Select the new JDBC driver from the library list, and click OK.

5 Click OK to close the Default Project Properties dialog box.

Note You can also add the JDBC driver to an existing project. Just open the project, then
choose Project|Project Properties and use the same process as above.

Now JBuilder and the new JDBC driver are set up to work together. The next step is to
create or open a project that uses this driver, add a Database component to it, and set
its connection property so it can use that driver to access the data. For an example of
how to do this, see “Connecting to a database using InterClient JDBC drivers” on
page 35.

The Database component handles the JDBC connection to a SQL server and is required
for all database applications involving server data. JDBC is the Sun Database
Application Programmer Interface, a library of components and classes developed by
Sun to access remote data sources. The components are collected in the java.sql
package and represent a generic, low-level SQL database access framework.

Chapter 4 : Connect ing to a database 35

Connect ing to a database us ing In terCl ient JDBC dr ivers

The JDBC API defines Java classes to represent database connections, SQL
statements, result sets, database metadata, etc. It allows a Java programmer to issue
SQL statements and process the results. JDBC is the primary API for database access
in Java. The JDBC API is implemented via a driver manager that can support multiple
drivers connecting to different databases. For more information about JDBC, visit the
Sun JDBC Database Access API web site at http://java.sun.com/products/jdbc/.

JBuilder uses the JDBC API to access the information stored in databases. Many of
JBuilder’s data-access components and classes use the JDBC API. Therefore, these
classes must be properly installed in order to use the JBuilder database connectivity
components. In addition, you need an appropriate JDBC driver to connect your
database application to a remote server. Drivers can be grouped into two main
categories: drivers implemented using native methods that bridge to existing database
access libraries, or all-Java based drivers. Drivers that are not all-Java must run on the
client (local) system. All-Java based drivers can be loaded from the server or locally.
The advantages to using a driver entirely written in Java are that it can be downloaded
as part of an applet and is cross-platform.

Some versions of JBuilder include JDBC drivers. Check the Borland web site at
http://www.borland.com/jbuilder/ for availability of JDBC drivers in the JBuilder
versions, or contact the technical support department of your server software company
for availability of JDBC drivers. Some of the driver options that may ship with JBuilder
are:

� DataStoreDriver

DataStoreDriver is the JDBC driver for the JDataStore database. The driver supports
both local and remote access. Both types of access require a user name.

Note The user name can be any string. If no user has been added to the store’s user
table, there is no need to provide one. For transactional stores, however, a not-null
string is required for user name.

For instructions on connecting to a database using the JDataStore driver, see
Chapter 17, “Tutorial: Creating a basic database application.”

� InterClient

InterClient is a JDBC driver that you can use to connect to InterBase. InterClient can
be installed by running the InterClient installation program. Once installed,
InterClient can access InterBase sample data using the ConnectionDescriptor.

For information on connecting to a database using InterClient, see “Connecting to a
database using InterClient JDBC drivers” on page 35.

You can connect JBuilder applications to remote or local SQL databases, or to
databases created with other Borland applications such as C++ Builder or Delphi. To
do so, look at the underlying database that your application connects to and connect to
that database using its connection URL.

Connecting to a database using InterClient JDBC drivers
This section discusses adding a Database component, which is a JDBC-specific
component that manages a JDBC connection, and setting the properties of this
component that enable you to access sample InterBase data.

In a real world database application, you would probably place the Database component
in a data module. Doing so allows all applications that access the database to have a
common connection. To learn more about data modules, see Chapter 10, “Using data
modules to simplify data access.”

36 Developing Database Appl icat ions

Connect ing to a database using InterCl ient JDBC dr ivers

To add the Database component to your application and connect to the InterBase
sample files,

1 Make sure to follow the steps in “Setting up InterBase and InterClient” on page 31
and “Adding a JDBC driver to JBuilder” on page 33 to make sure your system is
correctly set up for accessing the sample InterBase files.

2 Close all projects and create a new application, or add data connectivity to an
existing project and application.

You can create a new project and application files by choosing File|New, and
double-clicking the Application icon. Select all defaults. JBuilder will create the
necessary files and display them in the project pane. The file Frame1.java will be
open in the content pane. Frame1.java will contain the user interface components for
this application.

3 Click the Design tab on Frame1.java at the bottom of content pane.

4 Select the DataExpress page on the component palette, and click the Database
component.

5 Click anywhere in the content pane or UI designer to add the Database component to
your application.

6 Set the Database connection property to specify the JDBC driver, connection URL,
user name, and password.

The JDBC connection URL is the JDBC method for specifying the location of a
JDBC data provider (i.e., SQL server). It can actually contain all the information
necessary for making a successful connection, including user name and password.

To set the connection property,

a Make sure the Database object is selected in the content pane.

Double-click the connection property in the Inspector to open the connection
property editor. In this example, the data resides on a Local InterBase server. If
your data resides on a remote server, you would type the IP address of the server
instead of “localhost” entered here.

b Set the following properties:

Property Value

Driver interbase.interclient.Driver

URL Browse to the sample InterBase file, employee.gdb, located in your
InterBase /examples directory. The entry in the URL field will look
similar to this:

UNIX:

jdbc:interbase://localhost//usr/interbase/examples/
 employee.gdb

Windows:

jdbc:interbase://localhost/D:\InterBaseCorp\InterBase\
 examples\database\employee.gdb

Username SYSDBA

Password masterkey

Chapter 4 : Connect ing to a database 37

Using the Database component in your appl icat ion

The dialog box looks like this:

Figure 4.3 Connection Descriptor dialog

c Click the Test Connection button to check that the connection properties have
been correctly set.

The connection attempt results are displayed directly beneath the Test
Connection button. See “Common connection error messages” on page 43 for
solutions to some typical connection problems.

d Click OK to exit the dialog and write the connection properties to the source code
when the connection is successful.

Tip Once a database URL connection is successful, you can use the Database Pilot to
browse JDBC-based meta-database information and database schema objects, as
well as execute SQL statements, and browse and edit data in existing tables.

Using the Database component in your application
Now that your application includes the Database component, you’ll want to add another
DataExpress component that retrieves data from the data source to which you are
connected. JBuilder uses queries and stored procedures to return a set of data. The
components implemented for this purpose are QueryDataSet and ProcedureDataSet.
These components work with the Database component to access the SQL server
database. For instructions on how to use these components, see the following
sections:

� “Querying a database” on page 46

� “Using parameterized queries to obtain data from your database” on page 53

� “Using stored procedures” on page 61

Most of the sample applications and tutorials use a Database connection to the sample
EMPLOYEE JDataStore, as described here.

For most database applications, you would probably encapsulate the Database and
other DataExpress components in a DataModule instead of directly adding them to an
application’s Frame. For more information on using the DataExpress package’s
DataModule, see Chapter 10, “Using data modules to simplify data access.”

38 Developing Database Appl icat ions

Prompt ing for user name and password

Prompting for user name and password
When developing a database application, it is convenient to include a user name and
password in the ConnectionDescriptor so that you do not have to supply this information
each time you use the designer or run your application. If you set the ConnectionDescriptor
through the designer, the designer writes the code for you. Before you deploy your
application, you will probably want to remove the user name and password from the code,
prompting the user for the information at runtime instead, particularly if you distribute the
source code or if different users have different access rights. You have several options for
prompting a user for their user name and password at runtime.

� Check the Prompt User For Password checkbox in the editor for the Database
connection property, or write code to set the ConnectionDescriptor promptPassword
parameter to true.

At runtime and when you show live data in the Designer, a user name and password
dialog will display. A valid user name and password must be entered before data will
display.

� Add an instance of dbSwing DBPasswordPrompter to your application.

This option gives you more control over user name/password handling. You can
specify what information is required (only user name, only password, or both), how
many times the user can attempt to enter the information, and other properties. The
OK button will be disabled until the necessary information is supplied. The dialog is
displayed when you call its showDialog() method. This allows you to control when it
appears. Be sure to present it early in your application, before any visual component
tries to open your database and display data. The designer doesn’t call
showDialog(), so you need to specify user name and password in the
ConnectionDescriptor when you activate the designer.

Pooling JDBC connections
For applications which require many database connections, you should consider
connection pooling. Connection pooling provides significant performance gains, especially
in cases where large numbers of database connections are opened and closed.

JDataStore provides several components for dealing with JDBC 2.0 DataSources and
connection pooling. Use of these components requires J2EE. If your version of
JBuilder does not include J2EE.jar, you will need to download it from Sun, and add it to
your project as a required library. See “Adding a required library to a project” on
page 106 for instructions on adding a required library.

The basic idea behind connection pooling is simple. In an application that opens and
closes many database connections, it is efficient to keep unused Connection objects in
a pool for future re-use. This saves the overhead of having to open a new physical
connection each time a connection is opened.

Here are the main DataSource and connection pooling components provided by JDataStore:

� JDBCDataSource is an implementation of the javax.sql.DataSource interface.
JDBCDataSource can create a connection to a JDataStore, or any other JDBC driver,
based on its JDBC connection properties, but it does no connection pooling.
Because it is an implementation of javax.sql.DataSource, it can be registered with a
JNDI naming service. For information on JNDI naming services, consult the JDK
documentation, or http://www.javasoft.com.

� JDBCConnectionPool is also an implementation of javax.sql.DataSource, and therefore
can be registered with a JNDI naming service. JDBCConnectionPool can be used to
provide connection pooling with any JDBC driver. It creates connections based on
its JDBC connection properties. JDBCConnectionPool has various properties for

Chapter 4 : Connect ing to a database 39

Pool ing JDBC connect ions

connection pool management, for instance, properties specifying a minimum and
maximum number of connections.

When using JdbcConnectionPool, you are required to set the connectionFactory
property. This allows JdbcConnectionPool to create javax.sql.PooledConnection
objects. The connectionFactory property setting must refer to an implementation of
javax.sql.ConnectionPoolDataSource (such as JdbcConnectionFactory). The
connectionFactory property can also be set by using the dataSourceName property.
The dataSourceName property takes a String, which it will look up in the JNDI naming
service to acquire the implementation of javax.sql.ConnectionPoolDataSource.

To get a connection from the pool, you will usually call
JdbcConnectionPool.getConnection(). The connection returned by this method does
not support distributed transactions, but it can work with any JDBC driver.

JDBCConnectionPool also provides support for distributed transactions (XA), but this
feature is only available when JDBCConnectionPool is used in conjunction with the
JDataStore JDBC driver, and is only useful when combined with a distributed
transaction manager, such as the Borland Enterprise Server. For more information
on JDBCConnectionPool’s XA support, see “Connection pooling and distributed
transaction support” in the JDataStore Developer’s Guide.

� JdbcConnectionFactory is an implementation of javax.sql.ConnectionPoolDataSource.
It is used to create javax.sql.PooledConnection objects for a connection pool
implementation like JDBCConnectionPool.

JDBCConnectionPool and JDBCConnectionFactory are easily used together, but they can
also each be used separately. The decoupling of these two components provides
more flexibility. For example, JDBCConnectionFactory could be used with another
connection pooling component which uses a different strategy than
JDBCConnectionPool. JDBCConnectionFactory can be used with any JDBC 2.0
connection pool implementation that allows a javax.sql.ConnectionPoolDataSource
implementation (like JDBCConnectionFactory) to provide its
javax.sql.PooledConnections.

JDBCConnectionPool’s efficient pooling strategy, on the other hand, could be used
with another connection factory implementation. JDBCConnectionPool can be used
with any JDBC driver that provides a connection factory component which
implements javax.sql.ConnectionPoolDataSource.

Here are the main DataSource and connection pooling components provided by
InterClient for InterBase databases:

� interbase.interclient.DataSource is an implementation of the javax.sql.DataSource
interface. DataSource can create a connection to an InterBase database, based on its
JDBC connection properties, but it does no connection pooling. Because it is an
implementation of javax.sql.DataSource, it can be registered with a JNDI naming
service. For information on JNDI naming services, consult the JDK documentation,
or http://www.javasoft.com.

� interbase.interclient.ConnectionPoolModule is also an implementation of
javax.sql.DataSource, and therefore can be registered with a JNDI naming service.
ConnectionPoolModule can be used to provide connection pooling with any JDBC
driver. It creates connections based on its JDBC connection properties.
ConnectionPoolModule has various properties for connection pool management, such
as properties specifying a minimum and maximum number of connections. When
using ConnectionPoolModule, you are required to set the connectionFactory property.
To get a connection from the pool, you will usually call
ConnectionPoolModule.getConnection(). The connection returned by this method and
InterClient does not support distributed transactions.

� interbase.interclient.JdbcConnectionFactory is an implementation of
javax.sql.ConnectionPoolDataSource. It is used to create javax.sql.PooledConnection
objects for a connection pool implementation like ConnectionPoolModule.

40 Developing Database Appl icat ions

Pool ing JDBC connect ions

Now that we’ve given you an overview of the classes involved in connection pooling,
it’s time to explain a bit more about how they work:

� The JdbcConnectionPool.getConnection() method tries to save the overhead of
opening a new connection by using a connection that is already in the pool. When a
lookup is performed to find a connection in the pool, a match is found if the user
name equals the user name that was originally used to create the pooled
connection. Password is not considered when trying to match a user. A new
connection is requested from the factory only if no match is found in the pool.

� Connection pooling is a relatively simple, but very powerful API. Most of the difficult
work, like keeping track of pooled connections, and deciding whether to use an
existing pooled connection or open a new one, is done completely internally.

� When an application uses connection pooling, a connection should always be
explicitly closed when no longer in use. This allows the connection to be returned to
the pool for later use, which improves performance.

� The factory which creates connections for the pool should use the same property
settings for all of them, except for the user name and password. A connection pool,
therefore, accesses one database, and all its connections have the same JDBC
connection property settings (but can have different usernames/passwords).

Optimizing performance of JConnectionPool

The lookup mechanism for finding a pooled connection that shares the same user
name does a quick scan comparing user name string references. If possible, pass in
the same String instance for all connection requests. One way to ensure this is to
always use a constant name specified as follows for connection pooling:

public static final String POOL_USER = "CUSTOMER_POOL_USER";

Logging output

Both JdbcConnectionPool and JdbcConnectionFactory have PrintWriter properties. Most
log output has the form of:

[<class instance hashcode>]:<class name>.<method name>(...)

Any hexidecimal values displayed in square brackets ([]) in the log files are
hashCode() values for an Object.

Pooling example

The following is a trivial example of using connection pooling. This data module code
fragment shows the most important and most basic lines of code you will need in an
application using connection pooling, without making too many assumptions about
what your specific application may need to do with this technology. For a non-trivial
example of connection pooling, refer to the Web Bench sample in samples/JDataStore/
WebBench. For more information about data modules, see Chapter 10, “Using data
modules to simplify data access.”

import com.borland.dx.dataset.*;
import com.borland.dx.sql.dataset.*;
import com.borland.javax.sql.*;
import java.sql.*;

public class DataModule1 implements DataModule {

 private static DataModule1 myDM;
 private static final String POOL_USER = "POOL_USER";

Chapter 4 : Connect ing to a database 41

Pool ing JDBC connect ions

 private static JdbcConnectionFactory factory;
 private static JdbcConnectionPool pool;

 public DataModule1() {
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 // Instantiate connection factory
 factory = new JdbcConnectionFactory();

 // The next line sets the URL to a
 // local JDataStore file. The specific
 // URL will depend on the location
 // of your JDataStore file.
 factory.setUrl("jdbc:borland:dslocal:<path><file name>");
 factory.setUser(POOL_USER);
 factory.setPassword("");

 // Instantiate the connection pool
 pool = new JdbcConnectionPool();
 // Assign the connection factory as
 // the factory for this pool
 pool.setConnectionFactory(factory);

 }

 public Connection getConnection() {

 Connection con = null;

 try {
 con = pool.getConnection();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

 return con;
 }

 public static DataModule1 getDataModule() {
 if (myDM == null) {
 myDM = new DataModule1();
 }
 return myDM;
 }

 public static JdbcConnectionPool getPool() {
 return pool;
 }

}

You will probably write the code for the application logic in a separate source file. The
next code fragment shows how to request connections from the pool, and later, how to

42 Developing Database Appl icat ions

Pool ing JDBC connect ions

make sure the connections are returned to the pool. It also shows how to make sure
the pool is shut down when the application ends.

public class doSomething {

 static DataModule1 dm = null;

 public doSomething() {
 }

 public static void main(String args[]){

 // Several of the methods called here could throw exceptions,
 // so exception handling is necessary.

 try{
 // Instantiate the data module
 dm = new DataModule1();
 java.sql.Connection con = null;

 // This application gets 100 connections
 // and returns them to the pool.
 for (int i=0; i<100; i++){

 try{
 // Get a connection
 con = dm.getPool().getConnection();
 }

 catch(Exception e){
 e.printStackTrace();
 }

 finally{
 // Return the connection to the pool
 con.close();
 }
 }
 }
 catch(Exception x){
 x.printStackTrace();
 }
 finally{
 try{
 // Shut down the pool before the
 // the application exits.
 dm.getPool().shutdown();
 }
 catch(Exception ex){
 ex.printStackTrace();
 }
 }

 }
}

Chapter 4 : Connect ing to a database 43

Troubleshoot ing JDataStore and In terBase connect ions

Troubleshooting JDataStore and InterBase connections
Connecting to a SQL server using JDBC can result in error messages generated by
JDBC. For help with troubleshooting JDataStore connections in the tutorials,

� Read “Troubleshooting” in the JDataStore Developer’s Guide.

� Check the Borland JDataStore FAQ at http://community.borland.com/article/
0,1410,19685,00.html.

� Read “Common connection error messages” on page 43 for problems connecting to
InterBase via InterClient.

Common connection error messages

Listed below are some common connection errors and solutions:

� Unable to locate the InterClient driver. InterClient has not been added as a required
library for the project. Choose Project|Project Properties, and add InterClient as a
Required Library.

� Driver could not be loaded. InterClient has not been added to the CLASSPATH. Add
the interclient.jar file to the JBuilder startup script CLASSPATH, or to your
environment’s CLASSPATH before launching JBuilder.

44 Developing Database Appl icat ions

Chapter 5 : Retr iev ing data f rom a data source 45

C h a p t e r

5
Chapter 5Retrieving data from a data source

This chapter focuses on using JBuilder’s DataExpress architecture to retrieve data
from a data source, and provide data to an application. The components in the
DataExpress packages encapsulate both the connection between the application and
its source of the data, as well as the behavior needed to manipulate the data.

To create a database application, you retrieve information stored in the data source,
and create a copy that your application can manipulate locally. The data retrieved from
the provider is cached inside a DataSet. All changes to the cached DataSet are tracked
so that resolver implementations know what needs to be inserted, updated, or deleted
back to the data source. In JBuilder, a subset of data is extracted from the data source
into a JBuilder StorageDataSet subclass. The StorageDataSet subclass you use depends
on the way in which you obtain the information.

Using a provider/resolver approach, you only need two interactions between the
database application and the data source: the initial connection to retrieve the data,
and the final connection to resolve the changes back to the data source. The
connection between the DataSet component client and the data source can be
disconnected after data is provided, and only needs to be re-established for the
duration of the resolving transaction.

DataExpress components also provide support for direct data binding to dbSwing
components. You simply set a property in the Inspector to bind Data to visual
components.

Some of the examples in this chapter use a JDataStore driver to access data in a
JDataStore. Others use a JDBC driver to access data in InterBase tables. Both of
these options have their advantages. Which you choose depends on your application
needs. With both options,

� You can directly wire visual components.

� You get full featured data access that includes master-detail, sorting, filtering, and
constraints.

� You can track edits to retrieved data so they can be correctly resolved to the data
source.

46 Developing Database Appl icat ions

Query ing a database

Querying a database
A QueryDataSet component is a JDBC-specific DataSet that manages a JDBC data
provider, as defined in the query property. You can use a QueryDataSet component in
JBuilder to extract data from a data source into a StorageDataSet component. This
action is called providing. Once the data is provided, you can view and work with the
data locally in data-aware components. When you want to save the changes back to
your database, you must resolve the data. The DataExpress architecture is discussed
in more detail in Chapter 2, “Understanding JBuilder database applications.”

QueryDataSet components enable you to use SQL statements to access, or provide,
data from your database. You can add a QueryDataSet component directly to your
application, or add it to a data module to centralize data access and control business
logic.

To query a SQL table, you need the following components, which can be supplied
programmatically or with JBuilder design tools:

� Database

The Database component encapsulates a database connection through JDBC to the
SQL server and also provides lightweight transaction support.

� QueryDataSet

A QueryDataSet component provides the functionality to run a query statement (with
or without parameters) against tables in a SQL database, and stores the result set
from the execution of the query.

� QueryDescriptor

The QueryDescriptor object stores the query properties, including the database to be
queried, the query string to execute, and optional query parameters.

The QueryDataSet has built-in functionality to fetch data from a JDBC data source.
However, the built-in functionality (in the form of the default resolver) does much more
than fetch data. It also generates the appropriate SQL INSERT, UPDATE, and
DELETE queries for saving changes back to the data source after it has been fetched.

The following properties of the QueryDescriptor object affect query execution. These
properties can be set visually in the query property editor. For a discussion of the query
property editor and its tools and properties, see “Setting properties in the query dialog
box” on page 47.

Property Effect

database Specifies what Database connection object to run the query against.

query A SQL statement (typically a SELECT statement).

parameters An optional ReadWriteRow from which to fill in parameters, used for
parameterized queries.

executeOnOpen Causes the QueryDataSet to execute the query when it is first opened.
This is useful for presenting live data at design time. You may also want
this enabled at run time.

loadOption An optional integer value that defines the method of loading data into the
data set. Options are:

� Load All Rows: load all data up front.

� Load Rows Asynchronously: causes the fetching of DataSet rows to
be performed on a separate thread. This allows the DataSet data to
be accessed and displayed as the QueryDataSet is fetching rows from
the database connection.

� Load As Needed: load the rows as they are needed.

� Load One Row At A Time: load as needed and replace the previous
row with the current. Useful for high-volume batch-processing
applications.

Chapter 5 : Retr iev ing data f rom a data source 47

Query ing a database

A QueryDataSet can be used in three different ways to fetch data.

� Unparameterized queries: The query is executed and rows are fetched into the
QueryDataSet.

� Parameterized queries: You use variables in the SQL statement and then supply the
actual parameters to fill in those values. For more information on parameterized
queries, see “Using parameterized queries to obtain data from your database” on
page 53.

� Dynamic fetching of detail groups: Records from a detail data set are fetched on
demand and stored in the detail data set. For more information, see “Fetching
details” on page 97.

Setting properties in the query dialog box

The Query property editor displays when you click the ellipsis button in the value field
for the query property of a QueryDataSet. You can use the Query property editor to set
the properties of the QueryDescriptor visually, but it also has several other uses. The
Query property editor is shown below. Each of its options is explained in further detail
as well.

Figure 5.1 Query property editor

For more information, see the com.borland.dx.sql.dataset.QueryDescriptor topic in the
DataExpress Component Library Reference documentation.

The Query page
On the Query tab, the following options are available:

� The Database drop-down list displays the names of all instantiated Database objects
to which this QueryDataSet can be bound. This property must be set for the query to
run successfully. To instantiate a Database, see Chapter 4, “Connecting to a
database.”

Selecting a Database object enables the SQL Builder and Browse Tables button.

� Click the SQL Builder button to display the SQL Builder. The SQL Builder provides
a visual representation of the database, and allows you to create a SQL Statement
by selecting Columns, adding a Where clause, an Order By clause, a Group By
clause, and viewing and testing the generated SQL Statement. When you click OK,
the SQL Statement you created with the SQL Builder will be placed in the SQL
Statement field of the Query dialog.

� Click the Browse Tables button to display the Available Tables and Columns
dialog. The Available Tables and Columns dialog displays a list of tables in the

48 Developing Database Appl icat ions

Query ing a database

specified Database, and the columns in the selected table. The Paste Table and
Paste Column buttons allow you to quickly create your query statement by pasting
the name of the selected table (by clicking the Paste Table button) or selected
column (by clicking the Paste Column button) into your query statement at the
cursor’s current (insertion) point.

This button is dimmed and unavailable while the Database field displays the value
“<none>”. Select a Database object in the Database field to enable this button.

� SQL Statement is a Java String representation of a SQL statement (typically a
SELECT statement). Enter the query statement to run against the Database specified
in the Database drop-down list. Use the Browse Tables button to quickly paste the
selected table and column names into the query statement. This is a required
property; you must specify a valid SQL statement. If the SQL statement does not
return a result set, an exception is generated.

An example of a simple SQL statement that is used throughout this text selects
three fields from the EMPLOYEE table:

SELECT emp_no, last_name, salary FROM employee

This following SQL statement selects all fields from the same table.

SELECT * FROM employee

� The Execute Query Immediately When Opened option determines whether the
query executes automatically when the QueryDataSet is opened. This option defaults
to checked, which allows live data to display in the UI designer when the
QueryDataSet is bound to a data-aware component.

� Load Options are optional integer values that define the method of loading data
into the data set. Options are:

a Load All Rows: load all data up front.

b Load Rows Asynchronously: causes the fetching of DataSet rows to be performed
on a separate thread. This allows the DataSet data to be accessed and displayed
as the QueryDataSet is fetching rows from the database connection.

c Load As Needed: load the rows as they are needed.

d Load One Row At A Time: load as needed and replace the previous row with the
current. Useful for high-volume batch-processing applications.

� When Place SQL Text In Resource Bundle is checked, upon exiting the query
property editor, the Create ResourceBundle dialog displays. Select a resource
bundle type. When the OK button is clicked, the SQL text is written to a resource file
so that you can continue to use source code to persist SQL for some applications.
See “Place SQL text in resource bundle” on page 49 for more description of this
feature.

If unchecked, the SQL string is written to the QueryDescriptor as a String embedded
in the source code.

� Click Test Query to test the SQL statement and other properties on this dialog
against the specified Database. The result (“Success” or “Fail”) is displayed in the
gray area directly beneath the Test Query button. If the area below the button
indicates success, the query will run. If it indicates Fail, review the information you
have entered in the query for spelling and omission errors.

The Parameters page
On the Parameters tab, you can select an optional ReadWriteRow or DataSet from which
to fill in parameters, used for parameterized queries. Parameter values are specified
through an instantiated ReadWriteRow. Select the ReadWriteRow object (or the
ReadWriteRow subclass) that contains the values for your query parameters from the
drop-down list.

Chapter 5 : Retr iev ing data f rom a data source 49

Query ing a database

Figure 5.2 Parameters page

Any ReadWriteRow, such as ParameterRow, DataSet, and DataRow may be used as query or
procedure parameters. In a ParameterRow, columns can simply be set up with the
addColumns and setColumns methods. DataSet and DataRow should only be used if they
already contain the columns with the wanted data. See “Using parameterized queries
to obtain data from your database” on page 53 for an example of this.

Place SQL text in resource bundle
A java.util.ResourceBundle contains locale-specific objects. When your program needs
a locale-specific resource, your program can load it from the resource bundle that is
appropriate for the current user’s locale. In this way, you can write program code that is
largely independent of the user’s locale isolating most, if not all, of the locale-specific
information in resource bundles.

The Create ResourceBundle dialog appears when the query editor is closing, if a SQL
statement has been defined in the query editor and the “Place SQL Text In Resource
Bundle” option has been checked. The resource bundle dialog looks like this:

Figure 5.3 Resource Bundle dialog

To use a resource bundle in your application,

1 Select a type of ResourceBundle.

To simplify things, the JDK provides two useful subclasses of ResourceBundle:
ListResourceBundle and PropertyResourceBundle. The ResourceBundle class is itself an
abstract class. In order to create a concrete bundle, you need to derive from
ResourceBundle and provide concrete implementations of some functions which
retrieve from whatever storage you put your resources in, such as string. You can
store resources into this bundle by right-clicking a property and specifying the key.
JBuilder will write the strings into the resource file in the right format depending on
the type.

� If you select ListResourceBundle, a Java file will be generated and added to the
project. With ListResourceBundle, the messages (or other resources) are stored in a
2-D array in a Java source file. ListResourceBundle is again an abstract class. To
create an actual bundle that can be loaded, you derive from ListResourceBundle

50 Developing Database Appl icat ions

Query ing a database

and implement getContents(), which most likely will just point to a 2D array of key-
object pairs. For the above example you would create a class:

package myPackage;
public class myResource extends ListResourceBundle {
Object[][] contents = {
{"Hello_Message", "Howdy mate"}
}
public Object[][] getContents() {
return contents;
}
}

� If you select PropertyResourceBundle, a properties file will be created. The
PropertyResourceBundle is a concrete class, which means you don’t need to create
another class in order to use it. For property resource bundles, the storage for the
resources is in files with a .properties extension. When implementing a resource
bundle of this form, you simply provide a properties file with the right name and
store it in the same location as the class files for that package. For the above
example, you would create a file myResource.properties and put it either in the
CLASSPATH or in the zip/jar file, along with other classes of the myPackage
package. This form of resource bundle can only store strings, and loads a lot
slower than class-based implementations like ListResourceBundle. However, they
are very popular because they don’t involve working with source code, and don’t
require a recompile. The contents of the properties file will be like this:

comments
Hello_message=Howdy mate

2 Click Cancel or OK:

Clicking the Cancel button (or deselecting the “Place SQL text in resource bundle”
option in the query dialog), writes a QueryDescriptor like the following to the Frame
file. The SQL text is written as a string embedded in the source code.

queryDataSet1.setQuery(new
 com.borland.dx.sql.dataset.QueryDescriptor(database1,
 "select * from employee", null, true, LOAD.ALL));

Clicking the OK button creates a queryDescriptor like the following:

queryDataSet1.setQuery(new
 com.borland.dx.sql.dataset.QueryDescriptor(database1,
 sqlRes.getString("employee"), null, true, LOAD.ALL));

Whenever you save the SQL text in the QueryDescriptor dialog, JBuilder automatically
creates a new file called SqlRes.java. It places the text for the SQL string inside
SqlRes.java and creates a unique string tag which it inserts into the text. For example,
for the select statement SELECT * FROM employee, as entered above, the moment the
OK is clicked, the file SqlRes.java would be created, looking something like this:

public class SqlRes extends java.util.ListResourceBundle {
 static final Object[][] contents = {
 { "employee", "select * from employee" }};
 static final java.util.ResourceBundle res = getBundle("untitled3.SqlRes");
 public static final String getStringResource(String key) {
 return res.getString(key);
 }
 public Object[][] getContents() {
 return contents;
 }
}

If the SQL statement is changed, the changes are saved into SqlRes.java. No
changes will be necessary to the code inside jbInit(), because the “tag” string is
invariant.

Chapter 5 : Retr iev ing data f rom a data source 51

Query ing a database

For more information on resource bundles, see the JavaDoc for
java.util.ResourceBundle, found from JBuilder help by choosing Help|Java Reference.
Then select the java.util package, and the ResourceBundle class.

Querying a database: Hints & tips

This set of topics includes tips to help you

� Enhance data set performance
� Open and close data sets most efficiently
� Ensure that a query is updatable

Enhancing data set performance
This section provides some tips for fine-tuning the performance of a QueryDataSet and a
QueryProvider. For enhancing performance during data retrieval, eliminate the query
analysis that the QueryProvider performs by default when a query is executed for the
first time. See “Persisting query metadata” on page 52 for information on doing this.

� Set the loadOption property on the Query/ProcedureDataSet components to
Load.ASYNCHRONOUS or Load.AS_NEEDED. You can also set this property to Load.UNCACHED
if you will be reading the data one time, and in sequential order.

� For large result sets, use a JDataStore to improve performance. With this option, the
data is saved to disk rather than to memory.

� Cache SQL statements. By default, DataExpress will cache prepared statements for
both queries and stored procedures if
java.sql.Connection.getMetaData().getMaxStatements() returns a value greater than
10. You can force statement caching in JBuilder by calling
Database.setUseStatementCaching(true).

The prepared statements that are cached are not closed until one of the following
happens:

� Some provider related property, like the query property, is changed.

� A DataSet component is garbage collected (statement closed in a finalize()
method).

� QueryDataSet.closeStatement(), ProcedureDataSet.closeStatement(),
QueryProvider.closeStatement(), or ProcedureProvider.closeStatement() is called.

To enhance performance during data inserts/deletes/updates:

� For updates and deletes,

a Set the Resolver property to a QueryResolver.
b Set the UpdateMode property of this QueryResolver to UpdateMode.KEY_COLUMNS.

These actions weaken the optimistic concurrency used, but reduce the number of
parameters set for an update/delete operation.

� Set the useTransactions property of your Database to false. This property is true by
default if the database supports transactions. When it is true, each insert, delete, or
update statement is treated as a separate, automatically-committed transaction.
When you set useTransactions to false, the statements are all processed in a single
transaction.

Note In this case, you must call the Database or the commit() method of the Connection to
complete the transaction (or call rollback() to discard all the changes).

� Disable the resetPendingStatus flag in the Database.saveChanges() method to achieve
further performance benefits. With this disabled, DataExpress will not clear the
RowStatus state for all inserted/deleted/updated rows. This is only desirable if you will
not be calling saveChanges() with new edits on the DataSet without calling refresh first.

52 Developing Database Appl icat ions

Query ing a database

Persisting query metadata
By default, a query is analyzed for updatability the first time it is executed. This analysis
involves parsing the query string and calling several methods of the JDBC driver. This
analysis is potentially very expensive. You can remove the time overhead from run
time, however, and perform the analysis during design of a form or data model.

To do this,

1 Highlight the QueryDataSet in the designer, and double-click it.

2 Click the Persist All Metadata button in the column designer.

The query is now analyzed, and a set of property settings will be added to the code.
For more discussion of the Persist All Metadata button, see “Using the column
designer to persist metadata” on page 71. To set the properties without using the
designer,

1 Set the metaUpdate property for the StorageDataSet to NONE.

2 Set the tableName property for the StorageDataSet to the table name for single table
queries.

3 Set the rowID property of Column for the columns so that they uniquely and efficiently
identify a row.

4 Change the query string to include columns that are suitable for identifying a row
(see previous bullet), if not already included. Such columns should be marked
invisible with the visible or hidden property for the Column.

5 Set the column properties precision, scale, and searchable to appropriate values.
These properties are not needed if the metaDataUpdate property is in something other
than NONE.

6 Set the tableName property of Column for multi-table queries.

7 Set the serverColumnName property of Column to the name of the column in the
corresponding physical table if an alias is used for a column in the query.

Opening and closing data sets
Database and DataSet are implicitly opened when components bound to them open.
When you are not using a visual component, you must explicitly open a DataSet.
“Open” propagates up and “close” propagates down, so opening a DataSet implicitly
opens a Database. A Database is never implicitly closed.

Ensuring that a query is updatable
When JBuilder executes a query, it attempts to make sure that the query is updatable
and that it can be resolved back to the database. If JBuilder determines that the query
is not updatable, it will try to modify the query to make it updatable, typically by adding
columns to the SELECT clause.

If a query is found to not be updatable and JBuilder cannot make it updatable by
changing the query, the resulting data set will be read-only.

To make any data set updatable, set the updateMetaData property to NONE and specify
the data set’s table name and unique row identifier columns (some set of columns that
can uniquely identify a row, such as columns of a primary or unique index). See
“Persisting query metadata” on page 52 for information on how to do this.

You can query a SQL view, but JBuilder will not indicate that the data was received
from a SQL view as opposed to a SQL table, so there is a risk the data set will not be
updatable. You can solve this problem by writing a custom resolver.

Chapter 5 : Retr iev ing data f rom a data source 53

Using parameter ized quer ies to obta in data f rom your database

Using parameterized queries to obtain data from your database
A parameterized SQL statement contains variables, also known as parameters, the
values of which can vary at run time. A parameterized query uses these variables to
replace literal data values, such as those used in a WHERE clause for comparisons
that appear in a SQL statement. These variables are called parameters. Ordinarily,
parameters stand in for data values passed to the statement. You provide the values
for the parameters before running the query. By providing different sets of values and
running the query for each set, you cause one query to return different data sets.

An understanding of how data is provided to a DataSet is essential to further
understanding of parameterized queries, so read Chapter 2, “Understanding JBuilder
database applications” and “Querying a database” on page 46 if you have not already
done so. This topic is specific to parameterized queries.

In addition to the instructions provided in “Parameterizing a query” on page 53, the
following parameterized query topics are discussed:

� “Using parameters” on page 57

� “Re-executing the parameterized query with new parameters” on page 59

� “Parameterized queries in master-detail relationships” on page 59

Parameterizing a query

The following example shows how to provide data to an application using a
QueryDataSet component. This example adds a ParameterRow with low and high values
that can be changed at run time. When the values in the ParameterRow are changed, the
table will automatically refresh its display to reflect only the records that meet the
criteria specified with the parameters.

Note We strongly recommended that before starting the following steps you familiarize
yourself with using the visual design tools by performing the tutorial in Chapter 16,
“Tutorial: Importing and exporting data from a text file.”

A completed version of the application created with the following steps is available in
the sample project ParameterizedQuery.jpx, located in the /samples/DataExpress/
ParameterizedQuery directory of your JBuilder installation.

Creating the application
To create the application,

1 Choose File|Close All.

2 Choose File|New and double-click the Application icon.

3 Accept all defaults to create a new application.

4 Select the Design tab to activate the UI designer.

5 Click the Database component on the DataExpress page of the component palette,
then click anywhere in the UI designer to add the component to the application.

Open the Connection property editor for the Database component by clicking the
ellipsis (…) button in the connection property value in the Inspector.

54 Developing Database Appl icat ions

Using parameter ized quer ies to obta in data f rom your database

6 Set the connection properties to the JDataStore sample EMPLOYEE table, as
follows:

The Connection dialog includes a Test Connection button. Click this button to check
that the connection properties have been correctly set. Results of the connection
attempt are displayed beside the button. When the connection is successful, click
OK.

If you want to see the code that was generated, click on the Source tab and look for
the ConnectionDescriptor code. Click the Design tab to continue.

For more information on connecting to databases, see Chapter 4, “Connecting to a
database.”

Adding a Parameter Row
Next, you will add a ParameterRow with two columns: low_no and high_no. After you bind
the ParameterRow to a QueryDataSet, you can use JdbTextField components to change
the value in the ParameterRow so that the query can be refreshed using these new
values.

1 Add a ParameterRow component to the application from the DataExpress page.

2 Click the expand icon to the left of parameterRow1 in the component tree to display
the columns contained in the ParameterRow.

3 Select <new column>, and set the following properties for the new column in the
Inspector:

To see the code generated by the designer for this step, click the Source tab and
look at the jbInit() method. Click the Design tab to continue.

4 Select <new column> again to add the second column to the ParameterRow, and set
the following properties for it:

Adding a QueryDataSet
1 Add a QueryDataSet component from the DataExpress page to the application.

2 Click the ellipsis (…) button for the query property to open the Query property editor.

Property name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Browse to <jbuilder>/samples/JDataStore/datastores/
employee.jds in the local URL field.

Username Enter your name (the default is “SYSDBA”)

Password Enter your password (the default is “masterkey”)

Property name Value

columnName low_no

dataType INT

default 15

Property name Value

columnName high_no

dataType INT

default 50

Chapter 5 : Retr iev ing data f rom a data source 55

Using parameter ized quer ies to obta in data f rom your database

3 Set the query property for queryDataSet1 as follows:

4 Click the Parameters tab in the Query property editor.

5 Select parameterRow1 in the drop-down list box to bind the data set to the
ParameterRow.

6 Select the Query tab, and click the Test Query button to ensure that the query is
runnable. When the area beneath the button indicates Success, click OK to close the
dialog.

The following code for the queryDescriptor is added to the jbInit() method:

queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
 "select emp_no, first_name, last_name from employee where
 emp_no <= :low_no and emp_no >= :high_no",
 parameterRow1, true, Load.ALL));

7 Add a DBDisposeMonitor component from the More dbSwing tab. The
DBDisposeMonitor will close the JDataStore when the window is closed.

8 Set the dataAwareComponentContainer property for the DBDisposeMonitor to this.

Add the UI components
The following instructions assume you have followed the beginning database tutorial
and are already familiar with adding UI components to the designer.

To add the components for viewing and manipulating the data in your application,

1 Click the TableScrollPane component on the dbSwing page of the component
palette, and drop it into the center of the panel in the UI designer.

Make sure its constraints property is set to CENTER.

2 Drop a JdbTable component from the dbSwing page into the center of
tableScrollPane1 component, and set its dataSet property to queryDataSet1.

You’ll notice that the table in the designer displays live data.

3 Choose Run|Run Project to run the application and browse the data set.

4 Close the running application.

To add the components that make the parameterized query variable at run time,

1 Select the JPanel component on the Swing Containers page, and drop it into the
component tree, directly on the icon to the left of contentPane(BorderLayout).

This ensures that the JPanel (jPanel1) will be added to the main UI, rather than to
tableScrollPane1 which is currently occupying the entire UI panel.

2 Make sure its constraints property is set to NORTH.

If tableScrollPane1 suddenly shrinks, check that its constraints property is still set to
CENTER.

3 Select jPanel1 and set its preferredSize property to 200,100.

This will make it big enough to contain the rest of the components for the UI.

4 Drop a JdbTextField component from the dbSwing page into jPanel1.

This component holds the minimum value.

Property name Value

Database database1

SQL Statement select emp_no, first_name, last_name from employee
where emp_no >= :low_no and emp_no <= :high_no

56 Developing Database Appl icat ions

Using parameter ized quer ies to obta in data f rom your database

5 Notice that jdbTextField1 is placed in the center of the panel at the top.

This is because the default layout for a JPanel component is FlowLayout. If you try to
drag the component to a different location, it won’t stay there, but will return to its
initial location.

To take control of the placement of the UI components in this panel, change the
layout property for jPanel1 to ‘null’. Then, drag jdbTextField1 to the left side of the
panel.

6 Set the columns property for jdbTextField1 to 10 to give it a fixed width. Set its text
property to 10 to match the default minimum parameter value you entered earlier.

7 Add a JLabel from the Swing page to jPanel1. This label will identify jdbTextField1 as
the minimum field.

8 Click on jLabel1 in the UI designer and drag it to just above jdbTextField1.

9 Set the text property for jLabel1 to Minimum value. Grab the middle black sizing nib
on the right edge and expand the width of the label until all of the text is visible.

10 Add another JdbTextField and JLabel to jPanel1 for the maximum value. Drag this
pair of components to the right side of the panel.

11 Set the columns property for jdbTextField2 to 10, and its text property to 50.

12 Set the text property for jLabel2 to Maximum value, and expand its width to show all
the text.

13 Align all four components.

Hold the control key down and click on both jLabel1 and jdbTextField1. Right-click
and choose Align Left so their left edges will be aligned. (When you are using null
layout for prototyping a UI, you have alignment options available from the context
menu.)

Left align jLabel2 and jdbTextField2. Top align the two text fields, and top align the
two labels.

14 Add a JButton from the Swing page to jPanel1. Put this button in the middle, midway
between the two text fields. Set its text property to Update.

Clicking this button will update the results of the parameterized query with the
values entered into the minimum and maximum value entry fields.

15 Select the Events tab of the Inspector, select the actionPerformed field, and double-
click the value field to create an actionPerformed() event in the source code. The
Source pane will display and the cursor will be located between the opening and
closing braces for the new actionPerformed() event.

Add the following code so the event looks like this:

void jButton1_actionPerformed(ActionEvent e) {
 try {
 // change the values in the parameter row
 // and refresh the display
 parameterRow1.setInt("low_no",
 Integer.parseInt(jdbTextField1.getText()));
 parameterRow1.setInt("high_no",
 Integer.parseInt(jdbTextField2.getText()));
 queryDataSet1.refresh();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Chapter 5 : Retr iev ing data f rom a data source 57

Using parameter ized quer ies to obta in data f rom your database

16 Save your work, and run the application. It should look like similar to this:

To test the example, enter a new value in the minimum value entry field, then click
the Update button. The table displays only those values above the new minimum
value. Enter a new value in the maximum value entry field, then click the Update
button. The table displays only those values below the new maximum value.

To save changes back to the data source, you will need to add a QueryResolver. See
“Saving changes from a QueryDataSet” on page 78 to learn how to add a button
with resolving code, or add a JdbNavToolbar component to the content pane and use
its Save Changes button as a default query resolver.

Parameterized queries: Hints & tips
This set of topics includes tips to help you

� Determine how to use named parameters and parameter markers
� Re-execute the query with new parameters
� Use a parameterized query in a master-detail relationship

Using parameters
To assign parameter values in a parameterized query, you must first create a
ParameterRow and add named columns that will hold the values to be passed to the
query.

Any ReadWriteRow, such as ParameterRow, DataSet, and DataRow may be used as query or
procedure parameters. In a ParameterRow, columns can simply be set up with the
addColumns and setColumns methods. DataSet and DataRow should only be used if they
already contain the columns with the wanted data.

The Row classes are used extensively in the DataExpress APIs. The ReadRow and
ReadWriteRow are used much like interfaces that indicate the usage intent. By using a
class hierarchy, implementation is shared, and there is a slight performance advantage
over using interfaces.

The following text illustrates the class hierarchy associated with the DataSet methods:

java.lang.Object
 +----com.borland.dx.dataset.ReadRow
 +----com.borland.dx.dataset.ReadWriteRow
 +----com.borland.dx.dataset.DataSet
 +----com.borland.dx.dataset.StorageDataSet
 +----com.borland.dx.sql.dataset.QueryDataSet

� StorageDataSet methods deal with data set structure
� DataSet methods handle navigation
� ReadWriteRow methods let you edit column values (that is, fields) in the current row
� ReadRow methods give read access to column values (that is, fields) in the current row
� TableDataSet and QueryDataSet inherit all these methods.

58 Developing Database Appl icat ions

Using parameter ized quer ies to obta in data f rom your database

The Row classes provide access to column values by ordinal and column name.
Specifying columns by name is a more robust and readable way to write your code.
Accessing columns by name is not quite as quick as by ordinal, but it is still quite fast if
the number of columns in your DataSet is less than twenty, due to some patented high-
speed name/ordinal matching algorithms. It is also a good practice to use the same
strings for all access to the same column. This saves memory and is easier to enter if
there are many references to the same column.

The ParameterRow is passed in the QueryDescriptor. The query property editor allows you
to select a parameter row. Editing of ParameterRow, such as adding a column and
changing its properties, can be done in the Inspector or in code.

For example, you create a ParameterRow with two fields, low_no and high_no. You can
refer to low_no and high_no in your parameterized query, and compare them to any
field in the table. See the examples below for how to use these values in different ways.

In JBuilder, parameterized queries can be run with named parameters, with parameter
markers, or with a master-detail relationship. The following sections give a brief
explanation of each.

� With named parameters:

When the parameter markers in the query are specified with a colon followed by an
alphanumeric name, parameter name matching will be done. The column in the
ParameterRow that has the same name as a parameter marker will be used to set the
parameter value. For example, in the following SQL statement, values to select are
passed as named parameters:

SELECT * FROM employee where emp_no > :low_no and emp_no < :high_no

In this SQL statement, :low_no and :high_no are parameter markers that are
placeholders for actual values supplied to the statement at run time by your
application. The value in this field may come from a visual component or be
generated programmatically. In design time, the column’s default value will be used.
When parameters are assigned a name, they can be passed to the query in any
order. JBuilder will bind the parameters to the data set in the proper order at run
time.

In “Parameterizing a query” on page 53, two columns are added to the ParameterRow
to hold minimum and maximum values. The query descriptor specifies that the
query should return only values greater than the minimum value and less than the
maximum value.

� With ? JDBC parameter markers:

When the simple question mark JDBC parameter markers are used, parameter
value settings are ordered strictly from left to right.

For example, in the following SQL statement, values to select are passed as ?
JDBC parameters markers:

SELECT * FROM employee WHERE emp_no > ?

In this SQL statement, the “?” value is a placeholder for an actual value supplied to
the statement at run time by your application. The value in this field may come from
a visual component or be generated programmatically. When a ? JDBC parameter
marker is used, values are passed to the query in a strictly left to right order.
JBuilder will bind the parameters to the source of the values (a ReadWriteRow) in this
order at run time. Binding parameters means allocating resources for the statement
and its parameters both locally and on the server in order to improve performance
when a query is executed.

� With a master-detail relationship:

Master and detail data sets have at least one field in common, by definition. This
field is used as a parameterized query. For more detail on supplying parameters in
this way, see “Parameterized queries in master-detail relationships” on page 59.

Chapter 5 : Retr iev ing data f rom a data source 59

Using parameter ized quer ies to obta in data f rom your database

Re-executing the parameterized query with new parameters
To re-execute the query with new parameters, set new values in the ParameterRow and
then call QueryDataSet.refresh() to cause the query to be executed again with new
parameter values. For example, to use a UI component to set the value of a parameter,
you can use a SQL statement such as:

 SELECT * FROM phonelist WHERE lastname LIKE :searchname

In this example, the :searchname parameter’s value could be supplied from a UI
component. To do this, your code would have to:

1 Obtain the value from the component each time it changes

2 Place it into the ParameterRow object

3 Supply that object to the QueryDataSet

4 Call refresh() on the QueryDataSet

See “Parameterizing a query” on page 53 for an example of how to do this with
JBuilder sample files.

If the values you want to assign to the query parameter exist in a column of a data set,
you can use that data set as your ReadWriteRow in the QueryDescriptor, navigate through
the data set, and rerun the query for each value.

Parameterized queries in master-detail relationships
In a master-detail relationship with DelayedDetailFetch set to true (to fetch details when
needed), you can specify a SQL statement such as:

SELECT * FROM employee WHERE country = :job_country

In this example, :job_country would be the field that this detail data set is using to link
to a master data set. You can specify as many parameters and master link fields as is
necessary. In a master-detail relationship, the parameter must always be assigned a
name that matches the name of the column. For more information about master-detail
relationships and the DelayedDetailFetch parameter, see Chapter 9, “Establishing a
master-detail relationship.”

In a master-detail descriptor, binding is done implicitly. Implicit binding means that the
data values are not actually supplied by the programmer, they are retrieved from the
master row and implicitly bound when the detail query is executed. Binding parameters
means allocating resources for the statement and its parameters both locally and on
the server in order to improve performance when a query is executed.

If the values you want to assign to the query parameter exist in a column of a data set
(the master data set), you can use that data set as your ReadWriteRow in the
QueryDescriptor, navigate through the data set, and rerun the query for each value to
display in the detail data set.

60 Developing Database Appl icat ions

Chapter 6: Using s tored procedures 61

C h a p t e r

6
Chapter 6Using stored procedures

With a stored procedure, one or more SQL statements are encapsulated in a single
location on your server and can be run as a batch. ProcedureDataSet components
enable you to access, or provide, data from your database with existing stored
procedures, invoking them with either JDBC procedure escape sequences or server-
specific syntax for procedure calls. To run a stored procedure against a SQL table
where the output is a set of rows, you need the following components. You can provide
this information programmatically, or by using JBuilder design tools.

� The Database component encapsulates a database connection through JDBC to the
SQL server and also provides lightweight transaction support.

� The ProcedureDataSet component provides the functionality to run the stored
procedure (with or without parameters) against the SQL database and stores the
results from the execution of the stored procedure.

� The ProcedureDescriptor object stores the stored procedure properties, including the
database to be queried, the stored procedures, escape sequences, or procedure
calls to execute, and any optional stored procedure parameters.

When providing data from JDBC data sources, the ProcedureDataSet has built-in
functionality to fetch data from a stored procedure that returns a cursor to a result set.
The following properties of the ProcedureDescriptor object affect the execution of stored
procedures:

Property Purpose

database Specifies what Database connection object to run the procedure against.

procedure A Java String representation of a stored procedure escape sequence or
SQL statement that causes a stored procedure to be executed.

parameters An optional ReadWriteRow from which to fill in parameters. These values
can be acquired from any DataSet or ReadWriteRow.

62 Developing Database Appl icat ions

Stored procedures: h in ts & t ips

A ProcedureDataSet can be used to run stored procedures with and without parameters.
A stored procedure with parameters can acquire the values for its parameters from any
DataSet or ParameterRow. The section “Using parameters with Oracle PL/SQL stored
procedures” on page 64 provides an example.

Use Database Pilot to browse and edit database server-specific schema objects,
including tables, fields, stored procedure definitions, triggers, and indexes. For more
information on Database Pilot, choose Tools|Database Pilot and refer to its online help.

The following topics related to stored procedure components are covered:

� “Escape sequences, SQL statements, and server-specific procedure calls” on
page 62

� “Using InterBase stored procedures” on page 63

� “Using parameters with Oracle PL/SQL stored procedures” on page 64

� “Using Sybase stored procedures” on page 65

Stored procedures: hints & tips
This section contains tips to help you understand the options for using a stored
procedure.

Note For information on using stored procedures with JDataStore, see “Stored Procedures
and UDFs” in the JDataStore Developer’s Guide.

Escape sequences, SQL statements, and server-specific
procedure calls

When entering information in the Stored Procedure Escape or SQL Statement field in
the procedure property editor, or in code, you have three options for the type of
statement to enter. These are

� Select an existing procedure.

To browse the database for an existing procedure, click Browse Procedures in the
procedure property editor. A list of available procedure names for the database you
are connected to is displayed. If the server is InterBase and you select a procedure
that does not return data, you receive a notice to that effect. If you select a
procedure that does return data, JBuilder attempts to generate the correct escape
syntax for that procedure call. However, you may need to edit the automatically-
generated statement to correspond correctly to your server’s syntax. For other

executeOnOpen Causes the ProcedureDataSet to execute the procedure when it is first
opened. This is useful for presenting live data at design time. You may
also want this enabled at run time. The default value is true.

loadOption An optional integer value that defines the method of loading data into the
data set. Options are:

1 Load All Rows: load all data up front.

2 Load Rows Asynchronously: causes the fetching of DataSet rows to
be performed on a separate thread. This allows the DataSet data to
be accessed and displayed as the QueryDataSet is fetching rows
from the database connection.

3 Load As Needed: load the rows as they are needed.

4 Load 1 Row At A Time: load as needed and replace the previous row
with the current. Useful for high-volume batch-processing
applications.

Property Purpose

Chapter 6: Using s tored procedures 63

Using vendor-specif ic s tored procedures

databases, only the procedure name is inserted from the Select Procedure dialog
box.

If the procedure is expecting parameters, you have to match these with the column
names of the parameters.

� Enter a JDBC procedure escape sequence.

To enter a JDBC procedure escape sequence, use the following formatting:

{call PROCEDURENAME (?,?,?,...)} for procedures

{?= call FUNCTIONNAME (?,?,?,...)} for functions

� Enter server-specific syntax for procedure calls.

When a server allows a separate syntax for procedure calls, you can enter that
syntax instead of an existing stored procedure or JDBC procedure escape
sequence. For example, server-specific syntax may look like this:

execute procedure PROCEDURENAME ?,?,?

In both of the last two examples, the parameter markers, or question marks, may be
replaced with named parameters of the form :ParameterName. For an example using
named parameters, see “Using parameters with Oracle PL/SQL stored procedures” on
page 64. For an example using InterBase stored procedures, see “Using InterBase
stored procedures” on page 63.

Using vendor-specific stored procedures
This section contains information to help you use stored procedures with specific
database vendors. Information is provided to help you use the following types of stored
procedures:

� JDataStore stored procedures and user-defined functions

� InterBase stored procedures

� Oracle PL/SQL stored procedures

� Sybase stored procedures

Using JDataStore stored procedures and user-defined functions

JDataStore 6 supports the use of Java-based stored procedures and user-defined
functions (UDFs). Stored procedures and UDFs must be added to the CLASSPATH of
the JDataStore server process. Stored procedures and UDFs for JDataStore must be
written in Java. UDFs are user-defined functions that are designed to be used in
subexpressions of a SQL statement.

For more information, including usage instructions and examples, see “UDFs and
Stored Procedures” in the JDataStore Developer’s Guide.

Using InterBase stored procedures

In InterBase, the SELECT procedures may be used to generate a DataSet. In the
InterBase sample database, employee.gdb, the stored procedure ORG_CHART is such
a procedure. To call this procedure from JBuilder, enter the following syntax in the
Stored Procedure Escape or SQL Statement field in the procedure property editor, or in
code:

select * from ORG_CHART

64 Developing Database Appl icat ions

Using vendor-speci f ic s tored procedures

For a look at more complicated InterBase stored procedures, use Database Pilot to
browse procedures on this server. ORG_CHART is an interesting example. It returns a
result set that combines data from several tables. ORG_CHART is written in
InterBase’s procedure and trigger language, which includes SQL data manipulation
statements plus control structures and exception handling.

The output parameters of ORG_CHART turn into columns of the produced DataSet.

See the InterBase Server documentation for more information on writing InterBase
stored procedures.

Using parameters with Oracle PL/SQL stored procedures

Currently, a ProcedureDataSet can only be populated with Oracle PL/SQL stored
procedures if you are using Oracle’s type-2 or type-4 JDBC drivers. The stored
procedure that is called must be a function with a return type of CURSOR REF.

Follow this general outline for using Oracle stored procedures in JBuilder:

1 Define the function using PL/SQL.

The following is an example of a function description defined in PL/SQL that has a
return type of CURSOR REF. This example assumes that a table named MyTable1
exists.

create or replace function MyFct1(INP VARCHAR2) RETURN rcMyTable1 as
 type rcMyTable1 is ref cursor return MyTable1%ROWTYPE;
 rc rcMyTable;
begin
 open rc for select * from MyTable1;
 return rc;
end;

2 Set up a ParameterRow to pass to the ProcedureDescriptor.

The input parameter INP should be specified in the ParameterRow, but the special
return value of a CURSOR REF should not. JBuilder will use the output of the return
value to fill the ProcedureDataSet with data. An example for doing this with a
ParameterRow follows.

ParameterRow row = new ParameterRow();

row.addColumn("INP", Variant.STRING, ParameterType.IN);

row.setString("INP", "Input Value");

String proc = "{?=call MyFct1(?)}";

3 Select the Frame file in the project pane, then select the Design tab.

4 Place a ProcedureDataSet component from the DataExpress page of the component
palette on the design surface.

5 Select the procedure property to bring up the ProcedureDescriptor dialog box.

6 Select database1 from the Database drop-down list.

7 Enter the following escape syntax in the Stored Procedure Escape or SQL
Statement field, or in code:

{?=call MyFct1(?)}

8 Select the Parameters tab of the dialog box. Select the ParameterRow just defined as
row.

See your Oracle server documentation for information on the Oracle PL/SQL language.

Chapter 6: Using s tored procedures 65

Wri t ing a custom data prov ider

Using Sybase stored procedures

Stored procedures created on Sybase servers are created in a “chained” transaction
mode. In order to call Sybase stored procedures as part of a ProcedureResolver, the
procedures must be modified to run in an unchained transaction mode. To do this, use
the Sybase stored system procedure sp_procxmode to change the transaction mode to
either “anymode” or “unchained.” For more details, see the Sybase documentation.

Sample application with database-server specific stored
procedures

In the <jbuilder>/samples/DataExpress/ServerSpecificProcedures directory, you can
browse a sample application with sample stored procedure code for JDataStore,
Sybase, InterBase, and Oracle databases.

Writing a custom data provider
JBuilder makes it easy to write a custom provider for your data when you are accessing
data from a custom data source, such as SAP, BAAN, IMS, OS/390, CICS, VSAM,
DB2, etc.

The retrieval and update of data from a data source, such as an Oracle or Sybase
server, is isolated to two key interfaces: providers and resolvers. Providers populate a
data set from a data source. Resolvers save changes back to a data source. By cleanly
isolating the retrieval and updating of data to two interfaces, it is easy to create new
provider/resolver components for new data sources. JBuilder currently provides
implementations for standard JDBC drivers that provide access to popular databases
such as support for Oracle, Sybase, Informix, InterBase, DB2, MS SQL Server,
Paradox, dBASE, FoxPro, Access, and other popular databases. These include,

� OracleProcedureProvider
� ProcedureProvider
� ProcedureResolver
� QueryProvider
� QueryResolver

You can create custom provider/resolver component implementations for EJB,
application servers, SAP, BAAN, IMS, CICS, etc.

An example project with a custom provider and resolver is located in the /samples/
DataExpress/CustomProviderResolver directory of your JBuilder installation. The sample
file TestFrame.java is an application with a frame that contains a JdbTable and a
JdbNavToolBar . Both visual components are connected to a TableDataSet component
where data is provided from a custom Provider (defined in the file ProviderBean.java),
and data is saved with a custom Resolver (defined in the file ResolverBean.java). This
sample application reads from and saves changes to the text file data.txt, a simple
non-delimited text file. The structure of data.txt is described in the interface file
DataLayout.java.

This topic discusses custom data providers, and how they can be used as providers for
a TableDataSet and any DataSet derived from TableDataSet. The main method to
implement is provideData(com.borland.dx.dataset.StorageDataSet dataSet, boolean
toOpen). This method accesses relevant metadata and loads the actual data into the
data set.

66 Developing Database Appl icat ions

Writ ing a custom data prov ider

Obtaining metadata

Metadata is information about the data. Examples of metadata are column name, table
name, whether the column is part of the unique row id or not, whether it is searchable,
its precision, scale, and so on. This information is typically obtained from the data
source. The metadata is then stored in properties of Column components for each
column in the StorageDataSet, and in the StorageDataSet itself.

When you obtain data from a data source, and store it in one of the subclasses of
StorageDataSet, you typically obtain not only rows of data from the data source, but also
metadata. For example, the first time that you ask a QueryDataSet to perform a query, by
default it runs two queries: one for metadata discovery and the second for fetching rows
of data that your application displays and manipulates. Subsequent queries performed
by that instance of QueryDataSet only do row data fetching. After discovering the
metadata, the QueryDataSet component then creates Column objects automatically as
needed at run time. One Column is created for every query result column that is not
already in the QueryDataSet. Each Column then gets some of its properties from the
metadata, such as columnName, tableName, rowId, searchable, precision, scale, and so on.

When you are implementing the abstract provideData() method from the Provider
class, the columns from the data provided may need to be added to your DataSet. This
can be done by calling the ProviderHelp.initData() method from inside your
provideData() implementation. Your provider should build an array of Columns to pass to
the ProviderHelp.initData() method. The following is a list of Column properties that a
Provider should consider initializing:

� columnName
� dataType

and optionally,

� sqlType
� precision (used by DataSet)
� scale (used by DataSet)
� rowId
� searchable
� tableName
� schemaName
� serverColumnName

The optional properties are useful when saving changes back to a data source. The
precision and scale properties are also used by DataSet components for constraint and
display purposes.

Invoking initData
The arguments to the ProviderHelp.initData(com.borland.dx.dataset.StorageDataSet
dataSet, com.borland.dx.dataset.Column[], boolean, boolean, boolean) method are
explained in the following text.

� dataSet is the StorageDataSet we are providing to

� metaDataColumns is the Column array created with the proper properties that do not
need to be added/merged into the Columns that already exist in DataSet

� updateColumns specifies whether to merge columns into existing persistent columns
that have the same columnName property setting

� keepExistingColumns specifies whether to keep any non-persistent columns

If keepExistingColumns is true, non-persistent columns are also retained. Several
column properties in the columns array are merged with existing columns in the
StorageDataSet that have the same name property setting. If the number, type, and
position of columns is different, this method may close the associated StorageDataSet.

Chapter 6: Using s tored procedures 67

Wri t ing a custom data prov ider

The metaDataUpdate property on StorageDataSet is investigated when
ProviderHelp.initData is called. This property controls which Column properties override
properties in any persistent columns that are present in the TableDataSet before
ProviderHelp.initData is called. Valid values for this property are defined in the
MetaDataUpdate interface.

Obtaining actual data

Certain key DataSet methods cannot be used when the Provider.provideData method is
called to open a DataSet, while the DataSet is in the process of being opened, including
the StorageDataSet.insertRow() method.

In order to load the data, use the StorageDataSet.startLoading method. This method
returns an array of Variant objects for all columns in a DataSet. You set the value in the
array (the ordinal values of the columns are returned by the ProviderHelp.initData
method), then load each row by calling the StorageDataSet.loadRow() method, and
finish by calling the StorageDataSet.endLoading() method.

Tips on designing a custom data provider
A well designed provider recognizes the maxRows and maxDesignRows properties on
StorageDataSet. The values for these properties are,

To determine if the provideData() method was called while in design mode, call
java.beans.Beans.isDesignTime().

Understanding the provideData() method in master-detail data sets
The Provider.provideData() method is called

� when the StorageDataSet is initially opened (toOpen is true)

� when StorageDataSet.refresh() is called

� when a detail data set with the fetchAsNeeded property set to true needs to be loaded

When a detail data set with the fetchAsNeeded property set to true needs to be loaded,
the provider ignores provideData during the opening of the data, or just provides the
metadata. The provider also uses the values of the masterLink fields to provide the
rows for a specific detail data set.

Value Description

0 provide metadata information only

-1 provide all data

n provide maximum of n rows

68 Developing Database Appl icat ions

Chapter 7 : Work ing with co lumns 69

C h a p t e r

7
Chapter 7Working with columns

A Column is the collection of one type of information (for example, a collection of phone
numbers or job titles). A collection of Column components are managed by a
StorageDataSet.

A Column object can be created explicitly in your code, or generated automatically when
you instantiate the StorageDataSet subclass, for example, by a QueryDataSet when a
query is executed. Each Column contains properties that describe or manage that
column of data. Some of the properties in Column hold metadata (defined below) that is
typically obtained from the data source. Other Column properties are used to control its
appearance and editing in data-aware components.

Note Abstract or superclass class names are often used to refer generally to all their
subclasses. For example, a reference to a StorageDataSet object implies any one (or all,
depending on its usage) of its subclasses QueryDataSet, TableDataSet, ProcedureDataSet,
and DataSetView.

Understanding Column properties and metadata
Most properties on a Column can be changed without closing and re-opening a DataSet.
However, the following properties cannot be set unless the DataSet is closed:

� columnName
� dataType
� calcType
� pickList
� preferredOrdinal

The UI designer will do live updates for Column display-oriented properties such as
color, width, and caption. For more information on obtaining metadata, see “Obtaining
metadata” on page 66. For more discussion on obtaining actual data, see “Obtaining
actual data” on page 67.

Non-metadata Column properties

Columns have additional properties that are not obtained from metadata that you may
want to set, for example, caption, editMask, displayMask, background and foreground
colors, and alignment. These types of properties are typically intended to control the

70 Developing Database Appl icat ions

Understanding Column proper t ies and metadata

default appearance of this data item in data-aware components, or to control how it can
be edited by the user. The properties you set in an application are usually of the non-
metadata type.

Viewing column information in the column designer

One way to view column properties information is by using the column designer. The
column designer displays information for selected properties, such as the data type for
the column, in a navigable table. Changing, or setting, a property in the column
designer makes a column persistent. The column properties can be modified in the
column designer or in the Inspector. You can change which properties display in the
column designer by clicking the Properties button.

To display the column designer,

1 Open any project that includes a DataSet object.

In this example, open /samples/DataExpress/QueryProvider/QueryProvider.jpx from
your JBuilder installation.

2 Double-click the file Frame1.java in the project pane and click the Design tab from
the bottom of the right pane of the IDE.

3 Double-click the queryDataSet1 object in the component tree.

This displays the column designer for the data set. The column designer looks like
this for the EMPLOYEE sample table:

To set a property for a column, select that Column and enter or select a new value for
that property. The Inspector updates to reflect the properties (and events) of the
selected column. For example,

1 Click the Properties button to open the Properties To Display dialog box.

2 Check the min property to display in the column designer, and click OK.

3 Scroll to the min column, and enter today’s date for the HIRE_DATE field, using the
following date format:

YYYY-MM-DD hh:mm:ss.nnnnnnnnn

where YYYY-MM-DD is the year, month, and day, and hh:mm:ss.nnnnnnnnn is the
hour, minutes, seconds, and (optionally) nanoseconds.

4 Press Enter to change the value.

To close the column designer, select any UI component in the content pane. In other
words, the only way to close one designer is to open a different one.

See the topic “Ensuring data persistence” on page 153 for more information on using
the column designer.

Chapter 7 : Work ing with co lumns 71

Understanding Column proper t ies and metadata

Generate RowIterator Class button

The RowIterator Generator in the column designer can be used to create a new
RowIterator class or update an existing RowIterator class for a DataSet. It looks at the
columnName property of all the Columns in the DataSet, and generates get and set
methods for each column.

Selecting the RowIterator Generator button opens a dialog that provides lightweight
(low memory usage and fast binding) iteration capabilities to ensure static type-safe
access to columns.

The options in the RowIterator dialog have the following purposes:

For more information on RowIterators, see the DataExpress Component Library
Reference.

Using the column designer to persist metadata

Clicking the Persist All Metadata button in the column designer will persist all the
metadata that is needed to open a QueryDataset at run time.

The source will be changed with these settings:

� The query of the QueryDataSet will be changed to include row identifier columns.

� The metaDataUpdate property of the QueryDataSet will be set to NONE.

� The tableName, schemaName, and resolveOrder properties on the QueryDataSet will be
set, if needed.

� All columns will be persisted, with miscellaneous properties set. These properties
are precision, scale, rowId, searchable, tableName, schemaName, hidden,
serverColumnName, and sqlType.

JBuilder fetches metadata automatically. Because some JDBC drivers are slow at
responding to metadata inquiries, you might want to persist metadata and tell
DataExpress not to fetch it. With JBuilder setting this up at design time, and generating
the necessary code for run time, performance will be improved.

See also
� “Persisting query metadata” on page 52

Table 7.1 RowIterator Generator dialog

Option Description

Extend RowIterator If set, the generated class will extend RowIterator. This will surface
all methods in RowIterator. If this is false, a new class with a
RowIterator member will be created, and which is delegated for all
operations. The advantage of not extending RowIterator is that your
iterator class can control what gets exposed. The advantage of
extending RowIterator is that less code needs to be generated due
to the fact that binder and navigation methods are inherited and do
not need to be delegated to.

Remove Underscore;
Capitalize Next Letter

This affects how the get and set method names are generated from
the columnName property of the Column. If this option is set,
underscores are removed and the character following the underscore
is capitalized.

Generate binder
methods

Generates delegator methods to call the embedded RowIterator
bind methods.

Generate navigation
methods

Generates delegator methods to call the embedded RowIterator
navigation methods.

72 Developing Database Appl icat ions

Understanding Column proper t ies and metadata

Making metadata dynamic using the column designer

Warning Pressing the Make All Metadata Dynamic button will REMOVE CODE from the source
file. It will remove all the code from the property settings mentioned in the previous
topic, as well as any settings of the metadata-related properties named above.
However, other properties, like editMask will not be touched.

Note To update a query after the table may have changed on the server, you must first make
the metadata dynamic, then persist it, in order to use new indices created on the
database table.

Viewing column information in the Database Pilot

The Database Pilot is an all-Java, hierarchical database browser that also allows you
to edit data. It presents JDBC-based meta-database information in a two-paned
window. The left pane contains a tree that hierarchically displays a set of databases
and its associated tables, views, stored procedures, and metadata. The right pane is a
multi-page display of descriptive information for each node of the tree.

To display the Database Pilot, choose Tools|Database Pilot from the JBuilder menu.

When a database URL is opened, you can expand the tree to display child objects.
Columns are child objects of a particular database table. As in the figure above, when
the Column object is selected for a table, the Summary page in the right pane lists the
columns, their data type, size, and other information.

Select a column in the left pane to see just the information for that field, as in the figure
below.

Refer to the Database Pilot online help for additional information.

Chapter 7 : Work ing with co lumns 73

Optimiz ing a query

Optimizing a query
This section contains information about how to work with columns to improve query
performance.

Setting column properties

You can set Column properties through the JBuilder visual design tools or in code
manually. Any column that you define or modify through the visual design tools will be
persistent.

Setting Column properties using JBuilder’s visual design tools
The Inspector allows you to work with Column properties. To set Column properties:

1 Open (or create) a project that contains a StorageDataSet that you want to work with.
If you are creating a new project, you could follow the instructions in “Querying a
database” on page 46.

2 Open the UI designer by double-clicking the Frame container object in the project
pane, and then clicking the Design tab.

3 In the content pane, select the StorageDataSet component.

4 Click the expand icon beside the StorageDataSet to display its columns.

5 Select the Column you want to work with. The Inspector displays the column’s
properties and events. Set the properties you want.

Setting properties in code
To set properties manually in your source code on one or more columns in a
StorageDataSet:

1 Provide data to the StorageDataSet.

For example, run a query using a QueryDataSet component. See “Querying a
database” on page 46 for an example.

2 Obtain an array of references to the existing Column objects in the StorageDataSet by
calling the getColumn(java.lang.String) method of the ReadRow.

3 Identify which column or columns in the array you want to work with by reading their
properties, for example using the getColumnName() property of the Column component.

4 Set the properties on the appropriate columns as needed.

Note If you want the property settings to remain in force past the next time that data is
provided, you must set the column’s persist property to true. This is described in the
following section.

Persistent columns

A persistent column is a Column object which was already part of a StorageDataSet, and
whose persist property was set to true before data was provided. If the persist
property is set after data is provided, you must perform another setQuery command with
a new queryDescriptor for the application to recognize that the columns are persistent.
A persistent Column allows you to keep Column property settings across a data-provide
operation. A persistent column does not cause the data in that column of the data rows
to freeze across data provide operations.

Normally, a StorageDataSet automatically creates new Column objects for every column
found in the data provided by the data source. It discards any Column objects that were
explicitly added previously, or automatically created for a previous batch of data. This

74 Developing Database Appl icat ions

Opt imiz ing a query

discarding of previous Column objects could cause you to lose property settings on the
old Column which you might want to retain.

To avoid this, mark a Column as persistent by setting its persist property to true. When
a column is persistent, the Column is not discarded when new data is provided to the
StorageDataSet. Instead, the existing Column object is used again to control the same
column in the newly-provided data. The column matching is done by column name.

Any column that you define or modify through the visual design tools will be persistent.
Persistent columns are discussed more thoroughly in “Ensuring data persistence” on
page 153. You can create Column objects explicitly and attach them to a StorageDataSet,
using either addColumn() to add a single Column, or setColumns() to add several new
columns at one time.

When using addColumn, you must set the Column to persistent prior to obtaining data from
the data source or you will lose all of the column’s property settings during the provide.
The persist property is set automatically with the setColumns method.

Note The UI designer calls the StorageDataSet.setColumns() method when working with
columns. If you want to load and modify your application in the UI designer, use the
setColumns method so the columns are recognized at design time. At run time, there is
no difference between setColumns and addColumn.

Combining live metadata with persistent columns

During the providing phase, a StorageDataSet first obtains metadata from the data
source, if possible. This metadata is used to update any existing matching persistent
columns, and to create other columns that might be needed. The metaDataUpdate
property of the StorageDataSet class controls the extent of the updating of metadata on
persistent columns.

Removing persistent columns

This section describes how to undo column persistence so that a modified query no
longer returns the (unwanted) columns in a StorageDataSet.

When you have a QueryDataSet or TableDataSet with persistent columns, you declare
that these columns will exist in the resulting DataSet whether or not they still exist in the
corresponding data source. But what happens if you no longer want these persistent
columns?

When you alter the query string of a QueryDataSet, your old persistent columns are not
lost. Instead, the new columns obtained from running the query are appended to your
list of columns. You may make any of these new columns persistent by setting any of
their properties.

Note When you expand a StorageDataSet by clicking its expand icon in the content pane, the
list of columns does not change automatically when you change the query string. To
refresh the columns list based on the results of the modified query, double click the
QueryDataSet in the content pane. This executes the query again and appends any new
columns found in the modified query.

To delete a persistent column you no longer need, select it in the content pane and
press the Delete key, or select the column in the column designer and click the Delete
button on the toolbar. This causes the following actions:

� The column is marked as non-persistent

� Any code that sets properties of this column is removed

� Any event handler logic you may have placed on this column is removed.

Chapter 7 : Work ing with co lumns 75

Optimiz ing a query

To verify that a deleted persistent column is no longer part of the QueryDataSet, double-
click the data set in the content pane. This re-executes the query and displays all the
columns in the resulting QueryDataSet

Using persistent columns to add empty columns to a DataSet
On occasion you may want to add one or more extra columns to a StorageDataSet,
columns that are not provided from the data source and that are not intended to be
resolved back to the data source. For example, you might add extra columns under the
following circumstances or in the following ways:

� Add an extra column for internal utility purposes. If you want to hide the column from
displaying in data-aware components, set the visible property of the Column to
false.

� Construct a new DataSet manually by adding the columns you want before
computing the data stored in its rows.

� Construct a new DataSet to store data from a custom data source that isn’t
supported by JBuilder’s providers and therefore doesn’t provide metadata
automatically.

In such cases, you can explicitly add a Column to the DataSet, before or after providing
data. The columnName must be unique and cannot duplicate a name that already exists
in the provided data. Additionally, if you will be providing data after adding the Column,
be sure to mark the Column persistent so that the Column is not discarded when new data
is provided.

To add a column manually in source code, follow the instructions in “Persistent
columns” on page 73.

To add a column manually using the JBuilder visual design tools,

1 Follow the first 3 steps in “Setting Column properties using JBuilder’s visual design
tools” on page 73 to obtain the metadata into the columns listed in the content pane.

You can skip the steps for providing data if you want to add columns to an empty
DataSet.

2 Select <new column>.

This option appears at the bottom of the list of columns.

3 In the Inspector, set the columnName, making sure that it is different from existing
column names.

4 Set any other properties as needed for this new column.

JBuilder creates code for a new persistent Column object and attaches it to your DataSet.
The new Column exists even before the data is provided. Because its name is dissimilar
from any provided column names, this Column is not populated with data during the
providing phase; all rows in this Column have null values.

Controlling column order in a DataSet

When a StorageDataSet is provided data, it performs the following actions:

� Deletes any non-persistent columns, moving the persistent columns to the left.

� Merges columns from the provided data with persistent columns. If a persistent
column has the same name and data type as a provided column, it is considered to
be the same column.

� Places the provided columns into the data set in the order specified in the query or
procedure.

76 Developing Database Appl icat ions

Opt imiz ing a query

� Adds the remaining columns—those defined only in the application—in the order
they are defined in the data set’s setColumns() method.

� Tries to move every column whose preferredOrdinal property is set to its desired
place. (If two columns have the same preferredOrdinal, this won’t be possible.)

This means that,

� Columns that are defined in your application and that are not provided by the query
or procedure will appear after columns that are provided.

� Setting properties on some columns (whether provided or defined in the
application), but not others, will not change their order.

� You can change the position of any column by setting its preferredOrdinal property.
Columns whose preferredOrdinal is not set retain their position relative to each
other.

Chapter 8: Saving changes back to your data source 77

C h a p t e r

8
Chapter 8Saving changes back to your

data source
After data has been retrieved from a data source, and you make changes to the data in
the StorageDataSet, you will want to save the changes back to your data source. All
recorded changes to a DataSet can be saved back to a data source such as a SQL
server. This process is called resolving. Sophisticated built-in reconciliation technology
deals with potential edit conflicts.

Between the time that the local subset of data is retrieved from a data source, and the
time that you attempt to save updates back to the data source, various situations may
arise that must be handled by the resolver logic. For example, when you attempt to
save your changes, you may find that the same information on the server has been
updated by another user. Should the resolver save the new information regardless?
Should it display the updated server information and compare it with your updates?
Should it discard your changes? Depending on your application, the need for resolution
rules will vary.

The logic involved in resolving updates can be fairly complex. Errors can occur while
saving changes, such as violations of server integrity constraints and resolution
conflicts. A resolution conflict may occur, for example, when deleting a row that has
already been deleted, or updating a row that has been updated by another user.
JBuilder provides default handling of these errors by positioning the DataSet to the
offending row (if it’s not deleted) and displaying the error encountered with a message
dialog.

When resolving changes back to the data source, these changes are normally batched
in groups called transactions. The DataExpress mechanism uses a single transaction
to save all inserts, updates, and deletions made to the DataSet back to the data source
by default. To allow you greater control, JBuilder allows you to change the default
transaction processing.

DataExpress also provides a generic resolver mechanism consisting of base classes
and interfaces. You can extend these to provide custom resolver behavior when you
need greater control over the resolution phase. This generic mechanism also allows
you to create resolvers for non-JDBC data sources that typically do not support
transaction processing.

78 Developing Database Appl icat ions

Saving changes from a QueryDataSet

The following topics discuss the options for resolving data:

� “Saving changes from a QueryDataSet” on page 78 covers the basic resolver
handling provided by DataExpress and its default transaction processing.

When a master-detail relationship has been established between two or more data
sets, special resolving procedures are required. For more information, see “Saving
changes in a master-detail relationship” on page 100.

� “Saving changes back to your data source with a stored procedure” on page 80
covers resolving changes made to a ProcedureDataSet back to its data source.

� “Resolving data from multiple tables” on page 83 provides the necessary settings for
resolving changes when a query involves more than one table.

� “Using DataSets with RMI (streamable data sets)” on page 85 provides a way to
stream the data of a DataSet by creating a Java Object (DataSetData) that contains
data from a DataSet.

� “Customizing the default resolver logic” on page 87 describes how to set custom
resolution rules using the QueryResolver component and resolver events.

� “Exporting data” on page 25 describes how to export data to a text file.

Saving changes from a QueryDataSet
You can use different Resolver implementations to save changes back to your data
source. QueryDataSets use a QueryResolver to save changes by default. The default
resolver can be overridden by setting the StorageDataSet.resolver property. When data
is provided to the data set, the StorageDataSet tracks the row status information (either
deleted, inserted, or updated) for all rows. When data is resolved back to a data source
like a SQL server, the row status information is used to determine which rows to add to,
delete from, or modify in the SQL table. When a row has been successfully resolved, it
obtains a new row status of resolved (either RowStatus.UPDATE_RESOLVED,
RowStatus.DELETE_RESOLVED, or RowStatus.INSERT_RESOLVED). If the
StorageDataSet is resolved again, previously resolved rows will be ignored, unless
changes have been made subsequent to previous resolving.

This topic explores the basic resolver functionality provided by the DataExpress
package. It extends the concepts explored in “Querying a database” on page 46 to the
resolving phase where you save your changes back to the data source.

To step through this example, start with the completed sample files, located in the
/samples/DataExpress/QueryProvider directory, or create the application by following the
steps in “Retrieving data for the examples” on page 122.

“Querying a database” on page 46 explored the providing phase, where data is
obtained from a data source. The material showed how to instantiate a QueryDataSet
and associated UI components, and display the data retrieved from the JDataStore
employee sample. The Save button on the JdbNavToolBar can be used to save data
changes back to the employee file. In the next topic, we add a button that also performs
basic resolving code. When either the custom button or the toolbar’s Save button is
clicked, the changes made to the data in the QueryDataSet are saved to the employee
data file using the default QueryResolver of the QueryDataSet.

Chapter 8: Saving changes back to your data source 79

Saving changes from a QueryDataSet

Adding a button to save changes from a QueryDataSet

The source code for the completed application is located in the /samples/DataExpress/
QueryResolver directory of your JBuilder installation. The running application looks like
this:

Figure 8.1 UI for saving changes from a QueryDataSet

To create this application,

1 Create a simple database application, as described in “Retrieving data for the
examples” on page 122.

If you have already created the simple database application, just open it. If you did
not complete the steps to create the application, you can access the completed
project files from the /samples/DataExpress/QueryProvider directory of your JBuilder
installation.

Note You can save time by making backup copies of these files before modifying them
since other examples in this book use the simple database application created in
“Retrieving data for the examples” on page 122 as a starting point.

2 Select the Frame file in the content pane.

3 Add a JButton component from the Swing page of the component palette. Set the
button’s text property to Save Changes. (See the finished application at the beginning
of this example for general placement of the controls in the UI.)

4 Make sure the JButton is still selected, then click the Events tab of the Inspector.
Select, then double-click the actionPerformed() method. This changes the focus of
the IDE from the UI designer to the Source pane and displays the stub for the
actionPerformed() method.

Add the following code to the actionPerformed() method:

 try {
 database1.saveChanges(queryDataSet1);
 System.out.println("Save changes succeeded");
 }
 catch (Exception ex) {
// displays the exception on the JdbStatusLabel if the
// application includes one,
// or displays an error dialog if there isn't
 DBExceptionHandler.handleException(ex); }

If you’ve used different names for the instances of the objects, for example,
database1, replace them accordingly.

80 Developing Database Appl icat ions

Saving changes back to your data source wi th a s tored procedure

5 Run the application by selecting Run|Run Project. The application compiles and
displays in a separate window. Data is displayed in a table, with a Save Changes
button, the toolbar, and a status label that reports the current row position and row
count.

If errors are found, an error pane appears that indicates the line(s) where errors are
found. The code of the custom button is the most likely source of errors, so check
that the code above is correctly entered. Make corrections to this and other areas as
necessary to run the application.

When you run the application, notice the following behavior:

� Use the keyboard, mouse, or toolbar to scroll through the data displayed in the
table. The status label updates as you navigate.

� You can resize the window to display more fields, or scroll using the horizontal scroll
bar.

Make changes to the data displayed in the table by inserting, deleting, and updating
data. You can save the changes back to the server by clicking the Save Changes
button you created, or the Save button of the JdbNavToolBar.

Note Because of data constraints on the employee table, the save operation may not
succeed depending on the data you change. Since other edits may return errors, make
changes only to the FIRST_NAME and LAST_NAME values in existing rows until you
become more familiar with the constraints on this table.

Saving changes back to your data source with a stored procedure
You can use different Resolver implementations to save changes back to your data
source. QueryDataSets use a QueryResolver to save changes by default. The default
resolver can be overridden by setting the StorageDataSet.resolver property.

This topic explores the basic resolver functionality provided by the DataExpress
package for ProcedureDataSet components. It extends the concepts explored in
Chapter 6, “Using stored procedures” by exploring the different methods for saving
data changes back to a data source.

In this section, the retrieving tutorial is expanded by adding basic resolving capability.
With a ProcedureDataSet component, this can be accomplished in two ways. The
following sections discuss each option in more detail.

� A button that activates basic resolving code or a JdbNavToolBar whose Save button
also performs a basic query resolve function. See “Saving changes using a
QueryResolver” on page 80.

� A ProcedureResolver that requires special coding of the stored procedure on the
database on which the data should be resolved. An example of this is available in
“Saving changes with a ProcedureResolver” on page 81.

Saving changes using a QueryResolver

If the resolver property of a ProcedureDataSet is not set, the default resolver is a
QueryResolver that will generate INSERT, UPDATE, and DELETE queries to save the
changes. The QueryResolver requires tableName and rowID properties to be set. This
method of saving changes is demonstrated in the sample applications available as a
finished project in the <jbuilder>/samples/DataExpress/ServerSpecificProcedures/
directory.

Chapter 8: Saving changes back to your data source 81

Coding s tored procedures to handle data resolut ion

Coding stored procedures to handle data resolution
To use a ProcedureResolver, you need to implement three stored procedures on the
database, and specify them as properties of the ProcedureResolver. The three
procedures are:

� insertProcedure is invoked for every row to be inserted in the DataSet. The available
parameters for an invocation of an insertProcedure are:

� the inserted row as it appears in the DataSet.

� the optional ParameterRow specified in the ProcedureDescriptor.

The stored procedure should be designed to insert a record in the appropriate
table(s) given the data of that row. The ParameterRow may be used for output
summaries or for optional input parameters.

� updateProcedure is invoked for every row changed in the DataSet. The available
parameters for an invocation of an updateProcedure are:

� the modified row as it appears in the DataSet.

� the original row as it was when data was provided to the DataSet.

� the optional ParameterRow specified in the ProcedureDescriptor.

The stored procedure should be designed to update a record in the appropriate
table(s) given the original data and the modified data. Since the original row and the
modified row have the same column names, the named parameter syntax has been
expanded with a way to indicate the designated data row. The named parameter
“:ORIGINAL.CUST_ID” thus indicates the CUST_ID of the original data row, where
“:CURRENT.CUST_ID” indicates the CUST_ID of the modified data row. Similarly, a
“:parameter.CUST_ID” parameter would indicate the CUST_ID field in a
ParameterRow.

� deleteProcedure is invoked for every row deleted from the DataSet. The available
parameters for an invocation of a deleteProcedure are:

� the original row as it was when data was provided into the DataSet.

� the optional ParameterRow specified in the ProcedureDescriptor.

The stored procedure should be designed to delete a record in the appropriate
table(s) given the original data of that row.

A example of code that uses this method of resolving data to a database follows in
“Saving changes with a ProcedureResolver” on page 81. In the case of InterBase, also
see “Example: Using InterBase stored procedures with return parameters” on page 83.

Saving changes with a ProcedureResolver

The following example shows how to save changes to your database using JBuilder’s
UI designer, a ProcedureDataSet component, and a ProcedureResolver. Some sample
applications referencing stored procedures on a variety of servers are available in the
/samples/DataExpress/ServerSpecificProcedures directory.

The current project contains a JdbNavToolBar component. In addition to enabling you to
move around the table, a toolbar provides a Save Changes button. At this point, this
button will use a QueryResolver. Once we provide a custom resolver via a
ProcedureResolver, the Save Changes button will call the insert, update, and delete
procedures specified there instead

At this point in the application, you can run the application and have the ability to view
and navigate data. In order to successfully insert, delete, or update records, however,

82 Developing Database Appl icat ions

Coding s tored procedures to handle data resolut ion

you need to provide the following information on how to handle these processes. With
the project open,

1 Select the Frame file in the content pane, then select the Design tab to activate the
UI designer.

2 Select a ProcedureResolver component from the DataExpress page of the
component palette on the content pane. Click in the content pane to add the
component to the application.

3 Set the database property of the ProcedureResolver to the instantiated database,
database1 in the Inspector.

4 Set the deleteProcedure property to DELETE_COUNTRY as follows:

a Select procedureResolver1 in the component tree and click its deleteProcedure
property in the Inspector.

b Double-click in the deleteProcedure property value field to bring up the
DeleteProcedure dialog.

c Set the Database property to database1.

d Click Browse Procedures, then double-click the procedure named
DELETE_COUNTRY.

The following statement is written in the Stored Procedure Escape or SQL
Statement field:

execute procedure DELETE_COUNTRY :OLD_COUNTRY

e Edit this statement to be:

execute procedure DELETE_COUNTRY :COUNTRY

See the text of the procedure by using the Database Pilot (Tools|Database Pilot).

Note Don’t click Test Procedure because this procedure does not return a result.

5 Set the insertProcedure property to INSERT_COUNTRY as follows:

a Select, then double-click the insertProcedure property of the ProcedureResolver to
open the insertProcedure dialog.

b Set the Database field to database1.

c Click Browse Procedures, then double-click the procedure named
INSERT_COUNTRY.

d Edit the generated code to read:

execute procedure INSERT_COUNTRY :COUNTRY, :CURRENCY

Note Don’t click Test Procedure because this procedure does not return a result.

6 Set the updateProcedure property to UPDATE_COUNTRY as follows:

a Select, then double-click the updateProcedure property of the ProcedureResolver to
open the updateProcedure dialog.

b Set the Database property to database1.

c Click Browse Procedures, then double-click the procedure named
UPDATE_COUNTRY.

d Edit the generated code to read:

execute procedure UPDATE_COUNTRY :ORIGINAL.COUNTRY, :CURRENT.COUNTRY,
 :CURRENT.CURRENCY

Note Don’t click Test Procedure because this procedure does not return a result.

7 Select procedureDataSet1 in the project pane. Set the resolver property to
procedureResolver1.

Chapter 8: Saving changes back to your data source 83

Resolv ing data f rom mul t iple tab les

8 Select procedureDataSet1. Set its metaDataUpdate property to None.

9 Choose Run|Run Project to run the application.

When you run the application, you can browse, edit, insert, and delete data in the table.
Save any change you make with the Save Changes button on the toolbar. Note that in
this particular example, you cannot delete an existing value in the COUNTRY column
because referential integrity has been established. To test the DELETE procedure, add
a new value to the COUNTRY column and then delete it.

Example: Using InterBase stored procedures with return
parameters

An InterBase stored procedure that returns values is called differently by different
drivers. The list below shows the syntax for different drivers for the following function:

CREATE PROCEDURE fct (x SMALLINT)
RETURNS (y SMALLINT)
AS
BEGIN
 y=2*x;
END

Calling fct procedure from different drivers:

� Visigenic and InterClient version 1.3 and earlier

execute procedure fct ?

If the procedure is called through a straight JDBC driver, the output is captured in a
result set with one row. JBuilder allows the following syntax to handle output values:

execute procedure fct ? returning_values ?

JBuilder will then capture the result set and set the value into the parameter
supplied for the second parameter marker.

� InterClient version 1.4 and later:

{call fct(?,?)}

where the parameter markers should be placed at the end of the input parameters.

Resolving data from multiple tables
You can specify a query on multiple tables in a QueryDataSet and JBuilder can resolve
changes to such a DataSet. SQLResolver is able to resolve SQL queries that have more
than one table reference. The metadata discovery will detect which table each column
belongs to, and suggest a resolution order between the tables. The properties set by
the metadata discovery are:

� Column - columnName
� Column - schemaName
� Column - serverColumnName
� StorageDataSet - tableName
� StorageDataSet - resolveOrder

The tableName property of the StorageDataSet is not set. The tableName is identified on a
per column basis.

The property resolveOrder is a String array that specifies the resolution order for multi-
table resolution. INSERT and UPDATE queries use the order of this array, DELETE
queries use the reverse order. If a table is removed from the list, the columns from that
table will not be resolved.

84 Developing Database Appl icat ions

Resolv ing data f rom mult iple tables

Considerations for the type of linkage between tables in the query

A multi-table SQL query usually defines a link between tables in the WHERE clause of
the query. Depending on the nature of the link and the structure of the tables, this link
may be of four distinct types (given the primary table T1 and a linked table T2):

� 1:1

There is exactly one record in T2 that corresponds to a record in T1 and vice versa.
A relational database may have this layout for certain tables for either clarity or a
limitation of the number of columns per table.

� 1:M

There can be several records in T2 that correspond to a record in T1, but only one
record in T1 corresponds to a record in T2. Example: each customer can have
several orders.

� M:1

There is exactly one record in T2 that correspond to a record in T1, but several
records in T1 may correspond to a record in T2. Example: each order may have a
product id, which is associated with a product name in the products table. This is an
example of a lookup expressed directly in SQL.

� M:M

The most general case.

JBuilder takes a simplified approach to resolving multiple, linked tables: JBuilder only
resolves linkages of type 1:1. However, because it is difficult to detect which type of
linkage a given SQL query describes, JBuilder assumes that any multi-table query is of
type 1:1. If the multiple, linked tables are not of type 1:1, you handle resolving of other
types as follows:

� 1:M

It is generally uninteresting to replicate the master fields for each detail record in the
query. Instead, create a separate detail dataset, which allows correct resolution of
the changes.

� M:1

These should generally be handled using the lookup mechanism. However if the
lookup is for display only (no editing of these fields), it could be handled as a multi-
table query. For at least one column, mark the rowId property from the table with the
lookup as not resolvable.

� M:M

This table relationship arises very infrequently, and often it appears as a result of a
specification error.

Table and column references (aliases) in a query string

A query string may include table references and column references or aliases.

� Table aliases are usually not used in single table queries, but are often used in
multiple table queries to simplify the query string or to differentiate tables with the
same name, owned by different users.

SELECT A.a1, A.a2, B.a3 FROM Table_Called_A AS A, Table_Called_B AS B

� Column references are usually used to give a calculated column a name, but may
also be used to differentiate columns with the same name originating from different
tables.

SELECT T1.NO AS NUMBER, T2.NO AS NR FROM T1, T2

Chapter 8: Saving changes back to your data source 85

Using DataSets with RMI (s treamable data sets)

� If a column alias is present in the query string, it becomes the columnName of the
Column in JBuilder. The physical name inside the original table is assigned to the
serverColumnName property. The QueryResolver uses serverColumnName when
generating resolution queries.

� If a table alias is present in the query string, it is used to identify the tableName of a
Column. The alias itself is not exposed through the JBuilder API.

Controlling the setting of the column properties

The tableName, schemaName, and serverColumnName properties are set by the
QueryProvider for a QueryDataSet unless the metaDataUpdate property does not include
metaDataUpdate.TABLENAME.

What if a table is not updatable?

If there is no rowId in a certain table of a query, all the updates to this table are not
saved with the saveChanges() call.

Note The ability to update depends on other things, which are described in more detail in
“Querying a database” on page 46.

How can the user specify that a table should never be updated?

For a multi-table query, one of the tables can be updatable when the other is not. The
StorageDataSet property resolveOrder is a String array that specifies the resolution order
for multi-table resolution. INSERT and UPDATE queries use the order of this array,
DELETE queries use the reverse order. If a table is removed from the list, the columns
from that table will not be resolved.

For a single table, set the metaDataUpdate property to NONE, and do not set any of the
resolving properties (rowID, tableName, etc.).

Using DataSets with RMI (streamable data sets)
Streamable data sets enable you to create a Java object (DataSetData) that contains all
the data of a DataSet. Similarly, the DataSetData object can be used to provide a DataSet
with column information and data.

The DataSetData object implements the java.io.Serializable interface and may
subsequently be serialized using writeObject in java.io.ObjectOutputStream and read
using readObject in java.io.ObjectInputStream. This method turns the data into a byte
array and passes it through sockets or some other transport medium. Alternatively, the
object can be passed via Java RMI, which will do the serialization directly.

In addition to saving a complete set of data in the DataSet, you may save just the
changes to the data set. This functionality can implement a middle-tier server that
communicates with a DBMS and a thin client which is capable of editing a DataSet.

Example: Using streamable data sets

One example of when you would use a streamable DataSet is in a 3-tier system with a
Java server application that responds to client requests for data from certain data
sources. The server may use JBuilder QueryDataSet components or ProcedureDataSet
components to provide the data to the server machine. The data can be extracted
using DataSetData.extractDataSet and sent over a wire to the client. On the client side,
the data can be loaded into a TableDataSet and edited with JBuilder DataSet controls or

86 Developing Database Appl icat ions

Using DataSets wi th RMI (s treamable data sets)

with calls to the DataSet Java API. The server application may remove all the data in its
DataSet such that it will be ready to serve other client applications.

When the user on the client application wants to save the changes, the data may be
extracted with DataSetData.extractDataSetChanges and sent to the server. Before the
server loads these changes, it should get the physical column types from the DBMS
using the metadata of the DataSet. Next, the DataSet is loaded with the changes and the
usual resolvers in JBuilder are applied to resolve the data back to the DBMS.

If resolution errors occur, they might not be detected by UI actions when the resolution
is happening on a remote server machine. The resolver could handle the errors by
creating an errors DataSet. Each error message should be tagged with the INTERNALROW
value of the row for which the error occurred. DataSetData can transport these errors to
the client application. If the DataSet is still around, the client application can easily link
the errors to the DataSet and display the error text for each row.

Using streamable DataSet methods

The static methods extractDataSet and extractDataSetChanges will populate the
DataSetData with nontransient private data members, that specify

1 Metadata information consisting of

� columnCount
� rowCount
� columnNames
� dataTypes
� rowId, hidden, internalRow (column properties)

The properties are currently stored as the 3 high bits of each data type. Each data
type is a byte. The columnCount is stored implicitly as the length of the columnNames
array.

2 Status bits for each row. A short is stored for each row.

3 Null bits for each data element. 2 bits are stored for each data element. The
possible values used are:

� 0) Normal data
� 1) Assigned Null
� 2) Unassigned Null
� 3) Unchanged Null

The last value is used only for extractDataSetChanges. Values that are unchanged in
the UPDATED version are stored as null, saving space for large binaries, etc.

4 The data itself, organized in an array of column data. If a data column is of type
Variant.INTEGER, an int array will be used for the values of that column.

5 For extractDataSetChanges, a special column, INTERNALROW, is added to the data
section. This data column contains long values that designate the internalRow of the
DataSet the data was extracted from. This data column should be used for error
reporting in case the changes could not be applied to the target DBMS.

The loadDataSet method will load the data into a DataSet. Any columns that do not
already exist in the DataSet will be added. Note that physical types and properties such
as sqlType, precision, and scale are not contained in the DataSetData object. These
properties must be found on the DBMS directly. However these properties are not
necessary for editing purposes. The special column INTERNALROW shows up as any other
column in the data set.

Chapter 8: Saving changes back to your data source 87

Customiz ing the defaul t resolver logic

Customizing the default resolver logic
JBuilder makes it easy to write a custom resolver for your data when you are accessing
data from a custom data source, such as EJB, application servers, SAP, BAAN, IMS,
OS/390, CICS, VSAM, DB2, etc.

The retrieval and update of data from a data source, such as an Oracle or Sybase
server, is isolated to two key interfaces: providers and resolvers. Providers retrieve
data from a data source into a StorageDataSet. Resolvers save changes back to a data
source. By cleanly isolating the retrieval and updating of data to two interfaces, it is
easy to create new provider/resolver components for new data sources. JBuilder
currently provides implementations for standard JDBC drivers that provide access to
popular databases such as support for Oracle, Sybase, Informix, InterBase, DB2, MS
SQL Server, Paradox, dBASE, FoxPro, Access, and other popular databases. These
include:

� OracleProcedureProvider
� ProcedureProvider
� ProcedureResolver
� QueryProvider
� QueryResolver

An example project with a custom provider and resolver is located in the /samples/
DataExpress/CustomProviderResolver directory of your JBuilder installation. The sample
file TestApp.java is an application with a frame that contains a JdbTable and a
JdbNavToolBar . Both visual components are connected to a TableDataSet component
where data is provided from a custom Provider (defined in the file ProviderBean.java),
and data is saved with a custom Resolver (defined in the file ResolverBean.java). This
sample application reads from and saves changes to the text file data.txt, a simple
non-delimited text file. The structure of data.txt is described in the interface file
DataLayout.java.

An example describing how to write a custom ProcedureResolver is available in the
“Saving changes with a ProcedureResolver” on page 81.

Understanding default resolving

If you have not specifically instantiated a QueryResolver component when resolving
data changes back to the data source, the built-in resolver logic creates a default
QueryResolver component for you. This topic explores using the QueryResolver to
customize the resolution process.

The QueryResolver is a DataExpress package component which implements the
SQLResolver interface. It is this SQLResolver interface which is used by the
ResolutionManager during the process of resolving changes back to the database. As its
name implies, the ResolutionManager class manages the resolving phase.

Each StorageDataSet has a resolver property. If this property has not been set when
you call the Database.saveChanges() method, it creates a default QueryResolver and
attempts to save the changes for a particular DataSet.

Adding a QueryResolver component
To add a QueryResolver component to your application using the JBuilder visual design
tools:

1 Open an existing project that you want to add custom resolver logic to.

The project should include a Database object, and a QueryDataSet object. See
“Querying a database” on page 46 for how to do this.

2 Double-click the Frame file in the content pane, and select the Design tab to display
the UI designer.

88 Developing Database Appl icat ions

Customiz ing the defaul t resolver logic

3 Click the QueryResolver component from the DataExpress page of the component
palette.

4 Click (anywhere) in the UI designer or the component tree to add it to your
application.

The UI designer generates source code that creates a default QueryResolver object.

5 Connect the QueryResolver to the appropriate DataSet.

To do this, use the Inspector to set the resolver property of the StorageDataSet, for
example queryDataSet1, to the appropriate QueryResolver, which is, by default,
queryResolver1.

You can connect the same QueryResolver to more than one DataSet if the different
DataSet objects share the same event handling. If each DataSet needs custom event
handling, create a separate QueryResolver for each StorageDataSet.

Intercepting resolver events
You control the resolution process by intercepting Resolver events. When the
QueryResolver object is selected in the content pane, the Events tab of the Inspector
displays its events. The events that you can control (defined in the ResolverListener
interface) can be grouped into three categories of:

� Notification of an action to be performed. Any errors will be treated as normal
exceptions, not as error events.

� deletingRow()
� insertingRow()
� updatingRow()

� Notification that an action has been performed:

� deletedRow()
� insertedRow()
� updatedRow()

� Conditional errors that have occurred. These are internal errors, not server errors.

� deleteError()
� insertError()
� updateError()

When the resolution manager is about to perform a delete, insert, or update action, the
corresponding event notification from the first set of events (deletingRow, insertingRow,
and updatingRow) is generated. One of the parameters passed with the notification to
these events is a ResolverResponse object. It is the responsibility of the event handler
(also referred to as the event listener) to determine whether or not the action is
appropriate and to return one of the following (ResolverResponse) responses:

� resolve() instructs the resolution manager to continue resolving this row

� skip() instructs the resolution manager to skip this row and continue with the rest

� abort() instructs the resolution manager to stop resolving

If the event’s response is resolve() (the default response), then one of the second set
of events (deletedRow, insertedRow or updatedRow) is generated as appropriate. No
response is expected from these events. They exist only to communicate to the
application what action has been performed.

Chapter 8: Saving changes back to your data source 89

Customiz ing the defaul t resolver logic

If the event’s response is skip(), the current row is not resolved and the resolving
process continues with the next row of data.

If the event terminates the resolution process, the inserting method gets called, which
in turn calls response.abort(). No error event is generated because error events are
wired to respond to internal errors. However, a generic ResolutionException is thrown to
cancel the resolution process.

If an error occurs during the resolution processing, for example, the server did not allow
a row to be deleted, then the appropriate error event (deleteError, insertError, or
updateError) is generated. These events are passed the following:

� The original DataSet involved in the resolving
� A temporary DataSet that has been filtered to show only the affected rows
� The Exception which has occurred
� An ErrorResponse object

It is the responsibility of the error event handler to:

� examine the Exception

� determine how to proceed

� to communicate this decision back to the resolution manager. This decision is
communicated using one of the following ErrorResponse responses:

� abort() instructs the resolution manager to cease all resolving

� retry() instructs the resolution manager to try the last operation again

� ignore() instructs the resolution manager to ignore the error and to proceed

If the event handler throws a DataSetException, it is treated as a
ResolverResponse.abort(). In addition, it triggers the error event described above,
passing along the user’s Exception.

Using resolver events
For an example of resolver events, see ResolverEvents.jpx and associated files in the
/samples/DataExpress/ResolverEvents directory of your JBuilder installation. In the
ResolverEvents application,

� A table is bound to the Customer table in the JDataStore sample database.

� The Save Changes button creates a custom QueryResolver object which takes
control of the resolution process.

In the running application, you’ll notice the following behavior:

� Row deletions are not allowed. Any attempt at deleting a row of data is
unconditionally prevented. This demonstrates usage of the deletingRow event.

� Row insertions are permitted only if the customer is from the United States. If the
current customer is not from the U.S., the process is aborted. This example
demonstrates usage of the insertingRow event and a ResolverResponse of abort().

� Row updates are done by adding the old and new values of a customer’s name to a
ListControl. This demonstrates how to access both the new information as well as
the prior information during the resolution process.

90 Developing Database Appl icat ions

Customiz ing the defaul t resolver logic

Writing a custom data resolver

This topic discusses custom data resolvers, and how they can be used as resolvers for
a TableDataSet and any DataSet derived from TableDataSet. The main method to
implement is resolveData(). This method collects the changes to a StorageDataSet and
resolves these changes back to the source.

In order to resolve data changes back to a source,

1 Make sure that the StorageDataSet is blocked for changes in the provider during the
resolution process. This is done by calling the methods:

� ProviderHelp.startResolution(dataSet, true);
� ProviderHelp.endResolution(dataSet);

Important Place all of the following items between these two method calls.

2 Locate changes in the data by creating a DataSetView for each of the inserted,
deleted, and updated rows. That is accomplished using the following method calls:

� StorageDataSet.getInsertedRows(DataSetView);
� StorageDataSet.getDeletedRows(DataSetView);
� StorageDataSet.getUpdatedRows(DataSetView);

It is important to note that

� The inserted rows may contain deleted rows (which shouldn’t be resolved).

� The deleted rows may contain inserted rows (which shouldn’t be resolved).

� The updated rows may contain deleted and inserted rows (which shouldn’t be
handled as updates).

3 Close each of the DataSetView components after the data has been resolved, or if an
exception occurs during resolution. If the DataSetView components are not closed,
the StorageDataSet retains references to it, and such a view will never be garbage
collected.

Handling resolver errors
Errors can be handled in numerous ways, however the DataSet must be told to change
the status of the changed rows. To do this,

1 Change each row so that it is marked RowStatus.PENDING_RESOLVED:.

The code to mark the current row this way is:

 DataSet.markPendingStatus(true);

Call this method for each of the inserted, deleted, and updated rows that is being
resolved.

2 Call one or more of the following methods to reset the
RowStatus.PENDING_RESOLVED bit.

Which methods are called depends on the error handling approach:

� markPendingStatus(false);

The markPendingStatus method resets the current row.

� resetPendingStatus(boolean resolved);

This resetPendingStatus method resets all the rows in the DataSet.

� resetPendingStatus(long internalRow, boolean resolved);

This resetPendingStatus method resets the row with the specified internalRow id.

Chapter 8: Saving changes back to your data source 91

Customiz ing the defaul t resolver logic

3 Reset the resolved parameter, using of one of the resetPendingStatus methods, to
true for rows whose changes were actually made to the data source.

When the PENDING_RESOLVED bit is reset, the rows retain the status of recorded
changes. The rows must be reset and resolved so that,

� The INSERTED & UPDATED rows are changed to LOADED status.

� The DELETED rows are removed from the DataSet.

The row changes that were not made will clear the PENDING_RESOLVED bit,
however, the changes are still recorded in the DataSet.

Some resolvers will choose to abandon all changes if there are any errors. In fact, that
is the default behavior of QueryDataSet. Other resolvers may choose to commit certain
changes, and retain the failed changes for error messages.

Resolving master-detail relationships
Master-detail resolution presents some issues to be considered. If the source of the
data has referential integrity rules, the DataSet components may have to be resolved in
a certain order. When using JDBC, JBuilder provides the SQLResolutionManager class.
This class ensures the master data set resolves its inserted rows before enabling the
detail data set to resolve its inserted row, and also ensures that detail data sets resolve
their deleted rows before the deleted rows of the master data set are resolved. For
more information on resolving master-detail relationships, see “Saving changes in a
master-detail relationship” on page 100.

92 Developing Database Appl icat ions

Chapter 9: Establ ishing a master-deta i l re la t ionship 93

C h a p t e r

9
Chapter 9Establishing a master-detail

relationship
Databases that are efficiently designed include multiple tables. The goal of table design
is to store all the information you need in an accessible, efficient manner. Therefore,
you want to break down a database into tables that identify the separate entities (such
as persons, places, and things) and activities (such as events, transactions, and other
occurrences) important to your application. To better define your tables, you need to
identify and understand how they relate to each other. Creating several small tables
and linking them together reduces the amount of redundant data, which in turn reduces
potential errors and makes updating information easier.

In JBuilder, you can join, or link, two or more data sets that have at least one common
field using a MasterLinkDescriptor. A master-detail relationship is usually a one-to-many
type relationship among data sets. For example, say you have a data set of customers
and a data set of orders placed by these customers, where customer number is a
common field in each. You can create a master-detail relationship that will enable you to
navigate through the customer data set and have the detail data set display only the
records for orders placed by the customer who is exposed in the current record.

You can link one master data set to several detail data sets, linking on the same field or
on different fields. You can also create a master-detail relationship that cascades to a
one-to-many-to-many type relationship. Many-to-one or one-to-one relationships can
be handled within a master-detail context, but these kinds of relationships would be
better handled through the use of lookup fields, in order to view all of the data as part of
one data set. For information on saving changes to data from multiple data sets, see
“Resolving data from multiple tables” on page 83.

The master and detail data sets do not have to be of the same data set type. For
example, you could use a QueryDataSet as the master data set and a TableDataSet as
the detail data set. QueryDataSet, TableDataSet, and DataSetView can all be used as
either master or detail data sets.

These are the topics covered:

� “Defining a master-detail relationship” on page 94
� “Fetching details” on page 97
� “Editing data in master-detail data sets” on page 98
� “Steps to creating a master-detail relationship” on page 99
� “Saving changes in a master-detail relationship” on page 100

94 Developing Database Appl icat ions

Def in ing a master-deta i l re la t ionship

Defining a master-detail relationship
When defining a master-detail relationship, you must link columns of the same data
type. For example, if the data in the master data set is of type INT, the data in the detail
data set must be of type INT as well. If the data in the detail data set were of type
LONG, either no matches or incorrect matches would be found. The names of the
columns may be different. You are not restricted to linking on columns that have
indexes on the server.

You can sort information in the master data set with no restrictions. Linking between a
master and a detail data set uses the same mechanism as maintaining sorted views, a
maintained index. This means that a detail data set will always sort with the detail
linking columns as the left-most sort columns. Additional sorting criteria must be
compatible with the detail linking columns. To be compatible, the sort descriptor cannot
include any detail linking columns or, if it does include detail linking columns, they must
be specified in the same order in both the detail linking columns and the sort descriptor.
If any detail linking columns are included in the sort descriptor, all of them should be
specified.

You can filter the data in the master data set, the detail data set, or in both. A master-
detail relationship alone is very much like a filter on the detail data set; however, a filter
can be used in addition to the master-detail relationship on either data set.

Instead of using a MasterLinkDescriptor, you may use a SQL JOIN statement to create
a master-detail relationship. A SQL JOIN is a relational operator that produces a single
table from two tables, based on a comparison of particular column values (join
columns) in each of the data sets. The result is a single data set containing rows
formed by the concatenation of the rows in the two data sets wherever the values of the
join columns compare. To update JOIN queries with JBuilder, see “Resolving data from
multiple tables” on page 83.

Creating an application with a master-detail relationship

This example shows how to create a master-detail relationship, using the sample files
shipped with JBuilder. The basic scenario for the sample application involves
constructing two queries, one that selects all of the unique countries from the
COUNTRY table in the employee sample database, and one that selects all of the
employees. This example is available as a finished project in the /samples/DataExpress/
MasterDetail directory of your JBuilder installation.

The COUNTRY data set is the master data set, with the column COUNTRY being the
field that we will link to EMPLOYEE, the detail data set. Both data sets are bound to
JdbTables, and as you navigate through the COUNTRY table, the EMPLOYEE table
displays all of the employees who live in the country indicated as the current record.

To create this application,

1 Close any open projects (File|Close).

2 Choose File|New, and double-click the Application icon to create a new application.

Accept all defaults.

3 Select the Design tab in the content pane.

4 Select a Database component from the DataExpress page of the component palette,
and click in the component tree or the UI designer to add the component to your
application.

Chapter 9: Establ ishing a master-deta i l re la t ionship 95

Def in ing a master-deta i l re la t ionship

5 Open the connection property for the Database component in the Inspector, and set
properties as follows, assuming your system is set up to use the JDataStore sample
as described in “Setting up JDataStore” on page 31.

The connection dialog includes a Test Connection button. Click this button to check
that the connection properties have been correctly set. Results of the connection
attempt are displayed beside the button. When the connection is successful, click
OK.

Note The JDataStore Server library is added to your project when you connect to a
JDataStore database.

The code generated by the designer for this step can be viewed by selecting the
Source tab and looking for the ConnectionDescriptor code. Click the Design tab to
continue.

6 Select a QueryDataSet component from the DataExpress page, and click in the
component tree to add the component to your application.

This component sets up the query for the master data set. Select the query property
of the QueryDataSet component from the Inspector, and set as follows:

7 Click Test Query to ensure that the query is runnable, and when the status area
indicates Success, click OK to close the dialog box.

8 Add another QueryDataSet component to your application, select its query property in
the Inspector, click the ellipsis (…) button to open the Query dialog box, and set the
following properties:

This will set up the query for the detail data set.

9 Click Test Query to ensure that the query is runnable, and when the status area
indicates Success, click OK to close the dialog box.

10 Select the masterLink property for the detail data set (queryDataSet2) in the Inspector,
click the ellipsis (…) button to open the MasterLink dialog box, and set the
properties as follows:

a The Master DataSet property provides a drop-down menu of available data sets.
Choose the data set that contains the master records for the current detail data
set, in this case select queryDataSet1.

b The link fields describe which fields to use when determining matching data
between the master and detail data set components. To select a column from the
master data set to link with a column in the detail data set, select the column
name, in this case COUNTRY (a string field), from the list of Available Master

Property name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Browse to your local copy of <jbuilder>/samples/JDataStore/
datastores/employee.jds

Username Enter your name (the default is “SYSDBA”)

Password Enter your password (the default is “masterkey”)

Property name Value

Database database1

SQL Statement SELECT * FROM COUNTRY

Property name Value

Database database1

SQL Statement SELECT * FROM EMPLOYEE

96 Developing Database Appl icat ions

Def in ing a master-deta i l re la t ionship

Columns then click the Add to Master Links button. This column displays in the
Master Link Columns box.

c To select the column from the detail data set to link with a column in the master
data set, select the column name, in this case JOB_COUNTRY (a string field),
from the list of Available Detail Columns, then click the Add to Detail Links button.
This column displays in the Detail Link Columns box.

d The Delay Fetch Of Detail Records Until Needed option determines whether the
records for the detail data set can be fetched all at once or can be fetched for a
particular master when needed (when the master record is visited). Uncheck this
box to set fetchAsNeeded to false. For more information on fetching, see “Fetching
details” on page 97.

e Click Test Link.

The dialog should look like this when the test is successful.

f Click OK to close the MasterLink dialog box.

11 Add a DBDisposeMonitor to your application from the More dbSwing page.

The DBDisposeMonitor will close the JDataStore when the window is closed.

12 Set the dataAwareComponentContainer property of the DBDisposeMonitor to this.

To create a UI for this application,

1 Select contentPane (BorderLayout) in the component tree, and set its layout property
to null.

2 Add a JdbNavToolBar component from the dbSwing page, and drop the component in
the area at the top of the panel in the UI Designer.

JdbNavToolBar automatically attaches itself to whichever DataSet has focus.

3 Add a JdbStatusLabel and drop it in the area at the bottom of the panel in the UI
designer.

JdbStatusLabel automatically attaches itself to whichever DataSet has focus.

4 Select a TableScrollPane component from the dbSwing page, click and drag the
outline for the pane in the upper portion of the UI designer to add it to the application
just under jdbNavToolBar1.

Scrolling behavior is not available by default in any Swing component or dbSwing
extension, so, to get scrolling behavior, we add the scrollable Swing or dbSwing
components to a JScrollPane or a TableScrollPane. TableScrollPane provides special

Chapter 9: Establ ishing a master-deta i l re la t ionship 97

Fetch ing deta i ls

capabilities to JdbTable over JScrollPane. See the dbSwing documentation for more
information.

5 Drop a JdbTable into the center of tableScrollPane1 in the UI designer, and set its
dataSet property to queryDataSet1.

6 Add another TableScrollPane to the lower part of the panel in the UI designer.

This will become tableScrollPane2.

7 Drop a JdbTable into tableScrollPane2, and set its dataSet property to queryDataSet2.

8 Compile and run the application by choosing Run|Run Project.

Now you can move through the master (COUNTRY) records and watch the detail
(EMPLOYEE) records change to reflect only those employees in the current country.

The running application looks like this:

Fetching details
In a master-detail relationship, the values in the master fields determine which detail
records will display. The records for the detail data set can be fetched all at once or can
be fetched for a particular master when needed (when the master record is visited).

Fetching all details at once

When the fetchAsNeeded parameter is false (or Delay Fetch Of Detail Records Until
Needed is unchecked in the masterLinkDescriptor dialog box), all of the detail data is
fetched at once. Use this setting when your detail data set is fairly small. You are
viewing a snapshot of your data when you use this setting, which will give you the most
consistent view of your data. When the refresh() method is called, all of the detail sets
are refreshed at once.

For example, initially the data set is populated with all of the detail data set data. When
the fetchAsNeeded option is set to false, you could instantiate a DataSetView component,
view the detail data set through it, and see that all of the records for detail data set are
present, but are being filtered from view based on the linking information being
provided from the master data set.

Fetching selected detail records on demand

When the fetchAsNeeded parameter is true (or Delay Fetch Of Detail Records Until
Needed is checked in the masterLinkDescriptor dialog box), the detail records are
fetched on demand and stored in the detail data set. This type of master-detail

98 Developing Database Appl icat ions

Edi t ing data in master-deta i l data sets

relationship is really a parameterized query where the values in the master fields
determine which detail records will display. You are most likely to use this option if your
remote database table is very large, in order to improve performance (not all of the
data set will reside in memory, but it will be loaded as needed). You would also use this
option if you are not interested in most of the detail data. The data that you view will be
fresher and more current, but not be as consistent a snapshot of your data as when the
fetchAsNeeded parameter is false. You will fetch one set of detail records at one point in
time, it will be cached in memory, then you will fetch another set of detail records and it
will be cached in memory. In the meantime, the first set of detail records may have
changed in the remote database table, but you will not see the change until you refresh
the details. When the refresh() method is called, only the current detail sets are
refreshed.

For example, initially, the detail data set is empty. When you access a master record,
for example Jones, all of the detail records for Jones are fetched. When you access
another master record, say Cohen, all of the detail records for Cohen are fetched and
appended to the detail data set. If you instantiate a DataSetView component to view the
detail data set, all records for both Jones and Cohen are in the detail data set, but not
any records for any other name.

When the fetchAsNeeded property is true, the query for the detail dataset must contain a
WHERE clause that defines the relationship of the detail columns to a parameter that
represents the value of a column in the master data set. If the parameterized query has
named parameter markers, the name must match a name in the master data set. If “?”
JDBC parameter markers are used, the detail link columns are bound to the parameter
markers from left to right as defined in the masterLink property. The binding of the
parameter values is implicit when the master navigates to a row for the first time. The
query will be re-executed to fetch each new detail group. If there is no WHERE clause,
JBuilder throws DataSetException.NO_WHERE_CLAUSE. When fetching is handled this way,
if no explicit transactions are active, the detail groups will be fetched in separate
transactions. For more information on master-detail relationships within parameterized
queries, see “Parameterized queries in master-detail relationships” on page 59.

When the master data set has two or more detail data sets associated with it, and the
fetchAsNeeded property of each is true, the details remember what detail groups they
have attempted to fetch via a query or stored procedure that is parameterized on the
active master row linking columns. This memory can be cleared by calling the
StorageDataSet.empty() method. There is no memory for masterLink properties that do
not set fetchAsNeeded to true.

When the detail data set is a TableDataSet, the fetchAsNeeded parameter is ignored and
all data is fetched at once.

Editing data in master-detail data sets
By default, you cannot delete or change a value in a master link column (a column that
is linked to a detail data set) if the master record has detail records associated with it.
Also by default, detail link columns will not be displayed in a JdbTable UI component,
because these columns duplicate the values in the master link columns, which are
displayed. When a new row is inserted into the detail data set, JBuilder will insert the
matching values in the non-displayed fields.

Using the cascadeUpdates and cascadeDeletes properties for master-detail relationships,
you can enable updates to rows in a detail DataSet based on updates in linking columns
in the master DataSet, and deletions of matching rows in a detail DataSet when
corresponding rows are deleted in the master DataSet. These properties can be set in
the MasterLink property editor with the Allow Cascading Updates and Allow Cascading
Deletes checkboxes.

Be careful when using the cascadeUpdates and cascadeDeletes options for master-detail
relationships, especially in cases where you have multiple master-detail relationships

Chapter 9: Establ ishing a master-deta i l re la t ionship 99

Steps to creat ing a master-detai l re la t ionship

chained, such that a detail DataSet is a master to another detail (and so on). When
using these options, one row of a detail data set may be updated or deleted, but the
others may not. For example, an event handler for the deleting() event of the
editListener may allow deletion of some detail rows and block deletion of others. In the
case of cascaded updates, you may end up with orphan details if some rows in a detail
set can be updated and others cannot. For more information on the cascadeUpdates and
cascadeDeletes options, see the MasterLinkDescriptor topic in the DataExpress
Component Library Reference.

Steps to creating a master-detail relationship
To create a master-detail link between two data set components, one which represents
the master data set and another which represents the detail data set,

1 Create or open an application with at least two data set components, one of which
represents the master data set and another which represents the detail data set.

You can use the Master-detail sample application in the MasterDetail.jpx project
located in the <jbuilder>/samples/DataExpress/MasterDetail directory.

2 Select the Frame file in the content pane. Select the Design tab to activate the UI
designer.

3 Select the detail data set in the component tree, and select its masterLink property
from the Properties page of the Inspector. In the masterLink custom property editor,
specify the following properties for the detail data set:

� The masterDataSet property provides a choice menu of available data sets.
Choose the data set that contains the master records for the current detail data
set.

� The link columns describe which columns to use when determining matching
data between the master and detail data set components. To select a column
from the master data set to link with a column in the detail data set, double-click
the column name in the list of Available Master Columns. This column will now
display in the Master Link Columns property.

� To select the column of the detail data set to link with a column in the master data
set, double-click the column name from the list of Available Detail Columns. The
data type for each column is shown. If you select a detail column whose type
does not match the corresponding master column, nothing will happen since the
link columns must match by type. When properly selected, this column will
display in the Detail Link Columns property.

� To link the two data sets on more than one column, repeat the previous two steps
until all columns are linked.

� To delay fetching detail records until they are needed, check the Delay Fetch Of
Detail Records Until Needed box. See “Fetching details” on page 97 for more
discussion on this option.

� To verify that the data sets are properly connected, click Test Link. The status
area will indicate Running, Success, or Failed.

� To complete the specification, click OK.

4 Add visual components (such as JdbTables) to enable you to view and modify data.
Set the dataSet property of one to the master data set, and set the dataSet property
of the other to the detail data set.

5 Compile and run the application.

The master data set will display all records. The detail data set will display the
records that match the values in the linked columns of the current row of the master
data set, but (by default) will not display the linked columns.

100 Developing Database Appl icat ions

Saving changes in a master-deta i l re la t ionship

Saving changes in a master-detail relationship
In JBuilder, data is retrieved from a server or text file into a data set. Once this data has
been “provided” to the data set, you can edit and work with a local copy of the data
programmatically or in data-aware components. To save the data back to the database
or text file, you must “resolve” the changes back to the database or export the changes
to a text file. The different options for resolving the changes back to the database are
discussed in Chapter 8, “Saving changes back to your data source” and the options for
exporting data to a text file are discussed in “Exporting data” on page 25.

In a master-detail relationship, at least two sets of data (database tables and/or text
data files in any combination) are being provided to at least two data sets. In general,
there are three ways you can resolve changes in a master-detail relationship:

� Place a JButton in your application and write the resolver code for the button that
commits the data for each data set. An example of this can be found in the topic
“Saving changes from a QueryDataSet” on page 78.

If both data sets are QueryDataSets, you can save changes in both the master and
the detail tables using the saveChanges(DataSet[]) method of the Database rather than
the saveChanges() method for each data set. Using a call to the
Database.saveChanges(DataSet[]) method keeps the data sets in sync and commits
all data in one transaction. Using separate calls to the DataSet.saveChanges() method
does not keep the data sets in sync and commits the data in separate transactions.
See “Resolving master-detail data sets to a JDBC data source” on page 100 for
more information.

� Place a QueryResolver in your application to customize resolution. See “Customizing
the default resolver logic” on page 87 for more information.

� Place a JdbNavToolBar in your application and use the Save button to save changes.

You can use a single JdbNavToolBar for both data sets. The JdbNavToolBar
component automatically attaches itself to whichever DataSet has focus.

See also
� Chapter 8, “Saving changes back to your data source”

Resolving master-detail data sets to a JDBC data source

Because a master-detail relationship by definition includes at least two sets of data, the
simplest way to resolve data back to the data source is to use the
saveChanges(DataSet[]) method of the Database component (assuming that QueryDataSet
components are used).

Executing the Database.saveChanges(DataSet[]) method causes all of the inserts,
deletes, and updates made to the data sets to be saved to the JDBC data source in a
single transaction, by default. When the masterLink property has been used to establish
a master-detail relationship between two data sets, changes across the related data
sets are saved in the following sequence:

1 Deletes

2 Updates

3 Inserts

For deletes and updates, the detail data set is processed first. For inserts, the master
data set is processed first.

If an application is using a JdbNavToolBar for save and refresh functionality, the
fetchAsNeeded property should be set to false to avoid losing unsaved changes. This is
because when the fetchAsNeeded property is true, each detail set is fetched individually,
and is also refreshed individually. Since the Save button only saves changes to the

Chapter 9: Establ ish ing a master-detai l re lat ionship 101

Saving changes in a master-detai l re la t ionship

data set that has focus, you would have to click the Save button twice, once (when the
master has focus) to save changes in the master data set, and again (when the detail
has focus) to save changes in the detail data set. If the
Database.saveChanges(DataSet[]) method is used instead, all edits will be posted in the
right order and in the same transaction to all linked data sets.

102 Developing Database Appl icat ions

Chapter 10: Using data modules to s impl i fy data access 103

C h a p t e r

10
Chapter 10Using data modules to simplify

data access
A data module is a specialized container for data access components. Data modules
simplify data access development in your applications. Data modules offer you a
centralized container for all your data access components. This enables you to modularize
your code and separate the database access logic and business rules in your applications
from the user interface logic in the application. You can also maintain control over the use
of the data module by delivering only the class files to application developers.

Once you define your DataSet components and their corresponding Column components
in a data module, all applications that use the module have consistent access to the
data sets and columns without requiring you to recreate them in every application each
time you need them. Data modules do not need to reside in the same directory or
package as your project. They can be stored in a location for shared use among
developers and applications.

DataModule is an interface which declares the basic behavior of a data module. To work
with this interface programmatically, implement it in your data module class and add
your data components.

When you create a data module and add any component that would automatically
appear under the Data Access section of the content pane (Database, DataSet,
DataStore), a getter() method is generated. This means that any of these components
will be available in a choice list for the project that references the data module. This
means, for example, that you can

� Add a Database component to a data module.

� Compile the data module.

� Add a QueryDataSet component to the application that contains the data module or to
the data module itself.

� In the query property dialog, select “DataModule1.database1” (or something similar)
from the Database choice box.

This chapter discusses two ways to create a data module:

� Using the JBuilder visual design tools

� Using the Data Modeler

104 Developing Database Appl icat ions

Creat ing a data module us ing the des ign tools

Creating a data module using the design tools
The following sections describe how to create a data module, using the visual design
tools, such as the Data Module wizard and the UI designer.

Create the data module with the wizard

To create a data module,

1 Create a new project.

2 Choose File|New and double-click the Data Module icon.

3 Specify the package and class name for your data module class.

JBuilder automatically fills in the Java file name and path based on your input. To
create the data module using the JBuilder designer, deselect Invoke Data Modeler.

4 Click OK to close the dialog box.

The data module class is created and added to the project.

5 Double-click the data module file in the project pane to open it in the content pane.

6 View the source code.

You’ll notice that the code generated by the wizard for the data module class is
slightly different than the code generated by other wizards. The getDataModule()
method is defined as public static. The purpose of this method is to allow a single
instance of this data module to be shared by multiple frames. The code generated
for this method is:

public static DataModule1 getDataModule() {
 if (myDM == null){
 myDM = new DataModule1();}
 return myDM;
 }

The code for this method,

� Declares this method as static. This means that you are able to call this method
without a current instantiation of a DataModule class object.

� Returns an instance of the DataModule class.

� Checks to see if there is a current instantiation of a DataModule.

� Creates and returns a new DataModule if one doesn’t already exist.

� Returns a DataModule object if one has been instantiated.

The data module class now contains all the necessary methods for your custom
data module class, and a method stub for the jbInit() to which you add your data
components and custom business logic.

Add data components to the data module

To customize your data module using the UI designer,

Note Although data modules do not show up as visible components in the designer like
dbSwing components, it is useful to work with data modules in the designer. Using the
designer, you can quickly add and modify related data access components using the
component palette, structure pane, and Inspector.

1 Double-click the data module file in the project pane to open it in the content pane.

2 Select the Design tab of the content pane to activate the UI designer.

Chapter 10: Using data modules to s impl i fy data access 105

Creat ing a data module us ing the des ign tools

3 Add your data components to your data module class.

For example,

a Select a Database component from the DataExpress page of the component
palette.

b Click in the component tree or the UI designer to add the Database component to
the DataModule.

c Set the connection property using the database connectionDescriptor. Setting the
connection property in the Inspector is discussed in Chapter 4, “Connecting to a
database.”

The data components are added to a data module just as they are added to a Frame
file. For more information on adding data components, see Chapter 5, “Retrieving data
from a data source.”

Note JBuilder automatically creates the code for a public method that “gets” each DataSet
component you place in the data module. This allows the DataSet components to
appear as (read-only) properties of the DataModule. This also allows DataSet
components to be visible to the dataSet property of data-aware components in the
Inspector when data-aware component and data modules are used in the same
container.

After you have completed this section, your data module file will look similar to this:

package datamoduleexample;

import com.borland.dx.dataset.*;
import com.borland.dx.sql.dataset.*;

public class DataModule1 implements DataModule{
 private static DataModule1 myDM;
 Database database1 = new Database();
 public DataModule1() {
 try {
 jbInit();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 private void jbInit() throws Exception{
 database1.setConnection(new
 com.borland.dx.sql.dataset.ConnectionDescriptor("
 jdbc:borland:dslocal:/usr/local/<jbuilder>/samples/JDataStore/
 datastores/employee.jds", "your name", "", false,
 "com.borland.datastore.jdbc.DataStoreDriver"));
 }
 public static DataModule1 getDataModule() {
 if (myDM == null)
 myDM = new DataModule1();
 return myDM;
 }
 public com.borland.dx.sql.dataset.Database getDatabase1() {
 return database1;
 }
}

106 Developing Database Appl icat ions

Creat ing a data module us ing the des ign tools

Adding business logic to the data module

Once the data components are added to the data module and corresponding
properties set, you can add your custom business logic to the data model. For
example, you may want to give some users the rights to delete records and not give
these rights to others. To enforce this logic, you add code to various events of the
DataSet components in the data module.

Note The property settings and business logic code you add to the components in the data
model cannot be overridden in the application that uses the data model. If you have
behavior that you do not want to enforce across all applications that use this data
model, consider creating multiple data models that are appropriate for groups of
applications or users.

To add code to the events of a component,

1 Double-click the data module file in the project pane to open it in the content pane.

2 Select the Design tab of the content pane to activate the UI designer.

3 Select the component to which you want to add business logic, then click the Events
tab in the Inspector.

4 Double-click the event where you want the business logic to reside.

JBuilder creates a stub in the Java source file for you to add your custom business
logic code.

Using a data module

To use a data module in your application, it must first be saved and compiled. In your
data module,

1 Choose File|Save All.

Note the name of the project, the package, and the data module.

2 Compile the data module class by choosing Run|Make Project.

This creates the data module class files in the directory specified in Project|Project
Properties, Output Path.

3 Choose File|Close.

To reference the data module in your application, you must first add it to your project as
a required library.

Adding a required library to a project
These general instructions for adding a required library use a data module as a specific
example, but the same steps can be used to add any required library. A library could be
a class file, such as a data module, or an archive, such as a JAR (.jar) file.

To add a data module as a required library,

1 Open the Project Properties dialog box (Project|Project Properties).

2 Select the Required Libraries tab on the Paths page, and add the class or archive
file for the new library.

In the specific case of adding a data module, this will be the data module class file
you just compiled.

3 Click Add to open the Select One Or More Libraries dialog box.

4 Click New.

The New Library wizard opens.

Chapter 10: Using data modules to s impl i fy data access 107

Creat ing a data module us ing the des ign tools

5 Enter the name for the library (like Employee Data Module).

6 Select the location where you want your <library name>.library file to go.

You have a choice between Project, User Home, and JBuilder. If you are running
JBuilder from a network, and you want your library to be accessible to everyone, you
should select JBuilder. This will put your <library name>.library file in your /lib
directory within your JBuilder installation. If you are the only developer that needs
access to your library, you may want to choose one of the other options, so the
.library file will be stored locally.

7 Click Add, browse to the folder containing which contains the path to the class file or
archive you wish to add, and click OK.

JBuilder automatically determines the paths to class files, source files, and
documentation within this folder. The Library Paths field should list the path to the
new library.

8 Click OK to close the wizard.

9 Click OK to close the Select One Or More Libraries dialog box.

At this point you should see your new library added to the list of required libraries.

10 Click OK to close the Project Properties dialog box.

Referencing a data module in your application
Now that you have added the data module as a required library, here are the remaining
steps for referencing a data module in your application:

1 Close any open projects (File|Close Projects).

2 Choose File|New and double-click Application on the General page of the object
gallery.

This will create both an application and a project.

3 Enter the appropriate package and class information.

4 Select the application’s Frame file in the content pane.

5 Make sure DataExpress is specified as one of the required libraries.

If DataExpress is not listed under Required Libraries in the Project Properties dialog
box (Project|Project Properties),

a Click Add.

b Select DataExpress.

c Click OK until the Project Properties dialog is closed.

6 Make sure the data module is added as a required library.

7 Import the package that the data module class belongs to (if it is outside your
package) by choosing Wizards|Edit|Use DataModule.

8 Click the ellipsis (…) button to open the Select DataModule dialog box.

A tree of all known packages and classes is displayed. Browse to the location of the
class files generated when the data module was saved and compiled (this should be
under a node of the tree with the same name as your package, if the data module is
part of a package). Select the data module class. If you do not see the data module
class here, check to make sure the project compiled without errors and that it was
properly added to the required libraries for the project.

9 Click OK.

If you get an error message at this point, double check the required libraries in the
project properties, and the location of the class file for your data module.

108 Developing Database Appl icat ions

Creat ing a data module us ing the des ign tools

Click the Design tab to open the UI designer; the instance of the data module appears
in the component tree. Clicking the entry for the data module does not display its
DataSet components nor its Column components. This is intentional to avoid modification
of the business logic contained in the data module from outside.

When designing your application, you’ll notice that the dataSet property of a UI
component includes all the DataSetView and StorageDataSet components that are
included in your data module. You have access to them even though they are not listed
separately in the content pane.

If you have a complex data model and/or business logic that you don’t want another
developer or user to manipulate, encapsulating it in a reusable component is an ideal
way to provide access to the data but still enforce and control the business logic.

Understanding the Use DataModule wizard
When you choose Wizards|Edit|Use DataModule, you will see the following wizard:

Select a data module by clicking the ellipsis (…) button for the DataModule Class field.
A tree of all known packages and classes is displayed. If you do not see your
DataModule class in this list, use Project|Project Properties to add the data module
package or archive to your required libraries for the project. Browse to the location of
the class files generated when the data module was saved and compiled. Select the
data module class.

In the Java Field Declaration box, the default field name is the name of the data
module, followed by a “1”. It is the name which will be used for the member variable to
generate in code. The data module will be referred to by the name given in the
component tree. Select a name that describes the data in the data module, such as
EmployeeDataModule.

In the Java Field Declaration section, you can choose from the following ways of using
the DataModule in your application:

� Create New Instance Of DataModule

If you only have a single Frame subclass in your application, select this option.

� Share (Static) Instance Of DataModule

If you plan to reference the data module in multiple frames of your application, and
want to share a single instance of the custom DataModule class, select this option.

� Caller Sets Instance With setModule()

Select this option when you have several different data modules, for instance, a
data module that gets the data locally and one that gets the data remotely.

Click OK to add the data module to the package and inject the appropriate code into
the current source file to create an instance of the data module.

Chapter 10: Using data modules to s impl i fy data access 109

Creat ing data modules us ing the Data Modeler

Based on the choices shown in the dialog above, the following code will be added to
the jbInit() method of the Frame file. Note that Share (Static) Instance of Data Module
is selected:

dataModule12 = com.borland.samples.dx.datamodule.DataModule1.getDataModule();

If Create New Instance Of DataModule is selected, the following code will be added to
the jbInit() method of the Frame file:

dataModule12 = new com.borland.samples.dx.datamodule.DataModule1();

If Caller Sets Instance With SetModule() is selected, a setModule() method is added to
the class being edited.

Creating data modules using the Data Modeler
The JBuilder IDE provides tools that can help you quickly create applications that query a
database. The Data Modeler can build data modules that encapsulate a connection to a
database and the queries to be run against the database. The Data Module Application
wizard can then use that data module to create a client-server database application.

Creating queries with the Data Modeler
JBuilder can greatly simplify the task of viewing and updating your data in a database.
The JBuilder Data Modeler lets you visually create SQL queries and save them in
JBuilder Java data modules.

To begin a new project,

1 Choose File|New Project to start the Project wizard.
2 Choose a location and name for the project.
3 Click the Finish button.

For more specific information about creating projects, see “Creating and managing
projects” in Building Applications with JBuilder.

To display the Data Modeler,

1 Choose File|New.

2 Double-click the Data Module icon on the General page of the object gallery.

3 Enter the package and class name for the data module you are creating, and check
the Invoke Data Modeler option.

4 Click OK.

The Data Modeler displays.

Figure 10.1 Data Modeler

110 Developing Database Appl icat ions

Creat ing data modules us ing the Data Modeler

To open an existing Java data module in the Data Modeler,

1 Right-click the module in the project pane.

2 Choose Open With Data Modeler.

Opening a URL
To begin building a SQL query, you must first open a connection URL. There are
several ways you can do this:

� Double-click the URL that accesses your data.

� Choose the expand icon.

� Select the URL and choose Database|Open Connection URL.

If the database you want to access is not listed under Database URLs in the Data
Modeler, you can add it.

1 Choose Database|Add Connection URL to display the New URL dialog box.

2 Select an installed driver in the drop-down Driver list or type in the driver you want.

For the samples, you can select com.borland.datastore.jdbc.DataStoreDriver.

3 Type in the URL or use the Browse button to select the URL of the data you want to
access.

For the samples, you can select the employee.jds database located under the
samples directory of your JBuilder installation, /samples/JDataStore/datastores/
employee.jds. You can use the Browse button to browse to this file to reduce the
chance of making a typing error.

Beginning a query
Begin building a query by doing the following:

1 Select the columns you want to add to the query from a table, or select an aggregate
function that operates on a specific column.

a Double-click the Tables node or choose the Tables expand icon to view the
tables.

b From the list of tables, select the table you want to query and double-click it.
Double-click the Columns node to view all the columns in the selected table.

2 Add one or more columns to a query’s SELECT statement.

The SELECT statement is the data retrieval statement that returns a variable
number of rows of a fixed number of columns. The Data Modeler helps you build the
SELECT statement. The SELECT clause specifies the list of columns to be
retrieved.

a Select a column you want to add from the table you want to access.

b Click the Copy button.

The name of the selected column appears in the Selected Columns box and the
table name appears in the Queries panel at the top. Continue selecting columns

Chapter 10: Using data modules to s impl i fy data access 111

Creat ing data modules us ing the Data Modeler

until you have all you want from that table. If you want to select all columns, click
the Copy All button.

Figure 10.2 Selecting columns

3 Add an aggregate function to the query.

Aggregate functions provide a summary value based on a set of values. Aggregate
functions include SUM, AVG, MIN, MAX, and COUNT.

a Click the Aggregate button to display a dialog box.

Figure 10.3 Aggregate dialog box

b Click the column whose data values you want aggregated in the Available
Columns list.

c Click the function you want to use on that column from the Aggregate Functions
column.

d Check the Distinct check box if you want the function to operate on only unique
values of the selected column.

e Choose Add Aggregate to add the function to your query.

As you select columns and add functions, your SQL SELECT statement is being built.
When you aggregate data, you must include a GROUP BY clause. For information on
GROUP BY clauses, see “Adding a Group By clause” on page 112.

112 Developing Database Appl icat ions

Creat ing data modules us ing the Data Modeler

To view your SQL statement, click the SQL tab.

Adding a Group By clause
The GROUP BY clause is used to group data returned by a select statement and is
often used in conjunction with aggregate functions. When used with aggregate
functions, the following process is followed:

� First, the data is restricted by a WHERE clause, if one exists.

� Data is grouped by the field indicated in the GROUP BY clause.

� Aggregate functions are applied to the groups and a summary row is produced (one
for each group).

To add a Group By clause to your query, click the Group By tab to display the Group By
page.

Figure 10.4 Group By page

The Available Columns box lists the columns of the currently selected query in the
Queries panel of the Data Modeler. The Group By box contains the column names the
query will be grouped by. By default, the query is not grouped by any column until you
specify one.

To add a Group By clause to your query,

1 Select the column you want the query grouped by.

2 Click the Add (>) button to transfer the column name to the Group By box.

A Group By clause is then added to your SQL SELECT statement. To view it, click the
SQL tab.

Chapter 10: Using data modules to s impl i fy data access 113

Creat ing data modules us ing the Data Modeler

Selecting rows with unique column values
You might want to see only those rows that contain unique column values. If you add
the DISTINCT keyword to the SELECT statement, the query’s result set will never
contain two rows with the same values in all fields. DISTINCT affects all columns in the
SELECT statement.

To add the DISTINCT keyword, check the Distinct option on the Columns page.

Adding a Where clause
Adding a WHERE clause to a select statement specifies the search condition that has
to be satisfied for rows to be included in the result table. To add a Where clause to your
SQL query, click the Where tab.

Figure 10.5 Where page

The Columns list on the left contains the columns of tables in the currently selected
query in the Queries panel of the Data Modeler.

Use the Columns, Operators, and Functions lists to build the clause of the query in the
Where Clause box as follows:

1 Select a column in the Columns list and click the Paste Column button to transfer a
column as a column name to the Where Clause box.

2 Select a column in the Columns list and click the Paste Parameter button to transfer
a column as a parameter as in a parameterized query.

3 Select the operator you need in the Operators drop-down list and click the Paste
button.

Every Where clause requires at least one operator.

4 Select the function you need in the Functions drop-down list if your query requires a
function and click the Paste button.

By pasting selections, you are building a Where clause. You can also directly edit the
text in the Where Clause box to complete your query. For example, suppose you are
building a Where clause like this:

WHERE COUNTRY='USA'

You would select and paste the COUNTRY column and the = operator. To complete
the query, you would type in the data value directly, which in this case is ‘USA’.

When you are satisfied with your Where clause, click the Apply button. The Where
clause is added to the entire SQL SELECT statement. To view it, click the SQL tab.

114 Developing Database Appl icat ions

Creat ing data modules us ing the Data Modeler

Adding an Order By clause
An ORDER BY clause is used to sort or rearrange the order of the data in the result
table. To specify how rows of a table are sorted,

1 Select the query you want sorted in the Queries panel.

2 Click the Order By tab in the Current Query panel.

Figure 10.6 Order By page

3 Select the column you want the query sorted by in the Available Columns box and
click the Add (>) button to transfer that column to the Order By box.

4 Select the sort order direction from the Selected Sort Order Direction options.

The Ascending option sorts the specified column from the smallest value to the
greatest, while the Descending option sorts the specified column from the greatest
value to the smallest. For example, if the sort column is alphabetical, Ascending
sorts the column in alphabetical order and Descending sorts it in reverse
alphabetical order.

You can sort the query by multiple columns by transferring more than one column to
the Order By box. Select the primary sort column first, then select the second, and so
on. For example, if your query includes a Country column and a Customer column and
you want to see all the customers from one country together in your query, you would
first transfer the Country column to the Order By box, then transfer the Customer
column. The sort direction, Ascending or Descending, can be specified for each
column included in the Order By box.

Editing the query directly
At any time while you are using the Data Modeler to create your query, you can view
the SQL SELECT statement and edit it directly.

To view the SELECT statement, click the SQL tab. To edit it, make your changes
directly in the SELECT statement.

Testing your query
You can view the results of your query in the Data Modeler. The query created in this
topic will not execute, the topics were presented in a way that made them most
understandable, but not in a way that enabled the query to run properly.

To see the results of the query you are building,

1 Click the Test tab.

2 Click the Execute Query button.

Chapter 10: Using data modules to s impl i fy data access 115

Creat ing data modules us ing the Data Modeler

If your query is a parameterized query, a Specify Parameters dialog box appears so
you may enter the values for each parameter. When you choose OK, the query
executes and you can see the results. The values you entered are not saved in the
data module.

Building multiple queries
To build multiple queries, choose Queries|Add, and the Data Modeler is ready to begin
building a new query. As you select columns in one or more tables, the table names
appear in place of the <new query> field.

Specifying a master-detail relationship
To set up a master-detail relationship between two queries,

1 Display the Link Queries dialog box in one of two ways:

a Choose Queries|Link.

b Click-and-drag the mouse pointer In the Queries panel from the query you want
to be the master query to the one you want to be the detail query.

Figure 10.7 Link Queries dialog box

2 Select a query to be the master query in the Master Query list.

3 Select a query to be the detail query in the Detail Query list.

The Master Query and Detail Query fields are filled with suggested fields. If they are
not the ones you want, make the necessary changes.

4 Use the table to visually specify the columns that link the master and detail queries
together:

a Click the first row under the master query column of the table to display a drop-
down list of all the specified columns in the master table. Select the column you
want the detail data to be grouped under.

b Click the first row under the detail query column of the table to display a drop-
down list of all columns that are of the same data type and size as the currently
selected master column. Select the appropriate column, thereby linking the
master and the detail tables together.

c Optionally, repeat the preceding two steps for the subsequent rows under the
master query column to select additional link columns.

d Click OK.

When the Link Queries dialog box closes, an arrow is shown between the two queries
in the Queries panel showing the relationship between them.

116 Developing Database Appl icat ions

Creat ing data modules us ing the Data Modeler

Figure 10.8 Arrow showing relationship between queries

For more information about master-detail relationships, see Chapter 9, “Establishing a
master-detail relationship.”

Saving your queries
To save the data module you built,

1 Choose File|Save in the Data Modeler to save your data module.

2 Exit the Data Modeler.

The resulting file appears in your project.

3 Compile the data module.

Double-click the file in the project pane to open it in the content pane to view the code
the Data Modeler generated.

Figure 10.9 Editor showing code generated by Data Modeler

Chapter 10: Using data modules to s impl i fy data access 117

Creat ing data modules us ing the Data Modeler

Generating database applications

From your compiled data module, JBuilder can generate two-tier client-server
applications with its Data Module Application wizard.

To display the Data Module Application wizard, select the Data Module Application
wizard icon in the object gallery:

1 Choose File|New and select the General tab.

2 Double-click the Data Module Application icon.

Figure 10.10 Data Module Application wizard

3 Specify the data module file you want to generate an application from in the dialog
box that appears.

You can select any data module that you have or you can select one that was
created by the Data Modeler.

4 Click OK.

The wizard creates a database application for you. The wizard generates several Java
files and an HTML file:

� The files that make up the client are contained in a client two-tier package (the
package name is of the form <project_name>._<data_module>.twotier):

� One or more UIBeans.java — Each bean implements columnar user interface for
a particular DataSet.

� ClientAboutBoxDialog.java — Implements the client Help About dialog.

� ClientFrame.java — The client application frame that is the container for the
default client user interface. Implements the application menu bar.

� ClientResources.java — Contains client application strings for localization.

� <datamodule>TwoTierApp.java — the application

� <datamodule>AppGenFileList.html — list of files generated with a brief description
of each.

118 Developing Database Appl icat ions

Creat ing data modules us ing the Data Modeler

Using a generated data module in your code
Once you’ve created a data module with the Data Modeler, you can use it in
applications that you write. Follow these steps:

1 Run the Use DataModule wizard.

In the source code of the frame for your application, it adds a setModule() method
that identifies the data module. The setModule() method the wizard creates calls the
frame’s jbInit() method. The wizard also removes the call to jbInit() from the
frame’s constructor. The frame file must be open in the content pane.

2 In the source code of your application file, call the frame’s setModule() method,
passing it the data module class.

For example, suppose you have used the Data Modeler to create a data module called
CountryDataModelModule. To access the logic stored in that data module in an
application you write, you must add a setModule() method to your frame class.

To add the setModule() method and remove the jbInit() method from the frame’s
constructor,

1 Add the data module to the list of required libraries (in Project|Project Properties
dialog box).

2 Choose Wizards|Edit|Use DataModule while the frame’s source code is visible in the
editor.

3 Specify the data module you want to use with the wizard.

4 Select the Application Sets The Instance By Calling setModule() option.

5 Click OK.

The resulting code of the frame would look like this:

package com.borland.samples.dx.myapplication;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
//imports package where data module is
import com.borland.samples.dx.datamodule.*;

public class Frame1 extends JFrame {
 BorderLayout borderLayout1 = new BorderLayout();
 CountryDataModelModule countryDataModelModule1;

 //Construct the frame without calling jbInit()
 public Frame1() {
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 }

 //Component initialization
 private void jbInit() throws Exception {
 this.getContentPane().setLayout(borderLayout1);
 this.setSize(new Dimension(400, 300));
 this.setTitle("Frame Title");
 }

 //Overridden so we can exit on System Close
 protected void processWindowEvent(WindowEvent e) {
 super.processWindowEvent(e);
 if(e.getID() == WindowEvent.WINDOW_CLOSING) {
 System.exit(0);
 }

Chapter 10: Using data modules to s impl i fy data access 119

Creat ing data modules us ing the Data Modeler

 }

 // The Use DataModule wizard added this code
 public void setModule(CountryDataModelModule countryDataModelModule1) {
 this.countryDataModelModule1 = countryDataModelModule1;
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Note that the frame’s jbInit() method is now called after the module is set and not in
the frame’s constructor.

Next you must call the new setModule() method from the main source code of your
application. In the constructor of the application, call setModule(), passing it the data
module class. The code of the main application would look like this:

package com.borland.samples.dx.myapplication;

import javax.swing.UIManager;

public class Application1 {
 boolean packFrame = false;

 //Construct the application
 public Application1() {
 Frame1 frame = new Frame1();

 // This is the line of code that you add
 frame.setModule(new untitled3.CountryDataModelModule());

 //Validate frames that have preset sizes
 //Pack frames that have useful preferred size info, e.g. from their layout
 if (packFrame)
 frame.pack();
 else
 frame.validate();
 frame.setVisible(true);
 }

 //Main method
 public static void main(String[] args) {
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 }
 catch(Exception e) {
 }
 new Application1();
 }
}

120 Developing Database Appl icat ions

Chapter 11: Fi l ter ing, sor t ing, and locat ing data 121

C h a p t e r

11
Chapter 11Filtering, sorting, and locating data

Once you’ve completed the providing phase of your application and have the data in an
appropriate DataExpress package DataSet component, you’re ready to work on the core
functionality of your application and its user interface. This chapter demonstrates the
typical database application features of filtering, sorting, and locating data.

A design feature of the DataExpress package is that the manipulation of data is
independent of how the data was obtained. Regardless of which type of DataSet
component you use to obtain the data, you manipulate it and connect it to controls in
exactly the same way. Most of the examples in this chapter use the QueryDataSet
component, but you can replace this with the TableDataSet or any StorageDataSet
subclass without having to change code in the main body of your application.

Each sample discussed in this chapter is created using the JBuilder IDE and design
tools. Wherever possible, we’ll use these tools to generate source Java code. Where
necessary, we’ll show you what code to modify to have your application perform a
particular task.

The information presented in this chapter is written with the assumption that you are
comfortable using the JBuilder environment. Detailed steps on how to use the user
interface are not provided. If you’re not yet comfortable with JBuilder, refer to
Chapter 16, “Tutorial: Importing and exporting data from a text file,” “Using JBuilder’s
IDE” in Getting Started with JBuilder, or “Introducing the Designer” in Designing
Applications with JBuilder.

All of the material in this chapter involves accessing SQL data stored in a local
database. For instructions on how to setup and configure JBuilder to use the sample
JDataStore driver, see “Adding a JDBC driver to JBuilder” on page 33.

We encourage you to use the samples as guides when adding these functions to your
application. Finished projects and Java source files, with comments in the source file
where appropriate, are provided for many of the concepts presented in this chapter. All
files referenced by these examples are found in the JBuilder samples directory.

To create a database application, you first need to connect to a database and provide
data to a DataSet. “Retrieving data for the examples” on page 122 sets up a query that
can be used for some of the examples contained in this chapter. The following list of
additional database functionality options (filter, sort, locate data) can be used in any
combination, for example, you could choose to temporarily hide all employees whose

122 Developing Database Appl icat ions

Retr iev ing data for the examples

last names start with letters between “M” and “Z.” You could sort the employees that
are visible by their first names.

� Filtering temporarily hides rows in a DataSet.

� Sorting changes the order of a filtered or unfiltered DataSet.

� Locating positions the cursor within the filtered or unfiltered DataSet.

Retrieving data for the examples
This topic provides the steps for setting up a basic database application that can be
used with the examples in this chapter. The query that will be used in these
examples is,

SELECT * FROM EMPLOYEE

This SQL statement selects all columns from a table named EMPLOYEE, included in
the sample JDataStore database (employee.jds).

To set up an application for use with the examples,

1 Close all open projects (choose File|Close Project).

2 Choose File|New Project.

3 Enter a name and location for the project in the Project wizard. Click Finish.

4 Choose File|New from the menu, and double-click the Application icon on the
General page of the object gallery.

5 Specify the package name and class name in the Application wizard. Click Finish.

6 Select the Design tab to activate the UI designer.

7 Click the Database component on the DataExpress page of the component palette, then
click in the component tree or the UI designer to add the component to the application.

8 Open the connection property editor for the Database component by selecting, then
clicking the connection property ellipsis (…) button in the Inspector. Set the
connection properties to the JDataStore sample employee table as follows. The
Connection URL points to a specific installation location. If you have installed
JBuilder to a different directory, point to the correct location for your installation.

The connection dialog box includes a Test Connection button. Click this button to
check that the connection properties have been correctly set. Results of the
connection attempt are displayed in the status area. When the connection is
successful, click OK. If the connection is not successful, make sure you have
followed all the steps for Chapter 4, “Connecting to a database.”

9 Add a QueryDataSet component to the designer by clicking the QueryDataSet
component on the DataExpress page and then clicking in the component tree or the
UI Designer.

Property name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Browse to your copy of <jbuilder>/samples/JDataStore/
datastores/employee.jds

Username Enter your name (the default is “SYSDBA”)

Password Enter your password (the default is “masterkey”)

Chapter 11: Fi l ter ing, sor t ing, and locat ing data 123

Retriev ing data for the examples

Select the query property of the QueryDataSet component in the Inspector, click the
ellipsis (…) button to open the QueryDescriptor dialog box, and set the following
properties:

Click Test Query to ensure that the query is runnable. When the status area
indicates Success, click OK to close the dialog box.

10 Add a DBDisposeMonitor component from the More dbSwing page. The
DBDisposeMonitor will close the JDataStore when the window is closed.

11 Set the dataAwareComponentContainer property for the DBDisposeMonitor to this.

To view the data in your application, add the following UI components and bind them to
the data set:

1 Select contentPane(BorderLayout) in the component tree and set its layout property
to null.

2 Drop a JdbNavToolBar into the area at the top of the panel in the UI designer.
jdbNavToolBar1 automatically attaches itself to whichever DataSet has focus, so you
do not need to set its dataSet property.

3 Drop a JdbStatusLabel into the area at the bottom of the panel in the UI designer.
jdbStatusLabel1 automatically attaches itself to whichever DataSet has focus, so you
do not need to set its dataSet property.

4 Add a TableScrollPane from the dbSwing page to the center of the panel in the UI
designer.

5 Drop a JdbTable into the center of tableScrollPane1 and set its dataSet property to
queryDataSet1.

You’ll notice that the designer displays live data at this point.

Note You may need to position and resize components in the designer to get the
application to display properly when it runs.

6 Choose Run|Run Project to run the application and browse the data set.

The EMPLOYEE data set contains 42 records and 11 fields. In the status label for this
application, you will see how many records are displaying. When the application is first
run, the status label will read Record 1 of 42. Some of the examples remove rows from
a view. The status label will display the number of rows retrieved into the data set for
each application.

For more information on retrieving data for your application, see Chapter 5, “Retrieving
data from a data source.”

The running application should look like this:

Figure 11.1 Running database application

Property name Value

Database database1

SQL Statement SELECT * FROM EMPLOYEE

124 Developing Database Appl icat ions

Fi l ter ing data

Filtering data
Filtering temporarily hides rows in a data set, letting you select, view, and work with a
subset of rows in a data set. For example, you may be interested in viewing all orders
for a customer, all customers outside the U.S., or all orders that were not shipped
within two days. Instead of running a new query each time your criteria change, you
can use a filter to show a new view.

In JBuilder, you provide filter code that the data set calls via an event for each row of
data to determine whether or not to include each row in the current view. Each time
your method is called, it should examine the row passed in, and then indicate whether
the row should be included in the view or not. It indicates this by calling add() or
ignore() methods of a passed-in RowFilterResponse object.

You hook this code up to the filterRow event of a data set using the Events page of the
Inspector. When you open the data set, or let it be opened implicitly by running a frame
with a control bound to the data set, the filter will be implemented. In this example, we
use UI components to let the user request a new filter on the fly.

A filter on a data set is a mechanism for restricting which rows in the data set are
visible. The underlying data set is not changed, only the current view of the data is
changed and this view is transient. An application can change which records are in the
current view “on the fly,” in response to a request from the user (such as is shown in
the following example), or according to the application’s logic (for example, displaying
all rows to be deleted prior to saving changes to confirm or cancel the operation).
When you work with a filtered view of the data and post an edit that is not within the
filter specifications, the row disappears from the view, but is still in the data set.

You can work with multiple views of the same data set at the same time, using a
DataSetView. For more information on working with multiple views of the same data set,
see “Presenting an alternate view of the data” on page 152.

Filtering is sometimes confused with sorting and locating.

� Filtering temporarily hides rows in a DataSet.

� Sorting changes the order of a filtered or unfiltered DataSet. For more information on
sorting data, see “Sorting data” on page 127.

� Locating positions the cursor within the filtered or unfiltered DataSet. For more
information on locating data, see “Locating data” on page 130.

Adding and removing filters

This section describes how to use a data set’s RowFilterListener to view only rows that
meet the filter criteria. In this example, we create a JdbTextField that lets the user
specify the column to filter. Then we create another JdbTextField that lets the user
specify the value that must be in that column in order for the record to be displayed in
the view. We add a JButton to let the user determine when to apply the filter criteria and
show only those rows whose specified column contains exactly the specified value.

In this tutorial, we use a QueryDataSet component connected to a Database component
to fetch data, but filtering can be done on any DataSet component.

The finished example is available as a completed project in the /samples/DataExpress/
FilterRows subdirectory of your JBuilder installation.

To create this application,

1 Create a new application by following “Retrieving data for the examples” on
page 122. This step enables you to connect to a database, read data from a table,
and view and edit that data in a data-aware component.

2 Click the Design tab.

Chapter 11: Fi l ter ing, sor t ing, and locat ing data 125

Fi l ter ing data

3 Add two JdbTextField components from the dbSwing page and a JButton component
from the Swing page. The JdbTextField components enable you to enter a field and
a value to filter on. The JButton component executes the filtering mechanism.

4 Define the name of the column to be filtered and its formatter. To do this, select the
Source tab and add this import statement to the existing import statements:

import com.borland.dx.text.VariantFormatter;

5 Add these variable definitions to the existing variable definitions in the class
definition:

Variant v = new Variant();
String columnName = "Last_Name";
String columnValue = "Young";
VariantFormatter formatter;

6 Specify the filter mechanism.

You restrict the rows included in a view by adding a RowFilterListener and using it to
define which rows should be shown. The default action in a RowFilterListener is to
exclude the row. Your code should call the RowFilterResponse add() method for every
row that should be included in the view. Note that in this example we are checking to
see if the columnName and columnValue fields are blank. If either is blank, all rows are
added to the current view.

To create the RowFilterListener as an event adapter using the visual design tools,

a Select the Design tab.

b Select the queryDataSet1 in the component tree.

c Select the Events tab of the Inspector.

d Select the filterRow event.

e Double-click the filterRow value box.

A RowFilterListener is automatically generated as an inner class. It calls a new
method in your class, called queryDataSet1_filterRow method.

f Add the filtering code to the queryDataSet1_filterRow event. You can copy the
code from the online help by selecting the code and pressing Ctrl+C or selecting
Edit|Copy from the Help Viewer menu.

void queryDataSet1_filterRow(ReadRow row, RowFilterResponse
 response) {
 try {
 if (formatter == null || columnName == null ||
 columnValue == null || columnName.length() == 0 ||
 columnValue.length() == 0)
 // user set field(s) are blank, so add all rows
 response.add();
 else {
 row.getVariant(columnName, v);
 // fetches row's value of column
 // formats this to a string
 String s = formatter.format(v);
 // true means show this row
 if (columnValue.equals(s))
 response.add();
 else response.ignore();
 }
 }
 catch (Exception e) {
 System.err.println("Filter example failed");
 }
}

126 Developing Database Appl icat ions

Fi l ter ing data

7 Override the actionPerformed event for the JButton to retrigger the actual filtering of
data. To do this,

a Select the Design tab.

b Select the JButton in the component tree.

c Click the Events tab on the Inspector.

d Select the actionPerformed event, and double-click the value box for its event.

The Source tab displays the stub for the jButton1_actionPerformed method. The
following code uses the adapter class to do the actual filtering of data by
detaching and re-attaching the rowFilterListener event adapter that was
generated in the previous step.

e Add this code to the generated stub.

void jButton1_actionPerformed(ActionEvent e) {

 try {

 // Get new values for variables that the filter uses.
 // Then force the data set to be refiltered.

 columnName = jdbTextField1.getText();
 columnValue = jdbTextField2.getText();
 Column column = queryDataSet1.getColumn(columnName);
 formatter = column.getFormatter();

 // Trigger a recalc of the filters

 queryDataSet1.refilter();

 // The table should now repaint only those rows matching
 // these criteria
 }
 catch (Exception ex) {
 System.err.println("Filter example failed");
 }
}

8 Compile and run the application.

The running application looks like this:

Figure 11.2 Application running filters

To test this application,

1 Enter the name of the column you wish to filter (for example, Last_Name) in the first
JdbTextField.

Chapter 11: Fi l ter ing, sor t ing, and locat ing data 127

Sort ing data

2 Enter the value you wish to filter for in the second JdbTextField (for example, Young).

3 Click the JButton.

Note Leaving either the column name or the value blank removes any filtering and allows all
values to be viewed.

Sorting data
Sorting a data set defines an index that allows the data to be displayed in a sorted
order without actually reordering the rows in the table on the server.

Data sets can be sorted on one or more columns. When a sort is defined on more than
one column, the data set is sorted as follows:

� First on the first column defined in the sort.
� The second column defined in the sort breaks any ties when two or more rows have

the same value in the first sort column.
� Subsequent columns defined in the sort continue to break ties.
� If there are still ties after each column defined in the sort has been used, the rows

will display in the order they exist in the table on the server.
� If there are still ties after the last column defined in the sort, the columns will display

in the order they exist on the table in the server.

You can sort the data in any DataSet subclass, including the QueryDataSet,
ProcedureDataSet, TableDataSet, and DataSetView components. When sorting data in
JBuilder, note that,

� Case sensitivity applies only when sorting data of type String.
� Case sensitivity applies to all String columns in a multi-column sort.
� Sort directions (ascending/descending) are set on a column-by-column basis.
� Null values sort to the top in a descending sort, to the bottom in an ascending sort.

Sorting and indexing data are closely related. See “Understanding sorting and
indexing” on page 129 for further discussion of indexes.

Sorting data in a JdbTable

If your application includes a JdbTable that is associated with a DataSet, you can sort on
a single column in the table by clicking the column header in the running application.
Click again to toggle from ascending to descending order.

Figure 11.3 Click on column header to sort at runtime

When sorting data in this way, you can only sort on a single column. Clicking a different
column header replaces the current sort with a new sort on the column just selected.

128 Developing Database Appl icat ions

Sor t ing data

Sorting data using the JBuilder visual design tools

If you need your application to sort in a specified order, the JBuilder visual design tools
allow you to quickly set these properties. The DataSet sort property provides an easy
way to,

� View the columns that currently control sort order.

� Select from among the sortable columns in the DataSet.

� Add and remove selected columns to and from the sort specification.

� Set the case-sensitivity of the sort.

� Set the sort order to ascending or descending on a column-by-column basis.

� Set unique sort constraints so that only columns with unique key values can be
added or updated in a DataSet.

� Create a re-usable index for a table.

This example describes how to sort a data set in ascending order by last name. To set
sort properties using the JBuilder visual design tools:

1 Open or create the project from “Retrieving data for the examples” on page 122.

2 Click the Design tab, and select the QueryDataSet in the content pane.

3 In the Inspector, select, then double-click the area beside the sort property.

This displays the sort property editor.

4 Specify values for options that affect the sort order of the data.

In this case, select the LAST_NAME field from the list of Available Columns, click
Add To Sort.

5 If you selected the wrong column, click the Remove From Sort button, and redo the
previous step.

The dialog box will look like this:

Figure 11.4 Sort property editor

6 Click OK.

The property values you specify in this dialog box are stored in a SortDescriptor
object.

Chapter 11: Fi l ter ing, sor t ing, and locat ing data 129

Sort ing data

7 Choose Run|Run Project to compile and run the application.

It will look like this:

Figure 11.5 Sorted application at runtime

Understanding sorting and indexing
There are two options on the Sort dialog box that benefit from further discussion:
Unique and Index Name. Sorting and indexing are closely related. The following
describes the unique option and named indexes in more detail.

Unique
Check the Unique option to create a unique index, which enables a constraint on the
data in the StorageDataSet. With this constraint, only rows with unique values for the
columns defined as sortKeys in the SortDescriptor can be added or updated in a
DataSet.

� The Unique option is useful when you’re querying data from a server table that has
a unique index. Before the user begins editing the data set, you can define a unique
index on the columns that are indexed on the server knowing that there will not be
any duplicates. This ensures that the user cannot create rows that would be rejected
as duplicates when the changes are saved back to the server.

� If a unique index is sorted on more than one column, the constraint applies to all the
columns taken together: two rows can have the same value in a single sort column,
but no row can have the same value as another row in every sort column.

� Unique is a constraint on the data set, not just on the index. If you define a unique
index on a column, you are asserting that no two rows in the data set have the same
value in that column. If there are two or more rows in the data set that have the
same value in the unique column when the index is first created, rows that violate
the unique constraint are copied into a separate DataSet. You can access this
DataSet by calling the StorageDataSet.getDuplicates() method. The duplicates
DataSet can be deleted by calling the StorageDataSet.deleteDuplicates() method.

� You can have one or more unique sort property settings for a StorageDataSet at one
time. If a duplicates DataSet exists from a previous unique sort property setting,
additional unique sort property settings cannot be made until the earlier duplicates
have been deleted. This is done to protect you from eliminating valuable rows due to
an erroneous unique sort property setting.

Index Name
Enter a name in the Index Name field to create a named index. This is the user-
specified name to be associated with the sort specification (index) being defined in the
Sort property editor. The intent of the named index is to let you revert to a previously
defined sort.

130 Developing Database Appl icat ions

Locat ing data

The index has been maintained, so that it can be reused. That is, each index is
updated (kept current) to reflect insertions, deletions, and edits to its sort column or
columns. For example, if you define a unique sort on the CustNo column of your
Customers data set, then decide you want to see customers by ZIP code and define a
sort to show that, you still can’t enter a new customer with a duplicate CustNo value.

The named index implements the sort orders (that is, indexes), and whether or not the
unique constraint is enforced, under an easy-to-retrieve setting, even if you stop
viewing data in that order.

To view a data set in the order defined by an existing named index, set its sort property
using the sortDescriptor constructor that takes just an index name. If you set a data
set’s sort property to a new sortDescriptor with exactly the same parameters as an
existing sort, the existing sort is used.

Sorting data in code

You can enter the code manually or use JBuilder design tools to generate the code for
you to instantiate a SortDescriptor. The code generated automatically by the JBuilder
design tools looks like this:

queryDataSet1.setSort(new com.borland.dx.dataset.SortDescriptor("",
 new String[] {"LAST_NAME", "FIRST_NAME", "EMP_NO"}, new boolean[]
 {false, false, false, }, true, false, null));

In this code segment, the sortDescriptor is instantiated with sort column of the last and
first names fields (LAST_NAME and FIRST_NAME), then the employee number field
(EMP_NO) is used as a tie-breaker in the event two employees have the same name.
The sort is case insensitive, and in ascending order.

To revert to a view of unsorted data, close the data set, and set the setSort method to
null, as follows. The data will then be displayed in the order in which it was added to the
table.

queryDataSet1.setSort(null);

Locating data
A basic need of data applications is to find specified data. This topic discusses the
following two types of locates:

� An interactive locate using a JdbNavField, where the user can enter values to locate
when the application is running.

� A locate where the search values are programmatically set.

Locating data with a JdbNavField

The dbSwing library includes a JdbNavField component that provides locate
functionality in a user-interface control. The JdbNavField includes an incremental
search feature for String type columns. Its columnName property specifies the column in
which to perform the locate. If not set, the locate is performed on the last column visited
in the JdbTable.

If you include a JdbStatusLabel component in your application, JdbNavField prompts and
messages are displayed on the status label.

The /samples/DataExpress/LocatingData directory in your JBuilder installation includes a
finished example of an application that uses the JdbNavField under the project name
LocatingData.jpx. This sample shows how to set a particular column for the locate

Chapter 11: Fi l ter ing, sor t ing, and locat ing data 131

Locat ing data

operation as well as using a JdbComboBox component to enable the user to select the
column in which to locate the value. The completed application looks like this:

Figure 11.6 Sample application with JdbNavField

To create this application,

1 Create a new application by following “Retrieving data for the examples” on
page 122.

This step enables you to connect to a database, read data from a table, and view
and edit that data in a data-aware component. Check the preceding screen shot of
the running application for the approximate positioning of components.

2 Add a JdbNavField from the More dbSwing page of the component palette to the UI
designer, and set its dataSet property to queryDataSet1.

3 Add a JdbComboBox from the dbSwing page of the component palette to the UI
designer.

4 Set the items property for jdbComboBox1 to the column name values EMP_NO,
FIRST_NAME, and LAST_NAME.

5 Select the Events tab of the Inspector. Select the itemStateChanged() event for
jdbComboBox1, and double-click its value field. A stub for the itemStateChanged() event
is added to the source, and the cursor is positioned for insertion of the following
code, which allows the user to specify the column in which to locate data.

void jdbComboBox1_itemStateChanged(ItemEvent e) {
jdbNavField1.setColumnName(jdbComboBox1.getSelectedItem().toString());
jdbNavField1.requestFocus();
}

This code tests for the a change in the JdbComboBox. If it determines that a different
column value is selected, the columnName property for the JdbNavField is set to the
column named in the JdbComboBox. This instructs the JdbNavField to perform locates
in the specified Column. Focus is then shifted to the JdbNavField so that you can enter
the value to search for.

6 Add a JdbTextArea component from the dbSwing page.

Place the JdbTextArea component next to the JdbComboBox component in the UI
designer. Set its text property so that the user knows to select a column on which to
locate data, for example,

Select the column in which to search. Then type the value you want to locate.
Look at messages on the status bar for search instructions.

Alternatively, if you want to locate only in a particular Column, you could set the
JdbNavField component’s columnName property to the DataSet column on which you
want to locate data, for example, LAST_NAME.

132 Developing Database Appl icat ions

Locat ing data

7 Add a JdbLabel from the dbSwing page. Place it next to jdbNavField1. Set its text
property to: Value to locate.

Note See the screen shot of the running application earlier in this section for additional
instructional text.

8 Run the application.

The status label updates to reflect the current status of the application. For example,

� Select the column name on which you want to perform the locate in the
JdbComboBox. The status area displays:

Enter a value and press enter to begin search.

� Start typing the value to locate in the JdbNavField. If you’re locating in a String
column, as you type, notice that the JdbNavField does an incremental search on
each key pressed. For all other data types, press Enter to perform the locate. If a
value is not found in the table, the status area displays:

Could not find a matching column value.

� Press the Up Arrow or Down Arrow keys to perform a “locate prior” or “locate next”
respectively. When a matching value is found, the status area displays:

Found matching column value. Press up/down to find other matches.

Locating data programmatically

This section explores the basics of locating data programmatically as well as conditions
which affect the locate operation.

When programmatically locating data,

1 Instantiate a DataRow based on the DataSet you want to search. If you don’t want to
search on all columns in the DataSet, create a “scoped” DataRow (a DataRow that
contains just the columns for which you want to specify locate values). (See
“Locating data using a DataRow” on page 133.)

2 Assign the values to locate in the appropriate columns of the DataRow.

3 Call the locate(ReadRow, int) method, specifying the location options you want as
the int parameter. Test the return value to determine if the locate succeeded or
failed.

4 To find additional occurrences, call locate() again, specifying a different locate
option, for example, Locate.NEXT or Locate.LAST. See the Locate class Field Summary
for information on all the Locate options.

The core locate functionality uses the locate(ReadRow, int) method. The first
parameter, ReadRow, is of an abstract class type. Normally you use its (instantiable)
subclass DataRow class. The second parameter represents the locate option and is
defined in the Field Summary for the Locate class. The Locate class fields represent
options that let you control where the search starts from and how it searches, for
example with or without case sensitivity. (For more information on locate options, see
“Working with locate options” on page 133.) If a match is found, the current row
position moves to that row. All data-aware components that are connected to the same
located DataSet navigate together to the located row.

The Locate() method searches within the current view of the DataSet. This means that
rows excluded from display by a RowFilterListener are not included in the search.

The view of the DataSet can be sorted or unsorted; if it is sorted, the locate() method
finds matching rows according to the sort sequence.

To locate a null value in a given column of a DataSet, include the column in the DataRow
parameter of the locate() method but do not assign it a value.

Chapter 11: Fi l ter ing, sor t ing, and locat ing data 133

Locat ing data

Tip If the locate() method fails to find a match when you think it should succeed, check for
null values in some columns; remember that all columns of the DataRow are included in
the search. To prevent this, use a “scoped” DataRow containing only the desired
columns.

Locating data using a DataRow

A DataRow is similar to a DataSet in that it contains multiple Column components.
However, it stores only one row of data. You specify the values to locate for in the
DataRow.

When the DataRow is created based on the same located DataSet, the DataRow contains
the same column names and data types and column order as the DataSet it is based
on. All columns of the DataRow are included in the locate operation by default; to exclude
columns from the locate, create a scoped DataRow that contains only specified columns
from the DataSet. You create a scoped DataRow using either of the following DataRow
constructors:

� DataRow(DataSet, String)
� DataRow(DataSet, String[])

Both the DataRow and the DataSet are subclasses of ReadWriteRow. Both inherit the same
methods for manipulation of its contents, for example, getInt(String), and
setInt(String, int). You can therefore work with DataRow objects using many of the
same methods as the DataSet.

Working with locate options

You control the locate operation using locate options. These are constants defined in
the com.borland.dx.dataset.Locate class. You can combine locate options using the
bitwise OR operator; several of the most useful combinations are already defined as
constants. Four of the locate options (FIRST, NEXT, LAST, and PRIOR) determine how the
rows of the DataSet are searched. The CASE_INSENSITIVE and PARTIAL) options define
what is considered a matching value. The FAST constant affects the preparation of the
locate operation.

You must specify where the locate starts searching and which direction it moves
through the rows of the DataSet. Choose one of the following options:

� FIRST starts at the first row, regardless of your current position, and moves down.
� LAST starts at the last row and moves up.
� NEXT starts at your current position and moves down.
� PRIOR starts at your current position and moves up.

If one of these constants is not specified for a locate operation, a DataSetException of
NEED_LOCATE_START_OPTION is thrown.

To find all matching rows in a DataSet, call the locate() method once with the locate
option of FIRST. If a match is found, re-execute the locate using the NEXT_FAST option,
calling the method with this locate option repeatedly until it returns false. The FAST
locate option specifies that the locate values have not changed, so they don’t need to
be read from the DataRow again. To find all matching rows starting at the bottom of the
view, use the options LAST and PRIOR_FAST instead.

The CASE_INSENSITIVE option specifies that string values are considered to match even
if they differ in case. Specifying whether a locate operation is CASE_INSENSITIVE or not is
optional and only has meaning when locating in String columns; it is ignored for other
data types. If this option is used in a multi-column locate, the case sensitivity applies to
all String columns involved in the search.

The PARTIAL option specifies that a row value is considered to match the corresponding
locate value if it starts with the first characters of the locate value. For example, you

134 Developing Database Appl icat ions

Locat ing data

might use a locate value of “M” to find all last names that start with “M”. As with the
CASE_INSENSITIVE option, PARTIAL is optional and only has meaning when searching
String columns.

Multi-column locates that use PARTIAL differ from other multi-column locates in that the
order of the locate columns makes a difference. The constructor for a scoped, multi-
column DataRow takes an array of column names. These names need not be listed in
the order that they appear in the DataSet. The PARTIAL option applies only to the last
column specified, therefore, control over which column appears last in the array is
important.

For a multi-column locate operation using the PARTIAL option to succeed, a row of the
DataSet must match corresponding values for all columns of the DataRow except the last
column of the DataRow. If the last column starts with the locate value, the method
succeeds. If not, the method fails. If the last column in the DataRow is not a String
column, the locate() method throws a DataSetException of PARTIAL_SEARCH_FOR_STRING.

Locates that handle any data type

Data stored in DataExpress components are stored in Variant objects. When data is
displayed, a String representation of the variant is used. To write code that performs a
generalized locate that handles columns of any data type, use one of the setVariant()
methods and one of the getVariant() methods.

For example, you might want to write a generalized locate routine that accepts a value
and looks for the row in the DataSet that contains that value. The same block of code
can be made to work for any data type because the data stays a variant. To display the
data, use the appropriate formatter class or create your own custom formatter.

Column order in the DataRow and DataSet

While a Column from the DataSet can only appear once in the DataRow, the column order
may be different in a scoped DataRow than in the DataSet. For some locate operations,
column order can make a difference. For example, this can affect multi-column locates
when the PARTIAL option is used. For more information on this, see the paragraph on
multi-column locates with the PARTIAL option, on page 134.

Chapter 12: Adding funct ional i ty to database appl icat ions 135

C h a p t e r

12
Chapter 12Adding functionality to

database applications
Once you’ve completed the providing phase of your application and have the data in an
appropriate DataExpress package DataSet component, you’re ready to work on the core
functionality of your application and its user interface. Chapter 11, “Filtering, sorting,
and locating data” introduced sorting, filtering, and locating data in a data set. This
chapter demonstrates other typical database applications.

A design feature of the DataExpress package is that the manipulation of data is
independent of how the data was obtained. Regardless of which type of DataSet
component you use to obtain the data, you manipulate it and connect it to controls in
exactly the same way. Most of the examples in this chapter use the QueryDataSet
component, but you can replace this with the TableDataSet or any StorageDataSet
subclass without having to change code in the main body of your application.

Each sample is created using the JBuilder IDE and design tools. Wherever possible,
we’ll use these tools to generate Java source code. Where necessary, we’ll show you
what code to modify, where, and how, to have your application perform a particular
task.

The examples and tutorials referenced in this chapter involve accessing SQL data
stored in a local JDataStore. Finished projects and Java source files are provided in the
JBuilder DataExpress samples directory (/samples/DataExpress), with comments in the
source file where appropriate. We encourage you to use the samples as guides when
adding these functions to your application.

To create a database application, you first need to connect to a database and provide
data to a DataSet. The steps for connecting to a database are described in Chapter 17,
“Tutorial: Creating a basic database application.” The tutorial sets up a query that can
be used for each of the following database tasks:

� “Using pick lists and lookups”
� “Using calculated columns”
� “Aggregating data with calculated fields”
� “Adding an Edit or Display Pattern for data formatting”
� “Presenting an alternate view of the data”
� “Ensuring data persistence”
� “Using variant data types”

136 Developing Database Appl icat ions

Using p ick l is ts and lookups

Using pick lists and lookups
A Column can derive its values in the following ways:

� From data in a database column

� As a result of being imported from a text file

� As a result of a calculation, which can include calculated columns, aggregated data,
data looked up in another data set, or data that is chosen via a pick list.

This section covers providing values to a column using a pick list to enter a new value
to a column, and it also covers creating a lookup that will display values from another
column.

Note Pick lists are used for editing a dataset. That is, by selecting a value from a pick list, the
user identifies the row in the pick list dataset that will provide data for the row being
edited in the target dataset. Lookups, on the other hand, are used for displaying
information. A lookup is used to display a more useful interpretation of data, but the
actual data in the target dataset is not changed.

Data entry with a pick list

Pick lists can significantly speed data entry. A pick list can be used to select a value
from a column of another dataset (the pick list dataset) for data entry in the target
dataset. Using a pick list, the available choices can be displayed in a drop-down list.
PickListDescriptor parameters specify which columns in the pick list dataset are
displayed in the drop-down list and how values will be copied from the pick list dataset
to the current row of the target dataset.

The following section includes describes how to create (using JBuilder design tools) a
pick list that can be used to set the value of a column from the list of values available in
another data set. The instructions include steps for looking up a value in a pick list for
data entry purposes, in this case for selecting a country for a customer or employee. In
this example, the pickList property of a column allows you to define which column of
which data set will be used to provide values for the pick list. The choices will be
available for data entry in a visual component, such as a table, when the application is
running.

When the application is running, you can insert a row into the table, and, when it you
enter a value for the JOB_COUNTRY field, you can select it from the drop-down pick
list. The country you select is automatically inserted into the JOB_COUNTRY field in
the EMPLOYEE data set.

Adding a pick list field

The following steps show how to create a pick list that can be used to set the value of
the JOB_COUNTRY column from the list of countries available in the COUNTRY table.
When the user selects a country from the picklist, that selection is automatically written
into the current field of the table. The sample project, Picklist.jpx, located in the
/samples/DataExpress/Picklist subdirectory of your JBuilder installation, is a completed
application that uses the pick list described in the following steps.

1 Create a simple database application, as described in “Retrieving data for the
examples” on page 122.

Chapter 12: Adding funct ional i ty to database appl icat ions 137

Using pick l is ts and lookups

2 Add another QueryDataSet to the application.

This will form the query to populate the list of choices.

3 Select the query property of queryDataSet2 in the Inspector, click the ellipsis (…)
button to open the Query property editor, and set the query property as follows:

4 Click Test Query, and when successful, click OK to close the dialog box.

5 Expand the queryDataSet1 component in the component tree to expose all of the
columns, and select JOB_COUNTRY.

6 Select the pickList property in the Inspector, click the ellipsis (…) button to open the
PickList property editor, and set the pickList properties as follows:

Click OK.

7 Click the Source tab, and enter the following code after the call to jbInit():

queryDataSet2.open();

This opens queryDataSet2, which is attached to the EMPLOYEE_PROJECT table.
Normally, a visual, data-aware component such as JdbTable would open the data set
for you automatically, but in this case, there is no visual component attached to this
data set, so it must be opened explicitly.

8 Run the application by choosing Run|Run Project.

When the application is running, you can insert a row into the table, and, when it you
enter a value for the JOB_COUNTRY field, you can select it from the drop-down pick
list. The country you select is automatically inserted into the JOB_COUNTRY field in
the EMPLOYEE data set.

Removing a pick list field

To remove a pick list,

1 Select the column that contains the pick list in the component tree.

2 Open the PickList property editor by clicking the ellipsis (…) button in the pickList
property in the Inspector.

3 Set the PickList/Lookup DataSet field to <none> and click OK.

4 Alternatively, a pick list can be removed by right-clicking the property in the
Inspector, and choosing Clear Property Setting from the context menu.

Option Value

Database database1

SQL Statement select COUNTRY from COUNTRY

Property name Value

Picklist/Lookup DataSet queryDataSet2

queryDataSet2 COUNTRY

Data Type STRING

Show In Picklist checked

queryDataSet1 JOB_COUNTRY

138 Developing Database Appl icat ions

Using p ick l is ts and lookups

Create a lookup using a calculated column

This type of lookup retrieves values from a specified table based on criteria you specify
and displays it as part of the current table. To create a calculated column, you need to
create a new Column object in the StorageDataSet, set its calcType appropriately, and
code the calcFields event handler. The lookup values are only visible in the running
application. Lookup columns can be defined and viewed in JBuilder, but
JBuilder-defined lookup columns exist in the JBuilder dataset, not in the table in the
database that provides the rest of the dataset’s data. These lookup columns can,
however, be exported to a text file.

An example of looking up a field in a different table for display purposes is looking up a
part number to get a part description for display in an invoice line item or looking up a
postal code for a specified city and state.

The lookup() method uses specified search criteria to search for the first row matching
the criteria. When the row is located, the data is returned from that row, but the cursor
is not moved to that row. The locate() method is a method that is similar to lookup(),
but actually moves the cursor to the first row that matches the specified set of criteria.
For more information on the locate() method, see “Locating data” on page 130.

The lookup() method can use a scoped DataRow (a DataRow with less columns than the
DataSet) to hold the values to search for and options defined in the Locate class to
control searching. This scoped DataRow will contain only the columns that are being
looked up and the data that matches the current search criteria, if any. With lookup,
you generally look up values in another table, so you will need to instantiate a
connection to that table in your application.

This example shows how to use a calculated column to search and retrieve an
employee name (from EMPLOYEE) for a given employee number in
EMPLOYEE_PROJECT. This type of lookup field is for display purposes only. The
data this column contains at run time is not retained because it already exists
elsewhere in your database. The physical structure of the table and data underlying the
data set is not changed in any way. The lookup column will be read-only by default.
This project can be viewed as a completed application by running the sample project
Lookup.jpx, located in the /samples/DataExpress/Lookup directory of your JBuilder
installation.

For more information on using the calcFields event to define a calculated column, refer
to “Using calculated columns” on page 142.

1 Create a new application by following “Retrieving data for the examples” on
page 122.

This step enables you to connect to a database, read data from a table, and view
and edit that data in a data-aware component.

2 Add another QueryDataSet to the application.

This will provide data to populate the base table where we later add columns to
perform lookups to other tables. Set the query property of queryDataSet2 as follows:

3 Click Test Query, and when successful, click OK to close the dialog box.

4 Select the JdbTable in the content pane, and change its dataSet property to
queryDataSet2.

This will enable you to view data in the designer and in the running application.

For this option Make this choice

Database database1

SQL Statement select * from EMPLOYEE_PROJECT

Chapter 12: Adding funct ional i ty to database appl icat ions 139

Using pick l is ts and lookups

5 Click the expand icon to the left of the queryDataSet2 in the component tree to
expose all of the columns, select <new column>, and set the following properties in
the Inspector for the new column:

The new column will display in the list of columns and in the table control. You can
adjust the column display position for this or any column with the preferredOrdinal
property. No data will be displayed in the lookup column in the table in the designer.
The lookups are only visible when the application is running. The data type of
STRING is used here because that is the data type of the LAST_NAME column
which is specified later as the lookup column. Calculated columns are read-only, by
default.

6 Select the Events tab of the Inspector (assuming the new column is still selected in
the content pane), and select, then double-click the calcFields event.

The cursor is positioned in the appropriate location in the Source pane.

7 Enter the following code, which actually performs the lookup and places the looked-
up value into the newly-defined column.

void queryDataSet2_calcFields(ReadRow changedRow, DataRow
 calcRow, boolean isPosted) throws DataSetException{
 // Define a DataRow to hold the employee number to look for
 // in queryDataSet1, and another to hold the row of employee
 // data that we find.
 DataRow lookupRow = new DataRow(queryDataSet1, "EMP_NO");
 DataRow resultRow = new DataRow(queryDataSet1);

 // The EMP_NO from the current row of queryDataSet2 is our
 // lookup criteria.
 // We look for the first match, since EMP_NO is unique.
 // If the lookup succeeds, concatenate the name fields from
 // the employee data, and put the result in dataRow;
 // otherwise, let the column remain blank.

 lookupRow.setShort("EMP_NO", changedRow.getShort("EMP_NO"));
 if (queryDataSet1.lookup(lookupRow, resultRow,
 Locate.FIRST))
 calcRow.setString("EMPLOYEE_NAME",
 resultRow.getString("FIRST_NAME") +
 " " + resultRow.getString("LAST_NAME"));
 }
}

8 Click the Source tab, and enter the following code after the call to jbInit().

queryDataSet1.open();

This opens queryDataSet1, which is attached to the EMPLOYEE table. Normally, a
visual, data-aware component such as JdbTable would open the data set for you
automatically, but in this case, there is no visual component attached to this data
set, so it must be opened explicitly.

9 Choose Run|Run Project to run the application.

Property name Value

calcType CALC

caption EMPLOYEE_NAME

columnName EMPLOYEE_NAME

dataType STRING

140 Developing Database Appl icat ions

Using p ick l is ts and lookups

The running application will look like this:

Figure 12.1 Lookup application

When the application is running, the values in the calculated lookup column will
automatically adjust to changes in any columns, in this case the EMP_NO column,
referenced in the calculated values. If the EMP_NO field is changed, the lookup will
display the value associated with the current value when that value is posted.

Create a lookup using the PickListDescriptor parameters

A lookup can be created using the setPickList method of the Column class. This method
specifies the PickListDescriptor for the Column, which describes the relationship
between the Column and a second, separate “pick list” or “lookup” DataSet. The PickList
property editor, lets you edit the PickListDescriptor parameters. To open the PickList
property editor, select the pickList property of a Column in the Inspector, and click the
ellipsis (…) button.

The PickList property editor specifies the following properties for a lookup:

Property Description

pickListDataSet Set with the Picklist/Lookup Dataset drop-down list box, this
property specifies the source (lookup) DataSet that contains the
items to look up and display in the target DataSet.

pickListColumns This value corresponds to the value in the first column of the table
in the row for which the destinationColumns property was set,
and specifies the columns of the pickListDataSet from which
values in the selected row are copied to (or displayed instead of)
destinationColumns.

pickListDisplayColumns Set with the Show In Picklist check box, this property specifies
the Column components of the DataSet to display in the pick list.
This property is not used for lookups, so the check box is
unchecked.

destinationColumns This value is set in the last column of the table shown in the
PickList property editor, and specifies the Column components of
the target DataSet that are populated with the values associated
with the selected pick list/lookup choice.

lookupDisplayColumn Set with the Lookup Column To Display drop-down list box, this
property specifies which column to display (field display values)
when the source data is not open. This property is used when the
displayed items list differs from the values stored when an item is
selected.

enforceIntegrity Set with the Enforce Integrity check box. This property
determines whether data integrity rules are enforced on the data
added to destinationColumns. This property is not currently used.

Chapter 12: Adding funct ional i ty to database appl icat ions 141

Using pick l is ts and lookups

Example
The sample project, Picklist.jpx, located in the /samples/DataExpress/Picklist
subdirectory of your JBuilder installation, is a completed application that uses a pick
list. You can modify the application as described in the following steps to perform a
lookup to display a complete job title instead of a job code for each employee.

To define a lookup with the PickList property editor,

1 Add another QueryDataSet to the application.

This new QueryDataSet, queryDataSet3, will be used as the lookup DataSet.

2 Select the query property of queryDataSet2 in the Inspector, click the ellipsis (…)
button to open the Query property editor, and set the query property as follows:

3 In the structure pane, select the JOB_CODE column in queryDataSet1, select the
pickList property in the Inspector, and click the ellipsis (…) button to open the
PickList property editor.

4 Set the following properties in the PickList property editor, and click OK.

The property editor should look like the following image:

5 Click the Source tab, and look at the PickListDescriptor entry that was generated.

column3.setPickList(new com.borland.dx.dataset.PickListDescriptor(queryDataSet3,
new String[] {"JOB_CODE"}, null, new String[] {"JOB_CODE"}, "JOB_TITLE", false));

As illustrated in the code, the PickListDescriptor properties are set to the following
values:

Option Value

Database database1

SQL Statement SELECT JOB.JOB_CODE,JOB.JOB_TITLE FROM JOB

Property name Value

Picklist/Lookup DataSet queryDataSet3

queryDataSet3 JOB_CODE

Data Type STRING

Show In Picklist Unchecked

queryDataSet1 JOB_CODE

Property Value

pickListDataSet queryDataSet3

pickListColumns new String[] {"JOB_CODE"} (from the Job table in the
lookup DataSet)

142 Developing Database Appl icat ions

Using ca lcu lated co lumns

6 Run the application by choosing Run|Run Project.

The JOB_CODE column should now be replaced by a JOB_TITLE column, which
displays complete job titles looked up from queryDataSet3.

Using calculated columns
Typically, a Column in a StorageDataSet derives its values from data in a database
column or as a result of being imported from a text file. A column may also derive its
values as a result of a calculated expression. JBuilder supports two kinds of calculated
columns: calculated and aggregated.

To create a calculated column, you need to create a new persistent Column object in the
StorageDataSet and supply the expression to the StorageDataSet object’s calcFields
event handler. Calculated columns can be defined and viewed in JBuilder. The
calculated values are only visible in the running application. JBuilder-defined calculated
columns exist in the JBuilder dataset, not in the table in the database that provides the
rest of the dataset’s data. These calculated columns can, however, be written to a text
file. For more information on defining a calculated column in the designer, see “Create
a calculated column in the designer” on page 143. For more information on working
with columns, see Chapter 7, “Working with columns.”

The formula for a calculated column generally uses expressions involving other
columns in the data set to generate a value for each row of the data set. For example,
a data set might have non-calculated columns for QUANTITY and UNIT_PRICE and a
calculated column for EXTENDED_PRICE. EXTENDED_PRICE would be calculated
by multiplying the values of QUANTITY and UNIT_PRICE.

Calculated aggregated columns are used to group and summarize data, for example,
to summarize total sales by quarter. Aggregation calculations can be specified
completely through property settings and any number of columns can be included in
the grouping. Four types of aggregation are supported (sum, count, min, and max) as
well as a mechanism for creating custom aggregation methods. For more information,
see “Aggregating data with calculated fields” on page 144.

Calculated columns are also useful for holding lookups from other tables. For example,
a part number can be used to retrieve a part description for display in an invoice line
item. For information on using a calculated field as a lookup field, see “Using pick lists
and lookups” on page 136.

Values for all calculated columns in a row are computed in the same event call.

These are the topics covered:

� “Create a calculated column in the designer” on page 143

� “Aggregating data with calculated fields” on page 144

� “Setting properties in the AggDescriptor” on page 147

� “Creating a custom aggregation event handler” on page 147

pickListDisplayColumns null

destinationColumns new String[] {"JOB_CODE"} (in the Employee table in the
target DataSet)

lookupDisplayColumn "JOB_TITLE"

enforceIntegrity false

Property Value

Chapter 12: Adding funct ional i ty to database appl icat ions 143

Using calculated co lumns

Create a calculated column in the designer

This example builds on the example in “Retrieving data for the examples” on page 122.
The database table that is queried is EMPLOYEE. The premise for this example is that
the company is giving all employees a 10% raise. We create a new column named
NEW_SALARY and create an expression that multiplies the existing SALARY data by
1.10 and places the resulting value in the NEW_SALARY column. The completed
project is available in the /samples/DataExpress/CalculatedColumn directory of your
JBuilder installation under the project name CalculatedColumn.jpx.

1 Create a new application by following “Retrieving data for the examples” on
page 122.

This step enables you to connect to a database, read data from a table, and view
and edit that data in a data-aware component.

2 Click the expand icon beside queryDataSet1 in the component tree to display all
columns, select <new column>, and set the following properties in the Inspector:

If you were adding more than one column, you could adjust the column display
position for this or any other persistent column with the preferredOrdinal property.
No data will be displayed in the calculated column in the table in the designer. The
calculations are only visible when the application is running. The data type of
BIGDECIMAL is used here because that is the data type of the SALARY column
which will be used in the calculation expression. Calculated columns are always
read-only.

3 Select the queryDataSet1 object, select the Events tab of the Inspector, select the
calcFields event handler, and double-click its value.

This creates the stub for the event’s method in the Source window.

4 Modify the event method to calculate the salary increase, as follows:

void queryDataSet1_calcFields(ReadRow changedRow, DataRow
 calcRow, boolean isPosted) throws DataSetException{
 //calculate the new salary
 calcRow.setBigDecimal("NEW_SALARY",
 changedRow.getBigDecimal("SALARY").multiply(new
 BigDecimal(1.1)));
}

This method is called for calcFields whenever a field value is saved and whenever a
row is posted. This event passes in an input which is the current values in the row
(changedRow), an output row for putting any changes you want to make to the row
(calcRow), and a boolean (isPosted) that indicates whether the row is posted in the
DataSet or not. You may not want to recalculate fields on rows that are not posted
yet.

5 Import the java.math.BigDecimal class to use a BIGDECIMAL data type. Add this
statement to the existing import statements.

import java.math.BigDecimal;

6 Run the application to view the resulting calculation expression.

Property name Value

calcType CALC

caption NEW_SALARY

columnName NEW_SALARY

dataType BIGDECIMAL

currency true

144 Developing Database Appl icat ions

Using ca lcu lated co lumns

When the application is running, the values in the calculated column will automatically
adjust to changes in any columns referenced in the calculated expression. The
NEW_SALARY columns displays the value of (SALARY * 1.10). The running
application looks like this:

Figure 12.2 Calculated columns

Aggregating data with calculated fields

You can use the aggregation feature of a calculated column to summarize your data in
a variety of ways. Columns with a calcType of aggregated have the ability to

� Group and summarize data to determine bounds.
� Calculate a sum.
� Count the number of occurrences of a field value.
� Define a custom aggregator using your own method of aggregation.

The AggDescriptor is used to specify columns to group, the column to aggregate, and
the aggregation operation to perform. The aggDescriptor is described in more detail in
the following sections. The aggregation operation is an instance of one of these
classes:

� CountAggOperator
� SumAggOperator
� MaxAggOperator
� MinAggOperator
� A custom aggregation class defined by you

Creating a calculated aggregated column is simpler than creating a calculated column,
because no event method is necessary (unless you are creating a custom aggregation
component). The aggregate can be computed for the entire data set, or you can group
by one or more columns in the data set and compute an aggregate value for each
group. The calculated aggregated column is defined in the data set being summarized,
so every row in a group will have the same value in the calculated column (the
aggregated value for that group). The column is hidden by default. You can choose to
show the column or show its value in another control, which is what we do in the
following section.

Example: Aggregating data with calculated fields
In this example, we will query the SALES table and create a JdbTextField component to
display the sum of the TOTAL_VALUE field for the current CUST_NO field. To do this,
we first create a new column called GROUP_TOTAL. Then set the calcType property of
the column to aggregated and create an expression that summarizes the
TOTAL_VALUE field from the SALES table by customer number and places the

Chapter 12: Adding funct ional i ty to database appl icat ions 145

Using calculated co lumns

resulting value in the GROUP_TOTAL column. The completed project is available in
the /samples/DataExpress/Aggregating directory of your JBuilder installation.

1 Create a new application by following “Retrieving data for the examples” on
page 122.

This step enables you to connect to a database, read data from a table, and view
and edit that data in a data-aware component.

2 Click queryDataSet1 in the component tree.

This forms the query to populate the data set with values to be aggregated.

3 Open the query property of queryDataSet1, and modify the SQL Statement to read:

SELECT CUST_NO, PO_NUMBER, SHIP_DATE, TOTAL_VALUE from SALES

4 Click the Test Query button to test the query and ensure its validity, and when
successful, click OK.

5 Click on the expand icon beside queryDataSet1 in the component tree, select <new
column>, and in the Inspector, set the following properties:

A new column is instantiated and the following code is add to the jbInit() method.
To view the code, select the Source tab. Select the Design tab to continue.

column1.setCurrency(true);
column1.setCalcType(com.borland.dx.dataset.CalcType.AGGREGATE);
column1.setCaption("GROUP_TOTAL");
column1.setColumnName("GROUP_TOTAL");
column1.setDataType(com.borland.dx.dataset.Variant.BIGDECIMAL);

6 Add a JdbTextField from the dbSwing page of the component palette to the UI
designer, set its dataSet property to queryDataSet1, and set its columnName property to
GROUP_TOTAL.

This control displays the aggregated data. You may wish to add a JdbTextArea to
describe what the text field is displaying.

No data will be displayed in the JdbTextField in the designer. The calculations are
only visible when the application is running. The data type of BIGDECIMAL is used
here because that is the data type of the TOTAL_VALUE column which will be used
in the calculation expression. Aggregated columns are always read-only.

7 Select each of the following columns, and set the visible property of each to yes.

� PO_NUMBER
� CUST_NO
� SHIP_DATE

This step ensures the columns that will display in the table are persistent. Persistent
columns are enclosed in brackets in the content pane.

Property name Value

caption GROUP_TOTAL

columnName GROUP_TOTAL

currency True

dataType BIGDECIMAL

calcType aggregated

visible Yes

146 Developing Database Appl icat ions

Using ca lcu lated co lumns

8 Select the GROUP_TOTAL column in the content pane, and to define the
aggregation for this column, double-click the agg property to display the agg property
editor.

In the agg property editor,

a Select CUST_NO in the Available Columns list. Click Add to Group to select this
as the field that will be used to define the group.

b Select TOTAL_VALUE from the Aggregate Column list to select this as the
column that contains the data to be aggregated.

c Select SumAggOperator from the Aggregate Operation list to select this as the
operation to be performed.

Based on above selections, you will have a sum of all sales to a given customer.

9 Click OK when the agg property editor looks like this:

This step generates the following source code in the jbInit() method:

column1.setAgg(new com.borland.dx.dataset.AggDescriptor(new
 String[] {"CUST_NO"}, "TOTAL_VALUE", new
 com.borland.dx. dataset.SumAggOperator()));

10 Run the application by choosing Run|Run Project to view the aggregation results.

The running application looks like this:

When the application is running, the values in the aggregated field will automatically
adjust to changes in the TOTAL_VALUE field. Also, the value that displays in the
JdbTextField will display the aggregation for the CUST_NO of the currently selected
row.

Chapter 12: Adding funct ional i ty to database appl icat ions 147

Using calculated co lumns

Setting properties in the AggDescriptor

The agg property editor provides a simple interface for creating and modifying
AggDescriptor objects. An AggDescriptor object’s constructor requires the following
information:

� Grouping Columns—an array of strings (in any order) indicating the names of
columns used to define a subset of rows of the DataSet over which the aggregation
should occur.

� Aggregate Column—a string representing the name of the column whose values are
to be aggregated.

� Aggregate Operator—name of an object of AggOperator type which performs the
actual aggregate operation.

The agg property editor extracts possible column names for use as grouping columns,
and presents them as a list of Available Columns. Only non-calculated, non-aggregate
column names are allowed in the list of grouping columns.

If the DataSet for whose Column the agg property is being defined has a MasterLink
descriptor (that is, if the DataSet is a detail DataSet), the linking column names will be
added by default to the list of grouping columns when defining a new AggDescriptor.

The buttons beneath the list of grouping columns and available columns can be used to
move the highlighted column name of the list above the button to the opposite list. Also,
double-clicking on a column name in a list will move the column name to the opposite
list. Entries within both lists are read-only. Since the ordering of column names is
insignificant within a group, a column name is always appended to the end of its
destination list. An empty (null) group is allowed.

The Aggregate Column choice control will contain the list of all non-aggregate column
names for the current DataSet. Although the current set of AggOperator components
provided with the DataExpress package does not provide support for non-numeric
aggregate column types, we do not restrict columns in the list to numeric types, since
it’s possible that a user’s customized AggOperator could support string and date types.

The Aggregate Operation choice control displays the list of AggOperator components
built into DataExpress package as well as any user-defined AggOperator components
within the same class context as the AggDescriptor component’s Column.

Users desiring to perform calculations on aggregated values (for example, the sum of
line items ordered multiplied by a constant) should check the Calculated Aggregate
check box. Doing so disables the Aggregate Column and Aggregate Operation choice
controls, and substitutes their values with “null” in the AggDescriptor constructor,
signifying a calculated aggregate type. When the Calculated Aggregate check box is
unchecked, the Aggregate Column and Aggregate Operation choice controls are
enabled.

Creating a custom aggregation event handler

To use an aggregation method other than the ones provided by JBuilder, you can
create a custom aggregation event handler. One way to create a custom aggregation
event handler is to code the calcAggAdd and calcAggDelete events through the UI
designer. calcAggAdd and calcAggDelete are StorageDataSet events that are called after
the AggOperator is notified of an update operation.

A typical use for these events is for totaling columns in a line items table (like SALES).
The dollar amounts can be totaled using a built-in SumAggOperator. Additional
aggregated columns can be added with the aggOperator property for the AggDescriptor
set to null. These additional columns might be for applying a tax or discount
percentage on the subtotal, calculating shipping costs, and then calculating a final total.

148 Developing Database Appl icat ions

Adding an Edi t or Disp lay Pattern for data formatt ing

You can also create a custom aggregation class by implementing a custom
aggregation operator component by extending from AggOperator and implementing the
abstract methods. The advantage of implementing a component is reusability in other
DataSet components. You may wish to create aggregation classes for calculating an
average, standard deviation, or variance.

Adding an Edit or Display Pattern for data formatting
All data stored internally, such as numbers and dates, is entered and displayed as text
strings. Formatting is the conversion from the internal representation to a string
equivalent. Parsing is the conversion from string representation to internal
representation. Both conversions are defined by rules specified by string-based
patterns.

All formatting and parsing of data in the DataSet package is controlled by the
VariantFormatter class, which is uniquely defined for every Column in a DataSet. To
simplify the use of this class, there are corresponding string properties which, when
set, construct a VariantFormatter for the Column using the basic pattern syntax defined
in the JDK java.text.Format classes.

There are four distinct kinds of patterns based on the data type of the item you are
controlling.

1 Numeric patterns
2 Date and time patterns
3 String patterns
4 Boolean patterns

See “String-based patterns (masks)” in the DataExpress Component Library
Reference for more information on patterns.

The Column level properties that work with these string-based patterns are:

� The displayMask property, which defines the pattern used for basic data formatting
and data entry.

� The editMask property, which defines the pattern used for more advanced keystroke-
by-keystroke data entry (also called parsing).

� The exportDisplayMask property, which defines the pattern used when importing and
exporting data to text files.

The default VariantFormatter implementations for each Column are simple
implementations which were written to be fast. Those columns using punctuation
characters, such as dates, use a default pattern derived from the column’s locale. To
override the default formatting (for example, commas for separating groups of
thousands, or a decimal point), explicitly set the string-based pattern for the property
you want to set (displayMask, editMask, or exportDisplayMask).

Setting a displayMask, editMask, or exportDisplayMask to an empty string or null has
special meaning; it selects its pattern from the default Locale. This is the default
behavior of JBuilder for columns of type Date, Time, Timestamp, Float, Double, and
BigDecimal. By doing this, JBuilder assures that an application using the defaults will
automatically select the proper display format when running under a different locale.

Note When writing international applications that use locales other than en_US (U.S. English
locale), you must use the U.S. style separators (for example, the comma for the
thousands separator and the period as the decimal point) in your patterns. This allows
you to write an application that uses the same set of patterns regardless of its target
locale. When using a locale other than en_US, these characters are translated by the
JDK to their localized equivalents and displayed appropriately. For an example of using
patterns in an international application, see the IntlDemo.jpx file, which is in the
/samples/dbSwing/MultiLingual directory of your JBuilder installation.

Chapter 12: Adding funct ional i ty to database appl icat ions 149

Adding an Edit or Disp lay Pattern for data formatt ing

To override the default formats for numeric and date values that are stored in locale
files, set the displayMask, editMask, or exportDisplayMask property (as appropriate) on
the Column component of the DataSet.

The formatting capabilities provided by DataExpress package string-based patterns are
typically sufficient for most formatting needs. If you have more specific formatting
needs, the format mechanism includes general-purpose interfaces and classes that
you can extend to create custom format classes.

Display masks

Display masks are string-based patterns that are used to format the data displayed in
the Column, for example, in a JdbTable. Display masks can add spaces or special
characters within a data item for display purposes.

Display masks are also used to parse user input by converting the string input back into
the correct data type for the Column. If you enter data which cannot be parsed using the
specified display mask pattern, you will not be able to leave the field until data entered
is correct.

Tip User input that cannot be parsed with the specified pattern generates validation
messages. These messages appear on the JdbStatusLabel control when the
JdbStatusLabel and the UI component that displays the data for editing (for example, a
JdbTable) are set to the same DataSet.

Edit masks

Before editing starts, the display mask handles all formatting and parsing. Edit masks
are optional string-based patterns that are used to control data editing in the Column and
to parse the string data into the Column keystroke-by-keystroke.

In a Column with a specified edit mask, literals included in the pattern display may be
optionally saved with the data. Positions in the pattern where characters are to be
entered display as underscores (_) by default. As you type data into the Column with an
edit mask, input is validated with each key pressed against characters that the pattern
allows at that position in the mask.

Characters that are not allowed at a given location in the pattern are not accepted and
the cursor moves to the next position only when the criteria for that location in the
pattern is satisfied.

Using masks for importing and exporting data

When you import data into a DataExpress component, JBuilder looks for a SCHEMA
file (.schema) by the same name as the data file. If it finds one, the settings in the
SCHEMA file take precedence. If it doesn’t find one, it looks at the column’s
exportDisplayMask property. Use the exportDisplayMask to format the data being
imported.

Often, data files contain currency formatting characters which cannot be read directly
into a numeric column. You can use an exportDisplayMask pattern to read in the values
without the currency formatting. Once in JBuilder, set display and/or edit masks to re-
establish currency (or other formatting) as desired.

When exporting data, JBuilder uses the exportDisplayMask to format the data for export.
At the same time, it creates a SCHEMA file with these settings so that data can be
easily imported back into a DataExpress component.

150 Developing Database Appl icat ions

Adding an Edi t or Disp lay Pattern for data formatt ing

Data type dependent patterns

The following sections describe and provide examples for string-based patterns for
various types of data.

Patterns for numeric data
Patterns for numeric type data consist of two parts: the first part specifies the pattern
for positive numbers (numbers greater than 0) and the second for negative numbers.
The two parts are separated with a semi-colon (;). The pattern symbols for numeric
data are described in “Numeric data patterns” in the DataExpress Component Library
Reference.

Numeric Column components always have display and edit masks. If you do not set
these properties explicitly, default patterns are obtained using the following search
order:

1 From the Column component’s locale.

2 If no locale is set for the Column, from the DataSet object’s locale.

3 If no locale is set for the DataSet, from the default system locale. Numeric data
displays with three decimal places by default.

Numeric columns allow any number of digits to the left of the decimal point; however,
masks restrict this to the number of digits specified to the left of the decimal point in the
mask. To ensure that all valid values can be entered into a Column, specify sufficient
digits to the left of the decimal point in your pattern specification.

In addition, every numeric mask has an extra character positioned at the left of the data
item that holds the sign for the number.

The code that sets the display mask to the first pattern in the table below is:

 column1.setDisplayMask(new String("###%"));

The following table explains several sample pattern specifications for numeric data:

Patterns for date and time data
Columns that contain date, time, and timestamp data always have display and edit
masks. If you do not set these properties explicitly, default patterns are obtained using
the following search order:

1 From the Column component’s locale.

2 If no locale is set for the Column, from the DataSet object’s locale.

3 If no locale is set for the DataSet, from the default system locale.

The pattern symbols you use for date, time, and timestamp data are described in
“Date/time data patterns” in the DataExpress Component Library Reference.

Pattern specification Data values Formatted value Meaning

###% 85 85% All digits are optional, leading zeros do not display,
value is divided by 100 and shown as a percentage

#,##0.0#^ cc;-#,##0.0#^ cc 500.0
-500.5
004453.3211
-00453.3245

500.0 cc
-500.5 cc
4,453.32 cc
-453.32 cc

The “0” indicates a required digit, zeroes are not
suppressed. Negative numbers are preceded with a
minus (–) sign. The literal “cc” displays beside the
value. The cursor is positioned at the point of the
carat (^) with digits moving to the left as you type
each digit.

$#,###.##;($#,###.##) 4321.1
-123.456

$4,321.1
($123.46)

All digits optional, includes a thousands separator,
decimal separator, and currency symbol. Negative
values enclosed in parenthesis. Typing in a minus
sign (–) or left parenthesis (() causes JBuilder to
supply parenthesis surrounding the value.

Chapter 12: Adding funct ional i ty to database appl icat ions 151

Adding an Edit or Disp lay Pattern for data formatt ing

For example, the code that sets the edit mask to the first pattern listed below is:

column1.setDisplayMask(new String("MMM dd, yyyyG"));

The following table explains several sample pattern specifications for date and time
data:

Patterns for string data
Patterns for formatting and editing text data are specific to DataExpress classes. They
consist of up to four parts, separated by semicolons, of which only the first is required.
These parts are:

1 The string pattern.

2 Whether literals should be stored with the data or not. A value of 1 indicates the
default behavior, to store literals with the data. To remove literals from the stored
data, specify 0.

3 The character to use as a blank indicator. This character indicates the spaces to be
entered in the data. If this part is omitted, the underscore character is used.

4 The character to use to replace blank positions on output. If this part is omitted,
blank positions are stripped.

The pattern symbols you use for text data are described in “Text data patterns” in the
DataExpress Component Library Reference.

For example, the code that sets the display and edit masks to the first pattern listed
below is:

column1.setDisplayMask(new String("00000{-9999}"));
column1.setEditMask(new String("00000{-9999}"));

The following table explains some pattern specifications:

Pattern
specification Data values Formatted value Meaning

MMM dd, yyyyG January 14, 1900
February 2, 1492

Jan 14, 1900AD
Feb 02, 1492AD

Returns the abbreviation of the month, space
(literal), two digits for the day, 4 digits for year,
plus era designator

MM/d/yy H:m July 4, 1776 3:30am
March 2, 1997 11:59pm

07/4/76 3:30
03/2/92 23:59

Returns the number of the month, one or two
digits for the day (as applicable), two digits for the
year, plus the hour and minute using a 24-hour
clock

Pattern specification Data values Formatted value Meaning

00000{-9999} 950677394
00043
1540001

95067-7394
00043
00154-0001

Display leading zeros for the left 5 digits (required),
optional remaining characters include a dash literal
and 4 digits. Use this pattern for U.S. postal codes.

L0L 0L0 H2A2R9
M1M3W4

H2A 2R9
M1M 3W4

The L specifies any letter A-Z, entry required. The
0 (zero) specifies any digit 0-9, entry required, plus
(+) and minus (–) signs not permitted. Use this
pattern for Canadian postal codes.

{(999)} 000-0000^!;0 4084311000 (408) 431-1000 A pattern for a phone number with optional area
code enclosed in parenthesis. The carat (^)
positions the cursor at the right side of the field and
data shifts to the left as it is entered. To ensure
data is stored correctly from right to left, use the !
symbol. (Numeric values do this automatically.)
The zero (0) indicates that literals are not stored
with the data.

152 Developing Database Appl icat ions

Present ing an a l ternate v iew of the data

Patterns for boolean data
The BooleanFormat component uses a string-based pattern that is helpful when working
with values that can have two values, stored as true or false. Data that falls into each
category is formatted using string values you specify. This formatter also has the
capability to format null or unassigned values.

For example, you can store gender information in a column of type boolean but can
have JBuilder format the field to display and accept input values of “Male” and
“Female” as shown in the following code:

column1.setEditMask("Male;Female;");
column1.displayMask("Male;Female;");

The following table illustrates valid boolean patterns and their formatting effects:

Presenting an alternate view of the data
You can sort and filter the data in any StorageDataSet. However, there are situations
where you need the data in the StorageDataSet presented using more than one sort
order or filter condition simultaneously. The DataSetView component provides this
capability.

The DataSetView component also allows for an additional level of indirection which
provides for greater flexibility when changing the binding of your UI components. If you
anticipate the need to rebind your UI components and have several of them, bind the
components to a DataSetView instead of directly to the StorageDataSet. When you need
to rebind, change the DataSetView component to the appropriate StorageDataSet,
thereby making a single change that affects all UI components connected to the
DataSetView as well.

To create a DataSetView object, and set its storageDataSet property to the
StorageDataSet object that contains the data you want to view,

1 Create a new application by following “Retrieving data for the examples” on
page 122.

This step enables you to connect to a database, read data from a table, and view
and edit that data in a data-aware component.

2 Add a DataSetView component from the DataExpress page to the component tree or
the UI designer.

3 Set the storageDataSet property of the DataSetView component to queryDataSet1.

The DataSetView navigates independently of its associated StorageDataSet.

4 Add another TableScrollPane and JdbTable to the UI designer, and to enable the
controls to navigate together, set the dataSet property of the JdbTable to
dataSetView1.

5 Compile and run the application.

The DataSetView displays the data in the QueryDataSet but does not duplicate its
storage. It presents the original unfiltered and unsorted data in the QueryDataSet.

Pattern specification
Format for
true values

Format for
false values

Format for
null values

male;female male female (empty string)

T,F,T T F T

Yes,No,Don’t know Yes No Don’t know

smoker;; smoker (empty string) (empty string)

smoker;nonsmoker; smoker nonsmoker (empty string)

Chapter 12: Adding funct ional i ty to database appl icat ions 153

Ensur ing data pers is tence

You can set filter and sort criteria on the DataSetView component that differ from those
on the original StorageDataSet. Attaching a DataSetView to a StorageDataSet and setting
new filter and/or sort criteria has no effect on the filter or sort criteria of the
StorageDataSet.

To set filter and/or sort criteria on a DataSetView,

1 Double-click the Frame file in the project pane, and select the Design tab.

2 Select the DataSetView component.

3 On the Properties page in the Inspector,

a Select the sort property to change the order records are displayed in the
DataSetView.

See “Sorting data” on page 127 for more information on the sortDescriptor.

b Select the masterLink property to define a parent data set for this view.

See Chapter 9, “Establishing a master-detail relationship” for more information on
the masterLinkDescriptor.

4 On the Events page in the Inspector, select the filterRow method to temporarily
hide rows in the DataSetView. See “Filtering data” on page 124 for more information
on filtering.

You can edit, delete, and insert data in the DataSetView by default. When you edit,
delete, and insert data in the DataSetView, you are also editing, deleting, and inserting
data in the StorageDataSet the DataSetView is bound to.

� Set the enableDelete property to false to disable the user’s ability to delete data from
the StorageDataSet.

� Set the enableInsert property to false to disable the user’s ability to insert data into
the StorageDataSet.

� Set the enableUpdate property to false to disable the user’s ability to update data in
the StorageDataSet.

Ensuring data persistence
Between the time that you develop an application and each time the user runs it, many
changes can happen to the data at its source. Typically, the data within the data source
is updated. But more importantly, structural changes can happen and these types of
changes cause greater risk for your application to fail. When such condition occurs,
you can

� Let the running application fail, if and when a such event is encountered. For
example, a lookup table’s column gets renamed at the database server but this is
not discovered until an attempt is made in the application to edit the lookup column.

� Stop the application from running and display an error message. Depending on
where the unavailable data source is encountered, this approach reduces the
possibility of partial updates being made to the data.

By default, the columns that display in a data-aware component are determined at run-
time based on the Columns that appear in the DataSet. If the data structure at the data
source has been updated and is incompatible with your application, a run-time error is
generated when the situation is encountered.

JBuilder offers support for data persistence as an alternative handling of such
situations. Use this feature if your application depends on particular columns of data
being available for your application to run properly. This assures that the column will be
there and the data displayed in the specified order. If the source column of the

154 Developing Database Appl icat ions

Ensur ing data pers is tence

persistent Column changes or is deleted, an Exception is generated instead of a run-time
error when access to the column’s data fails.

Making columns persistent

You can make a column persistent by setting any property at the Column level (for
example, an edit mask). When a column has become persistent, square brackets ([])
are placed around the column name in the component tree.

To set a Column level property,

1 Open any project that includes a DataSet object, for example, select any project file
(.jpx) in the /samples/DataExpress/ directory of your JBuilder installation.

2 Double-click the Frame file (for example, BasicAppFrame.java) to open it into the
content pane, then click the Design tab.

3 Double-click the DataSet object. This displays the column designer for the data set.
The column designer looks like this for the employee sample table:

Figure 12.3 Column designer

4 Select the Column for which you want to set the property. The Inspector updates to
reflect the properties (and events) of the selected column.

5 Set any property by entering a value in its value box in the Inspector. If you don’t
want to change any column properties, you can set a value, then reset the value to
its default.

To demonstrate, set the a minimum value for a Column containing numeric data by
entering a numeric value in the min property. JBuilder automatically places square
brackets ([]) around the column name in the component tree.

In the column designer, the columns for that data set are displayed in a table in the UI
designer. A toolbar for adding, deleting, and navigating the data set is provided.

� The Insert Column into the DataSet button inserts a new column at the preferred
ordinal of the highlighted column in the table.

� The Delete button removes the column from the data set.

� The Move Up and Move Down buttons manipulate the columns preferred ordinal,
changes the order of display in data-aware components, such as a table control.

� The Choose The Properties To Display button lets you choose which properties to
display in the designer.

� The Persist All MetaData button will persist all the metadata that is needed to open
a QueryDataSet at run time. See “Using the column designer to persist metadata” on
page 71.

Chapter 12: Adding funct ional i ty to database appl icat ions 155

Using var iant data types

� The Make All MetaData Dynamic button enables you to update a query after the
table may have changed on the server. You must first make the metadata dynamic,
then persist it, to use new indices created on the database table. Selecting Make All
MetaData Dynamic will REMOVE CODE from the source file. See “Making
metadata dynamic using the column designer” on page 72.

� The Generate RowIterator Class button opens a dialog that provides lightweight
(low memory usage and fast binding) iteration capabilities to ensure static type-safe
access to columns. See “Generate RowIterator Class button” on page 71 for more
information.

Note If you are using JDataStore for database access, you can use the JDataStore Explorer
(Tools|JDataStore Explorer) to restructure the JDataStore database from within
JBuilder and without writing any code.

To close the column designer, double-click any UI component, such as contentPane, in
the component tree. The only way to close one designer is to open a different one.

Using variant data types
Columns can contain many types of data. This topic discusses storing Java objects in a
Column. Columns are introduced more completely in Chapter 7, “Working with columns.”

Storing Java objects

DataSet and DataStore can store Java objects in columns of a DataSet. Fields in a SQL
table, reported by JDBC as being of type java.sql.Types.OTHER, are mapped into
columns whose data type is Variant.OBJECT, or you can set a column’s data type to
Object and set/get values through the normal data set API.

If a DataStore is used, the objects must be serializable. If they are not, an exception is
raised whenever the DataStore attempts to save the object. Also, the class must exist
on the CLASSPATH when it attempts to read an object. If not, the attempt will fail.

Note the following about formatting and editing a column that contains a Java object:

� Default formatting and editing

In the UI designer, a formatter is assigned to Object columns by default. When the
object is edited, it will simply be an object of type java.lang.String regardless of
what the type was originally.

� Custom formatting and editing

You can, and probably will want to, define the formatter property on a column to
override the default functionality, or at least make the column non-editable. You can
use a custom formatter to define the proper formatting and parsing of the objects
kept in the column.

A column formatter is used for all the records in the data set. The implication of this
is that you cannot mix object types in a particular column. This restriction is only for
customized editing.

156 Developing Database Appl icat ions

Chapter 13: Using other contro ls and events 157

C h a p t e r

13
Chapter 13Using other controls and events

This topic provides more information on using controls and events. “Retrieving data for
the examples” on page 122 sets up a query that can be used as a starting point for any
of the discussions in this chapter.

Topics discussed in this chapter include,

� “Synchronizing visual components” on page 157

� “Accessing data and model information from a UI component” on page 158

� “Displaying status information” on page 158

� “Handling errors and exceptions” on page 159

Synchronizing visual components
Several data-aware components can be associated with the same DataSet. In such
cases, the components navigate together. When you change the row position of a
component, the row position changes for all components that share the same cursor.
This synchronization of components that share a common DataSet can greatly ease the
development of the user-interface portion of your application.

The DataSet manages a pseudo record, an area in memory where a newly inserted row
or changes to the current row are temporarily stored. Components which share the
same DataSet as their data source share the same pseudo record. This allows updates
to be visible as soon as entry at the field level is complete, such as when you navigate
off the field.

You synchronize multiple visual components by setting each of their dataSet properties
to the same data set. When components are linked to the same data set, they navigate
together and will automatically stay synchronized to the same row of data. This is
called shared cursors.

For example, if you use a JdbNavToolBar and a JdbTable in your program, and connect
both to the same QueryDataSet, clicking the “Last” button of the JdbNavToolBar
automatically displays the last record of the QueryDataSet in the JdbTable as well. If
those components are set to different dataSet components, they do not reposition
automatically to the same row of data. Several of the dbSwing components, including
JdbNavToolBar and JdbStatusLabel, automatically attach themselves to whichever
DataSet has focus.

158 Developing Database Appl icat ions

Accessing data and model in format ion f rom a UI component

The goToRow(com.borland.dx.dataset.ReadRow) method provides a way of synchronizing
two DataSet components to the same row (the one that dataSet is on) even if different
sort or filter criteria are in effect.

Accessing data and model information from a UI component
If you set the dataSet property on a component, you should avoid accessing the DataSet
data or model information programmatically through the component until the
component’s peer has been created; basically, this means until the component is
displayed in the application UI.

Operations which fail or return incorrect/inconsistent results when executed before the
component is displayed in the application UI include any operation that accesses the
model of the component. This may include,

� <component>.get() or <component>.set() operations

� <component>.insertRow()

� and so on.

To assure successful execution of such operations, check for the open() event
notification generated by the DataSet. Once the event notification occurs, you are
assured that the component and its model are properly initialized.

Displaying status information
Many data applications provide status information about the data in addition to
displaying the data itself. For example, a particular area of a window often contains
information on the current row position, error messages, and other similar information.
dbSwing includes a JdbStatusLabel component which provides a mechanism for such
status information. It has a text property that allows you to assign a text string to be
displayed in the JdbStatusLabel. This string overwrites the existing contents of the
JdbStatusLabel and is overwritten itself when the next string is written to the
JdbStatusLabel.

The JdbStatusLabel component automatically connects to whichever DataSet has focus.
The JdbStatusLabel component doesn’t display the data from the DataSet, but displays
the following status information generated by the DataSet:

� Current row position

� Row count

� Validation errors

� Data update notifications

� Locate messages

Building an application with a JdbStatusLabel component

This section describes how to use the JBuilder design tools to add a JdbStatusLabel
dbSwing component to an application.

To add the JdbStatusLabel to the UI of your existing application,

1 Open the project files for the application to which you want to add a JdbStatusLabel.

This application should include a JdbTable component, a Database component, and a
QueryDataSet component. If you do not have such an application, use the files
created for the section “Retrieving data for the examples” on page 122. Make sure
the layout for the project’s contentPane is set to null.

Chapter 13: Using other contro ls and events 159

Handl ing errors and except ions

2 Double-click the Frame file in the project pane of the IDE to open it in the content
pane, then click the Design tab that appears at the bottom of the IDE.

3 Click the dbSwing page of the component palette and click the JdbStatusLabel
component.

4 Draw the JdbStatusLabel below the JdbTable component. jdbStatusLabel1
component automatically connects to whichever DataSet object has focus.

You typically use a JdbStatusLabel component in conjunction with another UI
component, usually a JdbTable that displays the data from the DataSet. This sets
both components to track the same DataSet and is often referred to as a shared
cursor.

Once the JdbStatusLabel is added, you’ll notice that the JdbStatusLabel component
displays information that the cursor is on Row 1 of x (where x is the number of
records in the DataSet).

5 Double-click the QueryDataSet.

This displays the column designer.

6 Select the Last_Name and First_Name columns and set the required property to
true for both in the Inspector.

7 Set the SALARY column’s min property to 25000.

8 Run the application.

Running the JdbStatusLabel application

When you run the application, you’ll notice that when you navigate the data set, the row
indicator updates to reflect the current row position. Similarly, as you add or delete
rows of data, the row count is updated simultaneously as well.

To test its display of validation information,

1 Insert a new row of data. Attempt to post this row without having entered a value for
the FIRST_NAME or LAST_NAME columns. A message displays in the
JdbStatusLabel indicating that the row cannot be posted due to invalid or missing
field values.

2 Enter a value for the FIRST_NAME and LAST_NAME columns. Enter a number in
the SALARY column (1000) that doesn’t meet the minimum value. When you
attempt to move off the row, the JdbStatusLabel displays the same message that the
row cannot be posted due to invalid or missing field values.

By setting the text of the JdbStatusLabel at relevant points in your program
programmatically, you can overwrite the current message displayed in the
JdbStatusLabel with your specified text. This text message, in turn, gets overwritten
when the next text is set or when the next DataSet status message is generated. The
status message can result from a navigation through the data in the table, validation
errors when editing data, and so on.

Handling errors and exceptions
With programmatic usage of the DataExpress classes, most error handling is surfaced
through DataExpress extensions of the java.lang.Exception class. All DataSet
exception classes are of type DataSetException or its subclass.

The DataSetException class can have other types of exceptions chained to them, for
example, java.io.IOException and java.sql.SQLException. In these cases, the
DataSetException has an appropriate message that describes the error from the
perspective of a higher level API. The DataSetException method getExceptionChain()

160 Developing Database Appl icat ions

Handl ing errors and except ions

can be used to obtain any chained exceptions. The chained exceptions (a singly linked
list) are non-DataSetException exceptions that were encountered at a lower-level API.

The dataset package has some built-in DataSetException handling support for dbSwing
data-aware components. The controls themselves don’t know what a DataSetException
is. They simply expect all of their data update and access operations to work, leaving
the handling of errors to the built-in DataSetException.

For dbSwing data-aware components, the default DataSetException error handling
works as follows:

� If a control performs an operation that causes a DataSetException to occur, an
Exception dialog box is presented with the message of the error. This Exception
dialog box has a Details button that displays the stack trace.

� If the DataSetException has chained exceptions, they can be viewed in the Exception
dialog box using the Previous and Next buttons.

� If the exception thrown is ValidationException (a subclass of DataSetException), the
Exception dialog box displays only if there are no StatusEvent listeners on the
DataSet, for example, the JdbStatusLabel control. A ValidationException is generated
by a constraint violation, for example, a minimum or maximum value outside
specified ranges, a data entry that doesn’t meet an edit mask specification, an
attempt at updating a read-only column, and so on. If a JdbStatusLabel control is
bound to a DataSet, it automatically becomes a StatusEvent listener. This allows
users to see the messages resulting from constraint violations on the status label.

Overriding default DataSetException handling on controls

You can override part of the default error handling by registering a StatusEvent listener
with the DataSet. This prevents ValidationException messages from displaying in the
Exceptions dialog box.

The default DataSetException handling for controls can be further disabled at the
DataSet level by setting its displayErrors property to false. Because this is a property at
the DataSet level, you need to set it for each DataSet in your application to effectively
disable the default error handling for all DataSet objects in your application.

To completely control DataSetException handling for all dbSwing controls and DataSet
objects, create your own handler class and connect it to the ExceptionEvent listener of
the DataSetException class.

Most of the events in the dataset package throw a DataSetException. This is very useful
when your event handlers use dataSet APIs (which usually throw DataSetException).
This releases you from coding try/catch logic for each event handler you write.
Currently the JBuilder design tools do not insert the “throws DataSetException” clause
in the source java code it generates, however you can add the clause yourself.

Chapter 14: Creat ing a d is tr ibuted database appl icat ion us ing DataSetData 161

C h a p t e r

14
Chapter 14Creating a distributed database

application using DataSetData
The DataSetData.jpx sample project in the /samples/DataExpress/StreamableDataSets
directory of your JBuilder installation contains a completed distributed database
application using Java Remote Method Invocation (RMI) and DataSetData. It includes a
server application that will take data from the sample JDataStore employee table and
send the data via RMI in the form of DataSetData. A DataSetData is used to pass data as
an argument to an RMI method or as an input stream to a Java servlet.

A client application will communicate with the server through a custom Provider and a
custom Resolver. The client application displays the data in a table. Editing performed
on the client can be saved using a JdbNavToolBar Save button.

For more information on writing custom providers, see “Writing a custom data provider”
on page 65. For information on writing or customizing a resolver, see “Customizing the
default resolver logic” on page 87.

See the file DataSetData.html in the /samples/DataExpress/StreamableDataSets/ directory
for updated information on this sample application.

Understanding the sample distributed database application (using
Java RMI and DataSetData)

The sample project, found in /samples/DataExpress/StreamableDataSets/
DataSetData.jpx, demonstrates the use of the DataExpress DataSetData class to build a
distributed database application. In addition to using DataSetData objects to pass
database data between an RMI server and client, this sample illustrates the use of a
custom DataSet Provider and Resolver. The sample application contains the following
files:

� Interface files

EmployeeApi.java is an interface that defines the methods we want to remote.

� Server files

DataServerApp.java is an RMI server. It extends UnicastRemoteObject.

162 Developing Database Appl icat ions

Understanding the sample d is t r ibuted database appl icat ion (us ing Java RMI and DataSetData)

� Provider files

ClientProvider.java is an implementation of a Provider. The provideData method is
an implementation of a method in com.borland.dx.dataset.Provider. We look up the
“DataServerApp” service on the host specified by the hostName property, then make
the remote method call and load our DataSet with the contents.

� Resolver files

ClientResolver.java is an implementation of a Resolver. The resolveData method is
an implementation of com.borland.dx.dataset.Resolver. First, we look up the
“DataServerApp” service on the host specified by the hostName property. Then, we
extract the changes into a DataSetData instance. Next, we make the remote method
call, handle any resolution errors, and change the status bits for all changed rows to
show that they have been resolved.

� Client files

ClientApp.java is an RMI client application. See ClientFrame.java for details.

� Other files

Res.java is a resource file for internationalizing the application.

ClientFrame.java is the frame of ClientApp. Notice that the DataSet displayed in the
table is a TableDataSet with a custom provider and a custom resolver. See
ClientProvider.java and ClientResolver.java for details.

DataServerFrame.java is the frame displayed by DataServerApp.

Setting up the sample application

To run the sample application, you need to perform the following steps:

1 Open this application in JBuilder by choosing File|Open and browsing to
/samples/DataExpress/StreamableDataSets/DataSetData.jpx.

2 Choose Project|Project Properties, and set the runtime options for the application:

a Select the Run tab.

b Select the Run DataServerApp runtime configuration (the default), and click Edit
to open the Runtime Configuration Properties dialog box.

c Check that the properties in the VM Parameters field have the correct path.

The java.rmi.server.codebase property points to the location of the RMI server’s
classes. By default, this property is set as follows:

-Djava.rmi.server.codebase="file:
 /usr/local/jbuilder/samples/DataExpress/StreamableDataSets/classes/
 file:/usr/local/jbuilder/lib/dx.jar"

The java.rmi.server.codebase property points to the proper location of the RMI
server’s classes. By default, this property is set as follows:

-Djava.security.policy=file:/usr/local/jbuilder/samples/DataExpress/
 StreamableDataSets/SampleRMI.policy

d Close the Project Properties dialog box.

3 Start the RMI registry by choosing Tools|RMIRegistry from JBuilder.

The registry is toggled on and off from the Tools menu.

4 Right-click DataServerApp.java in the project pane, and choose Run|Run
DataServerApp to start the RMI server.

Chapter 14: Creat ing a d is tr ibuted database appl icat ion us ing DataSetData 163

Understanding the sample d ist r ibuted database appl icat ion (us ing Java RMI and DataSetData)

5 Right-click ClientApp.java in the project pane, and choose Run|Run ClientApp to
start the RMI client.

6 Edit the data in the ClientApp’s table, and click either the Save Changes button on
the toolbar (to save the changes back to the server) or the Refresh button on the
toolbar (to reload the data from the server).

Each time data is saved or refreshed, the middle-tier request counter increases.

What is going on?
DataServerApp registers itself as an RMI server. It responds to two RMI client requests:
provideEmployeeData and resolveEmployeeChanges, as defined in the RMI remote
interface EmployeeApi.java.

The client application consists of a frame (ClientFrame.java) with JdbTable and
JdbNavToolBar dbSwing components for displaying data in a DataExpress TableDataSet.
Data is provided to the TableDataSet via a custom provider, ClientProvider.java, and
data is saved to the source via a custom resolver, ClientResolver.java.
ClientProvider.java fills its table data by invoking the DataServerApp
provideEmployeeData() remote method via RMI. This causes DataServerApp to query
data from a table on a JDBC database server into a DataSet. It then extracts the data
from the DataSet into a DataSetData object and sends it back to ClientProvider via RMI.
ClientProvider then loads the data in the DataSetData object into the ClientApp DataSet,
and the data appears in the table.

When it is time to resolve changes made in the table back to the database, the
ClientApp DataSet custom resolver, ClientResolver.java, extracts (only) the changes
that need to be sent to the database server into a DataSetData object. ClientResolver
then invokes the DataServerApp resolveEmployeeChanges() remote method via RMI,
passing it the DataSetData object containing the necessary updates as the parameter.

DataServerApp then uses DataExpress to resolves the changes back to the database
server. If an error occurs (due to a business rule or data constraint violation, for
example) DataServerApp packages rows which could not be saved back to the database
into a DataSetData object and returns it back to ClientResolver. ClientResolver then
extracts the unresolvable rows in the DataSetData object into the ClientApp table,
allowing the problematic rows to be corrected and resolved back to the server again.

Note that DataServerApp is the middle-tier of the application. It can enforce its own
business rules and constraints between the database server and the client. And, of
course, it could provide any number of additional remotely accessibly methods for
implementing business logic or application-specific tasks.

Passing metadata by DataSetData
The metadata passed in a DataSetData object is very limited. Only the following Column
properties are passed:

� columnName
� dataType
� precision
� scale
� hidden
� rowId

Other column properties that a server needs to pass to a client application, should be
passed as an array of Columns via RMI. The Column object itself is serializable, so a
client application could be designed to get these column properties before it needed
the data. The columns should be added as persistent columns before the DataSetData
is loaded.

164 Developing Database Appl icat ions

Understanding the sample d is t r ibuted database appl icat ion (us ing Java RMI and DataSetData)

Deploying the application on multiple tiers
To deploy the application on multiple tiers,

1 Open DataServerApp.java, and modify the database connection URL in the
constructor to point to a remote database connection to which you have access.

The database is the back end, or third tier.

2 Choose Project|Make Project to recompile and update the DataServerApp class.

3 Deploy DataServerApp.class to a remote machine to which you are connected.

DataServerApp runs on the middle, or second, tier.

4 Start the RMI Registry on the middle tier computer.

5 Start DataServerApp on the middle tier.

Note Beginning with JDK 1.2, it is necessary to grant an RMI server special security rights
in order for it to listen for and accept client RMI requests over a network. Typically,
these rights are specified in a Java security policy file defined by a special property,
java.security.policy, passed by way of a command-line argument to the VM of the
server. This is similar to the java.rmi.server.codebase property which must also be
passed to the server’s VM. A sample RMI security policy file which will allow an RMI
client to connect to the server is included with this project in the file
SampleRMI.policy.

When starting DataServerApp on the middle-tier, make sure both the
java.security.policy and java.rmi.server.codebase properties are set to the proper
locations on the middle-tier machine.

6 Double-click ClientFrame.java in the project pane of JBuilder to open it in the content
pane. Select the Design tab to invoke the designer. Select clientProvider1 in the
component tree and modify the hostName property to the hostname of the middle-tier
machine.

7 Select clientResolver1 and modify the hostName property to the hostname of the
middle-tier machine.

8 Choose Project|Make Project to rebuild ClientApp.

Start ClientApp on the client, or first tier, by right-clicking on the ClientApp.java file in
the project pane and choosing Run.

For more information
� Read the RMI Documentation on the Sun web site at http://java.sun.com/j2se/1.4/

docs/guide/rmi/.

� Learn more about writing custom Providers and Resolvers by viewing the sample
data set application /samples/DataExpress/CustomProviderResolver/
CustomProviderResolver.jpx.

Chapter 15: Database admin ist ra t ion tasks 165

C h a p t e r

15
Chapter 15Database administration tasks

This is a feature of
JBuilder Developer

and Enterprise

This chapter provides information on how to accomplish some common database
administrator tasks. The following subjects are covered:

� “Exploring database tables and metadata using the Database Pilot” on page 165

� “Using the Database Pilot for database administration tasks” on page 170

� “Monitoring database connections” on page 172

Exploring database tables and metadata using the Database Pilot
The Database Pilot is a hierarchical database browser that also allows you to view and
edit data. It presents JDBC-based metadata for databases in a two-paned window. The
left pane contains a tree that hierarchically displays a set of databases and their
associated tables, views, stored procedures, and metadata. The right pane is a multi-
page display of descriptive information for each node of the tree. In certain cases, you
can edit data in the right pane as well.

To display the Database Pilot, choose Tools|Database Pilot from the JBuilder menu.

Figure 15.1 Database Pilot

166 Developing Database Appl icat ions

Explor ing database tables and metadata us ing the Database Pi lot

Through a persistent connection to a database, the Database Pilot enables you to:

� Browse database schema objects, including tables, table data, columns (fields),
indexes, primary keys, foreign keys, stored procedure definitions, and stored
procedure parameters.

� View, create, and modify database URLs.

� Enter and execute SQL statements to query a database.

� Create, view, and edit data in existing tables.

Browsing database schema objects

The Database Pilot window contains a menu, a toolbar, a status label, and two panes
of database information.

� The left pane displays a hierarchical tree of objects that include database URLs,
tables (and their columns, indexes, primary key, and foreign keys), views, system
tables, and stored procedures (and their parameters).

An expand icon beside an object in the left pane indicates that the object contains
other objects below it. To see those objects, click the expand icon. When an object
is expanded to show its child objects, the expand icon becomes a contract icon. To
hide child objects, click the contract icon.

� The right pane contains tabbed pages that display the contents of objects
highlighted in the left pane. The tabbed pages in the right pane vary depending on
the type of object highlighted in the left pane. For example, when a database alias is
highlighted in the left pane, the right pane displays a Definition page that contains
the database URL, Driver, UserName, and other parameters, or properties. Bold
parameter names indicate a parameter that cannot be modified. All other
parameters that appear in the right pane can be edited there. The following tabbed
pages may appear in the right hand pane:

� Definition

� Enter SQL

� Summary

� Data

For more information, launch the Database Pilot by choosing Tools|Database Pilot
from the menu, and refer to its online help.

Setting up drivers to access remote and local databases

The Database Pilot browses databases listed in the Connection URL History List
section of the <home>/.dbpilot/dbpilot.properties file. Additions are made to this list
when you connect to a database using the connection property editor of a Database
component.

You can use the Database Pilot to view, create, modify, and delete database URLs.
The following procedures assume the URL is closed, and lists each task, briefly
describing the steps needed to accomplish it.

Chapter 15: Database admin ist ra t ion tasks 167

Explor ing database tables and metadata us ing the Database Pi lo t

View URL
To view a URL,

1 In the left pane, select the URL to view.

The Definition page appears in the right pane.

2 Click the expand icon beside a database URL (or double-click it) in the left pane to
see its contents.

Create URL
To create a URL,

1 Right-click a URL or database in the left pane to open the context menu.

2 Choose New from the context menu (or choose New from the File menu) to open
the New URL dialog box.

3 Select a Driver from the drop-down list or enter the driver information.

Drivers must be installed to be used, and the driver’s files must be listed in the
CLASSPATH statement in the JBuilder setup script. This is done on the Database
Drivers page of the Enterprise Setup dialog box (Tools|Enterprise Setup).

4 Browse to or enter the desired URL and click OK.

5 On the Definition page in the right pane, specify the UserName and any other
desired properties.

6 Click the Apply button on the toolbar to apply the connection parameters.

Modify URL
To modify an existing URL,

1 Select the URL to modify in the left pane.

2 Edit settings on the Definition page as desired.

3 Click the Apply button on the toolbar to update the connection parameters, or click
the Cancel button to undo changes to the settings.

Delete URL
To delete a URL,

1 Select the URL to delete in the left pane.

2 Choose File|Delete to remove the URL.

Note If you’re creating a new ODBC URL and you are running Windows NT, you must define
its ODBC Data Source though the Windows Control Panel before you can connect to
that database.

Executing SQL statements

The Enter SQL page displays a window in which you can enter SQL statements, or
specify and execute an existing .SQL file. The main part of the screen is an edit box
where you can enter SQL statements. To the right of the edit box are four buttons, the
Execute button, the Next button, the Previous button, and the Load SQL button. When
a SQL SELECT statement is executed, the results of the query are displayed in an

168 Developing Database Appl icat ions

Explor ing database tables and metadata us ing the Database Pi lot

editable table, which is located below the edit box. This screen may need to be resized
to view all its components. The page looks like this:

Figure 15.2 Enter SQL page of the Database Pilot

To query a database using SQL,

1 Open a database by selecting its URL in the left pane and entering a user name and
password, if applicable.

2 Select the database or one of its child nodes in the left pane.

3 Click the Enter SQL tab in the right pane to display an edit box where you can enter
or select a SQL statement.

4 Enter (or paste) a SQL statement in the edit box, or click the Load SQL button and
enter a SQL file name.

If you enter non-SELECT statements, the statement is executed, but no result set is
returned.

5 Click the Execute button to execute the query.

You can copy SQL statements from text files, a Help window, or other applications and
paste them into the edit box. Some SQL servers require that the table name be entered
in quotation marks, some do not require this.

Note If the SQL syntax you enter is incorrect, an error message is generated. You can freely
edit the Enter SQL field to correct syntax errors.

Using the Explorer to view and edit table data

Select the Data page to display the data in a selected table, view, or synonym. You can
enter and edit records in a table on the Data page if the table permits write access, and
if the Request Updatable Queries box of the Query page of the View|Options menu is
checked. The Data page displays a table populated with the data from the selected

Chapter 15: Database admin ist ra t ion tasks 169

Explor ing database tables and metadata us ing the Database Pi lo t

table. A toolbar control is displayed across the top of the table for navigation and data
modification. The Data page looks like this:

You can use the Database Pilot to view, edit, insert, and delete data in tables. The
following procedures provide the steps needed to accomplish each task.

View table data
To view data in a table,

1 Select a table to view in the left pane.

2 Click the Data page tab in the right pane to view a scrollable table of all data in the
table.

3 Use the toolbar buttons at the top of the table to scroll from record to record.

Edit a record
To edit a record,

1 Make sure that Request Updatable Queries on the Query page of the Options dialog
box (View|Options) is checked.

2 Edit the record’s fields in the table.

3 To post the edits to the local data set, select a different record in the table, or click
the Post button in the Data page toolbar.

4 To cancel an edit before moving to another record, click the Cancel button in the
toolbar or press Esc.

5 To save your changes to the database, click the Save Changes button.

Insert a new record
To insert a new record,

1 Select the row before which you want to insert a new row.

2 Click the Insert button on the Data page toolbar.

A blank row appears.

170 Developing Database Appl icat ions

Using the Database Pi lot for database admin is trat ion tasks

3 Enter data for each column.

Move between columns with the mouse, or by tabbing to the next field.

4 To post the insert to the local data set, select a different record in the table, or click
the Post button in the Data page toolbar.

5 To cancel an insert before moving to another record, click the Cancel button in the
toolbar or press Esc.

6 To save an insert to the database, click the Save Changes button.

Delete a record
To delete a record,

1 Place the cursor on the row you want to delete.

2 Click the Delete button.

3 To save a deletion from the database, click the Save Changes button.

Using the Database Pilot for database administration tasks
This section provides an introduction to creating, populating, and deleting tables in a
SQL-oriented manner. These tasks are usually reserved for a Database Administrator,
but can easily be accomplished using JBuilder.

Creating the SQL data source

JBuilder is an application development environment in which you can create
applications that access database data, but it does not include menu options for
features that create SQL server tables. Typically, this is an operation reserved for a
Database Administrator (DBA). However, creating tables can easily be done using
SQL and the Database Pilot.

This topic is not intended to be a SQL language tutorial but to show you how you can
use SQL statements in JBuilder. For more information about the SQL syntax, refer to
any book on the subject. One commonly used reference is A Guide to the SQL
Standard by C.J. Date.

Note On many systems, the DBA restricts table create rights to authorized users only. If you
have any difficulties with creating a table, contact your DBA to verify whether your
access rights are sufficient to perform such an operation.

To create a simple table, you must first set up a database connection URL. If you are
unfamiliar with how to do this, follow these steps:

1 Choose Tools|Database Pilot.

2 From the Database Pilot, choose File|New, or right-click an existing URL and select
New from the context menu.

The New URL dialog box opens.

3 Select a Driver from the drop-down list or enter the driver information.

For a discussion of the different types of drivers, see JDBC database drivers in the
Database Pilot online help.

4 Browse to or enter the desired URL.

The Browse button will be enabled when a database driver that is recognized by
JBuilder is selected in the Driver field.

Chapter 15: Database admin ist ra t ion tasks 171

Using the Database Pi lo t for database adminis trat ion tasks

5 Click OK to close the dialog box.

6 Specify the UserName and any other desired properties on the Definition page in
the right pane.

7 Click the Apply button on the toolbar to apply the connection parameters.

Once a connection has been established, you can specify a SQL statement to run
against the database. There are two ways to do this. The first way is through the
Create Table dialog. To create a table called mytable using the Create Table dialog,

1 Choose File|Create Table in the Database Pilot.

2 Type mytable in the Table name field.

3 Click the Insert button.

4 Type lastName in the Column name column.

5 Select VARCHAR as the Data type column value.

6 Type 20 in the Precision column.

7 Click the Next row button.

A new row is created.

8 Type firstName in the Column name column.

9 Select VARCHAR as the Data type column value.

10 Type 20 in the Precision column.

11 Click the Next row button.

A new row is created.

12 Type salary in the Column name column.

13 Select NUMERIC as the Data type column value.

14 Type 10 in the Precision column.

15 Type 2 in the Scale column.

16 Click the Execute button.

17 Note that a SQL statement has been created for you in the SQL text area.

18 Click OK.

The table is created in the currently open data source.

The second way to create a table is to specify a CREATE TABLE SQL statement in the
Enter SQL tab. For example, to create a table named mytable2 on the data source to
which you are connected,

1 Click the Enter SQL tab in the Database Pilot.

2 Enter the following in the text area:

create table mytable2 (
lastName char(20),
firstName char(20),
salary numeric(10,2))

3 Click the Execute button.

172 Developing Database Appl icat ions

Monitor ing database connect ions

These steps create an empty table which can be used in a query. Use the Database
Pilot to verify that the table was created correctly. You should see:

� A list of tables in the data source, including the new table (MYTABLE) just created.

� A list of columns for the selected table. Select MYTABLE and the columns list
displays FIRSTNAME, LASTNAME and SALARY.

Populating a SQL table with data using JBuilder

Once you’ve created an empty table, you can easily fill it with data using the Database
Pilot (in this example), or by creating an application using JBuilder’s visual design
tools. Select the Data page to display the data in a selected table, view, or synonym.
You can enter and edit records in a table on the Data page of the Database Pilot if the
table permits write access, and if Request Updatable Queries is checked in the View|
Options dialog box. The Data page displays a table populated with the data from the
selected table.

1 Follow the steps for “Creating the SQL data source” on page 170.

2 Select the table you just created in the left window, then select the Data tab in the
right window.

A table populated with the data from the selected table displays in the right pane. A
toolbar control is displayed across the top of the table for navigation and data
modification.

3 Use the Database Pilot to view, edit, insert, and delete records in tables.

See “Using the Explorer to view and edit table data” on page 168 for more
information on using the Database Pilot to view and modify tables.

Deleting tables in JBuilder

Now that you’ve created one or more test tables, you’ll need to know how to clean up
and remove all the test tables. Follow the steps for “Creating the SQL data source” on
page 170 but substitute the following SQL statement:

drop table mytable

You can verify the success of this operation by checking to see if the table still displays
in the left window of the Database Pilot.

Monitoring database connections
JBuilder provides a JDBC monitoring class which can monitor JDBC traffic. JBuilder
provides a user interface, invoked from Tools|JDBC Monitor, to work with this class at
design time. For information on using this class at run time, see “Using the JDBC
Monitor in a running application” on page 174.

JDBC Monitor will monitor any JDBC driver (that is, any subclass of java.sql.Driver)
while it is in use by JBuilder. The JDBC Monitor monitors all output directly from the
JDBC driver.

About the JDBC Monitor

The typical use for the JDBC Monitor is to monitor JDBC traffic while you develop your
database application.

Chapter 15: Database admin ist ra t ion tasks 173

Monitor ing database connect ions

To use the JDBC Monitor,

1 Choose Tools|JDBC Monitor.

The JDBC Monitor displays:

Figure 15.3 JDBC Monitor

2 Open a source file that contains Data Access components that connect to a
database, providing live data in the designer.

For example, most Frame classes in the DataExpress samples (<jbuilder>/samples/
DataExpress) contain components that provide live data in design mode.

3 Click the Design tab to activate the designer.

Note how the JDBC Monitor displays database as the designer opens.

Figure 15.4 JDBC Monitor with output

You can perform the following actions in the JDBC Monitor:

� Click the JDBC Monitor window’s close button to close the JDBC Monitor.

� Select text in the log area by highlighting it with the mouse or keyboard.

� Click the Save To File button to save the selected text (or all text, if nothing has
been selected) to a file.

� Click the Clear Log button to clear the selected text (or all the text, if nothing has
been selected).

� Click the Enable Log Output check box to enable/disable log output.

� Click the Log Size button to set the maximum amount of logging information to keep
(8K by default).

� With the cursor in the text area, press F1 or the Help button to display JDBC Monitor
help. Help is available in design mode only.

174 Developing Database Appl icat ions

Monitor ing database connect ions

Using the JDBC Monitor in a running application

To monitor database connections at run time, a MonitorButton or a MonitorPanel must
be included with the application. MonitorButton is a Java bean which allows you to run
the JDBC monitor against a running application. To do so, the instance of the JDBC
monitor in use must be brought up by the application. An instance of the JDBC Monitor
brought up from the IDE will only monitor database activities during design time.
Clicking the Monitor button displays a dialog containing the JDBC Monitor.

The MonitorPanel can be used to place the monitor directly on a form. It has the same
properties as the MonitorButton.

Adding the MonitorButton to the Palette
The MonitorButton can be put on the component palette by following these steps:

1 Choose Tools|Configure Palette to open the Palette Properties dialog box.

2 Select the Pages tab, and select DataExpress in the left pane.

3 Select the Add Components tab, and click Select Library to open the Select A
Different Library dialog box.

4 Select JBCL from the list of available libraries, and click OK.

5 If the Palette Page To Receive Components drop-down list does not display
DataExpress, select DataExpress from the drop-down list.

This determines the palette page on which the MonitorPanel button will be placed.

6 Select the No Filtering from the Component Filtering radio buttons.

7 Click Add From Selected Library to open the Browse For Class dialog box.

8 Browse to com.borland.jbcl.sql.monitor.MonitorButton, and click OK to add the
component.

9 Click OK to close the Results dialog box.

10 Click OK to close the Palette Properties dialog box.

Using the MonitorButton Class from code
When the MonitorButton is added to the palette, it can be dropped on to your
application. You could also add an instance of the MonitorButton in code, as follows:

MonitorButton monitorButton1 = new com.borland.jbcl.sql.monitor.MonitorButton();
this.add(monitorButton1);

Understanding MonitorButton properties
The following component properties are available on MonitorButton to control the
default state of the monitor:

Property Effect

outputEnabled Turns Driver trace on/off.

maxLogSize Maximum trace log size. Default is 8K.

Chapter 16: Tutor ial : Impor t ing and expor t ing data f rom a text f i le 175

C h a p t e r

16
Chapter 16Tutorial: Importing and exporting

data from a text file
This tutorial shows how to provide data to an application using a TableDataSet
component and a text data file. For the tutorial, you will manually create the text data
file, but this type of file can be exported from most desktop databases. For this tutorial,
you will perform the following tasks:

� Create a JBuilder project

� Create a simple text data file

� Generate an application

� Add DataExpress components to access and store data from the text file

� Add dbSwing components to create a user interface

� Add a JButton Swing component for exporting data

� Compile and run your application

� Use patterns to export numeric, date/time, and text fields

When you have completed the tutorial, your application will look like this:

Figure 16.1 Import/export database application

176 Developing Database Appl icat ions

Step 1: Creat ing the pro ject

The completed application can be viewed by opening the sample project file,
TextFileImportExport.jpx, in <jbuilder>/samples/DataExpress/TextFileImportExport/.
For users with read-only access to JBuilder samples, copy the samples directory into a
directory with read/write permissions.

See the Tutorials section in the JBuilder Quick Tips for useful information about
viewing and printing tutorials. The Accessibility options section in the JBuilder Quick
Tips contains tips on using JBuilder features to improve JBuilder’s ease of use for
people with disabilities.

For information on documentation conventions used in this tutorial and other JBuilder
documentation, see “Documentation conventions” on page 6.

Step 1: Creating the project
To develop your database application in JBuilder, you first need to create a new
project. To do this,

1 Choose File|New Project to display the Project wizard.

2 Type TextFileImportExport in the Name field.

3 Make sure the Generate Project Notes File option is checked.

4 Click Finish to close the Project wizard and create the project. You do not need to
make any changes to the defaults on Steps 2 and 3 of the wizard.

The project file TextFileImportExport.jpx and project’s HTML file are displayed in
the project pane.

Step 2: Creating the text file
Now we will create a simple text data file for importing data into your database
application. Create a text file as described in the following steps:

1 Create a new text file named ImportTest.txt in the directory containing the project
file, TextFileImportExport.jpx, you created in the previous step.

Choose File|New File to open the Create New File dialog box. In the Name field,
type ImportTest. Select txt from the Type drop-down list. Ensure that the Directory
field is set to the directory containing TextFileImportExport.jpx, and the Add Saved
File To Project check box is checked.

2 Enter the following three rows and two columns of data (a column of integer values
and a column of string values) into the new text file.

Press Enter at the end of each row. Enter the quotation marks as well as the data.

1,"A"
2,"B"
3,"C"

3 Save and close the file.

Chapter 16: Tutor ial : Impor t ing and expor t ing data f rom a text f i le 177

Step 3: Generat ing an appl icat ion

Step 3: Generating an application
The Application wizard creates Java source files that are added to the project you just
created.

To generate source files for your application using the Application wizard, follow these
steps:

1 Choose File|New to open the object gallery.

2 Select General in the tree, and double-click the Application icon to open the
Application wizard.

3 Accept the defaults in Step 1 of the Application wizard, and click Finish.

The new Java source files are added to your project and displayed as nodes in the
project pane. The source code for Frame1.java is open in the content pane.

4 Choose File|Save All to save the source files and the project file.

Step 4: Adding DataExpress components to your application
The UI designer is used to add the DataExpress components to Frame1.java.

1 Select the Design tab for Frame1.java in the content pane.

2 Click the TextDataFile component on the DataExpress page of the component
palette, and click in the component tree or the UI designer to add the component to
your application.

The new TextDataFile component, textDataFile1, appears as a node in the
component tree in the structure pane.

3 Select the following properties in the Inspector, and set their values as indicated:

To set the fileName property, select the field to the right of the property name and
click the ellipsis (…) button to open the FileName dialog box. Click the ellipsis (…)
button in the FileName dialog box and navigate to the ImportTest.txt file, select it,
and click Open. Click OK to close the FileName dialog box.

A delimiter in a text file is a character that is used to define the beginning and end of
a string field. By default, the delimiter for string data types is a double quotation
mark. For this tutorial, no changes are needed.

A separator in a text file is a character that is used for differentiating between
column values. By default, the separator character is a tab (/t). For this example,
the separator is a comma (,). When using other text files, modify these properties
accordingly.

Specify the complete path and file name for the fileName field.

Property name Value

delimiter " (double quote)

separator , (comma)

fileName <path_to_text_data_file> (the path to ImportTest.txt, including
the file name)

178 Developing Database Appl icat ions

Step 5: Adding dbSwing components to create a user in ter face

4 Click the TableDataSet component on the DataExpress page of the component
palette, and click in the component tree or UI designer to add the component to your
application.

5 Select its dataFile property, and set it to textDataFile1.

6 Add columns to the TableDataSet component.

This tutorial describes adding columns to the data set through the UI designer. To
add columns using the editor, see “Adding columns to a TableDataSet in the editor”
on page 23. If you have completed this tutorial previously and exported the data to a
text file, JBuilder created a SCHEMA (.schema) file that provides column definitions
when the text file is opened and you do not need to add columns manually.

a Click the expand icon to the left of the TableDataSet component to expose existing
columns.

In this case, there are no existing columns.

b Select <new column>, and set the following properties in the Inspector for the first
column:

c Select <new column> again, and set the following properties in the Inspector for the
second column:

7 Choose File|Save All to save the source files and the project file.

You now have the basic components in place for retrieving and storing data from
your text file. Next, you will create a user interface for displaying and editing the
data.

Step 5: Adding dbSwing components to create a user interface
Now you are ready to create a user interface for your database application. The fastest
way to do this is to use the dbSwing components in the UI designer.

Note Normally the first step in setting up a user interface is to determine the appropriate
layout for your application (how the components are arranged visually, and which Java
Layout Manager to use to control their placement.) However, learning how to use Java
layout managers is a big task in itself. Therefore, to keep this tutorial focused on
creating a database application, you’ll use the default layout (BorderLayout), and control
the placement of the components by setting their constraints property.

To learn about using layouts, see “Using the Designer,” and “Using layout managers”
in Designing Applications with JBuilder.

Property name Value

dataType SHORT

caption my_number

columnName my_number

Property name Value

dataType STRING

caption my_string

columnName my_string

Chapter 16: Tutor ial : Impor t ing and expor t ing data f rom a text f i le 179

Step 5: Adding dbSwing components to create a user inter face

The steps below add the following UI components to the application from the dbSwing
tab on the component palette:

� JdbTable (and container), used to display two-dimensional data, in a format similar to
a spreadsheet.

� JdbNavToolBar, a set of buttons that help you navigate through the data displayed in
a JdbTable. It enables you to move quickly through the data set when the application
is running.

� JdbStatusLabel, which displays information about the current record or current
operation, and any error messages.

You will add these components to contentPane (BorderLayout), which is a JPanel, and
the main UI container into which you are going to assemble the visual components.

1 Select the dbSwing page on the component palette in the UI designer.

2 Click the JdbNavToolBar component and click the area close to the center, top edge
of the panel in the UI designer.

An instance of JdbNavToolBar, called jdbNavToolBar1, is added to the panel and is
displayed in the component tree. By default, the JdbNavToolBar component
automatically detects other data-aware components in the same root container
(such as JFrame), and navigates the DataSet of the component that currently has
focus. Therefore, you do not need to set the dataSet property for jdbNavToolBar1 in
the Inspector.

jdbNavToolBar1 is now the currently selected component, and should extend across
the top edge of the panel. Don’t worry if it went somewhere different than you
expected. The layout manager controls the placement, guessing the location by
where you clicked. If you were too close to the left or right or middle of the panel, it
may have guessed you wanted the component in a different place than you
intended. You can fix that in the next step.

3 Look at the constraints property for jdbNavToolBar1 in the Inspector.

It should have a value of NORTH. If it doesn’t, click once on the value to display a
drop-down list, and select North from the list.

4 Click the JdbStatusLabel component, and click the area close to the center, bottom
edge of the panel in the UI designer.

An instance of JdbStatusLabel, called jdbStatusLabel1, is added to the panel and is
displayed in the component tree. jdbStatusLabel1 should have a constraints
property value of SOUTH. If it doesn’t, change it in the Inspector. jdbStatusLabel1
automatically attaches itself to whichever DataSet has focus.

5 Click the TableScrollPane component on the dbSwing page of the component
palette, and click in the center of the panel in the UI designer to add the component
to your application.

The TableScrollPane component, tableScrollPane1, appears as a node in the
component tree in the structure pane.

6 Click the JdbTable component on the dbSwing page of the component palette, and
click in the component tree or UI designer to add the component to your application.

The JdbTable component, jdbTable1, appears as a node under tableScrollPane1 in
the component tree in the structure pane.

180 Developing Database Appl icat ions

Step 6: Adding a JButton Swing component

7 Set the dataSet property of jdbTable1 to tableDataSet1.

When you set the dataSet property of jdbTable1 to tableDataSet1, the data from the
text file appears in the UI designer:

You will see an error dialog if a valid data file is not specified or if the columns are
not defined correctly. If you do not instantiate a visual component to view data, you
must explicitly open the file in the source code to have access to the data.

8 Choose Run|Run Project to compile and run the application.

The running application looks like this:

Figure 16.2 Import/Export application at runtime

9 Close the running application.

When you run this application, the data in the text file is loaded into a TableDataSet and
displayed in the visual table component to which it is bound. You can now view, edit,
add, and delete data from the data set. A TableDataSet component can be used as
either a master or a detail table in a master-detail relationship. To save changes back
to the text file, you must export the data back. See “Exporting data” on page 25 for
more information on exporting.

Step 6: Adding a JButton Swing component
The JButton Swing component will be used to export data from the running application.
Exporting data, or saving data to a text file, saves all of the data in the current view to
the text file, overwriting the existing data. In this tutorial, you will resolve data from a
TableDataSet to the text file used originally to import the data. When data is exported to
a text file, all of the data in the current view is written to the text file, and the row status
information is not affected.

1 Select the Design tab of the content pane.

2 Select contentPane (BorderLayout) in the content pane and change its layout
property to null in the Inspector.

3 Select tableScrollPane1 in the component tree, and in the UI designer, grab the
upper handle and resize the component to allow room to add a button.

See the screen shot of the running application further in this tutorial for general
placement of components.

Chapter 16: Tutor ial : Impor t ing and expor t ing data f rom a text f i le 181

Step 7: Compil ing and running your appl icat ion

4 Add a JButton component from the Swing page to the UI designer, and on the
Properties tab of the Inspector, set the text property for the JButton component to
Save Changes.

5 Click the Events tab of the Inspector, and select, then double-click the
actionPerformed() method.

This changes the focus of the IDE from the Design tab to the Source tab, and
displays the stub for the actionPerformed() method in the source code.

Add the following code to the actionPerformed() method:

try {
 tableDataSet1.getDataFile().save(tableDataSet1);
 System.out.println("Changes saved");
}
catch (Exception ex) {
 System.out.println("Changes NOT saved");
 System.err.println("Exception: " + ex);
}

6 Choose File|Save All to save the source files and the project file.

Step 7: Compiling and running your application
When you compile and run your application, it includes a Save Changes button for
exporting data. When you export data from a TableDataSet to a text file, JBuilder
creates a SCHEMA (.schema) file that defines the columns by name and data type. The
next time you import the data into JBuilder, you do not have to define the columns,
because this information is already specified in the SCHEMA file.

1 Run the application by choosing Run|Run Project.

When you run the application, the application appears in its own window. Data is
displayed in a table, with a Save Changes button.

Figure 16.3 Exporting data to text file application at runtime

2 With the application running, select the string field in the first record of the Frame
window and change the value in the field from A to Apple.

3 Save the changes back to the text file by clicking the Save Changes button.

4 Open ImportTest.txt in the content pane, and note that it new contains the following
data:

1,"Apple"
2,"B"
3,"C"

182 Developing Database Appl icat ions

Step 8: Using patterns for expor t ing numer ic , date/ t ime, and text f ie lds

5 Close the text file.

JBuilder automatically creates a SCHEMA file to define the contents of the text file.

6 View the SCHEMA file in a text editor. Notice that this file contains information about
the name of the fields that have been exported and the type of data that was
exported in that field. It looks like this:

[]
FILETYPE = VARYING
FILEFORMAT = Encoded
ENCODING = Cp1252
DELIMITER = "
SEPARATOR = ,
FIELD0 = my_number,Variant.SHORT,-1,-1,
FIELD1 = my_string,Variant.STRING,-1,-1,

7 Close the SCHEMA file.

You can continue to edit, insert, delete, and save data until you close the application,
but you must click the Save Changes button to write any changes back to the text file.
When you save the changes, the existing file will be overwritten with data from the
current view.

Step 8: Using patterns for exporting numeric, date/time, and text fields
By default, JBuilder expects data entry and exports data of date, time, and currency
fields according to the locale property of the column. You can use the
exportDisplayMask property to read or save date, time, and number fields in a different
pattern. The following steps demonstrate how to create an exportDisplayMask for a new
column of type DATE.

1 Select Frame1.java in the content pane, then select the Design tab. Expand
tableDataSet1 in the component tree by clicking on the expand icon to its left. Select
<new column>, then modify the column’s properties in the Inspector as follows:

� dataType to DATE
� caption and columnName to my_date

2 Run the application. In the running application window, enter a date in the my_date
column of the first row. By default, you must enter the date in a format of dd/MM/yy,
like 16/11/95. Click the Save Changes button to save the changes back to the text
file.

3 View the text file in a text editor. It will now contain the following data:

1,"Apple",1995-11-16
2,"B"
3,"C"

4 Close the text file.

5 View the SCHEMA file in a text editor. Notice that the new date field has been added
to the list of fields. It looks like this:

[]
FILETYPE = VARYING
FILEFORMAT = Encoded
ENCODING = Cp1252
DELIMITER = "
SEPARATOR = ,
FIELD0 = my_number,Variant.SHORT,-1,-1,
FIELD1 = my_string,Variant.STRING,-1,-1,
FIELD2 = my_date,Variant.DATE,-1,-1,

6 Close the SCHEMA file.

Chapter 16: Tutor ial : Impor t ing and expor t ing data f rom a text f i le 183

Step 8: Using patterns for expor t ing numer ic , date/ t ime, and text f ie lds

The next steps show what happens when you change the date pattern, edit the data,
and save the changes again.

1 Close the running application and the text files and return to the JBuilder UI
designer. Select the my_date column and enter the following pattern into the
exportDisplayMask property in the Inspector: MM-dd-yyyy. The syntax of patterns is
defined in “String-based patterns (masks)” in the DataExpress Component Library
Reference. This type of pattern will save the date field as follows: 11-16-1995.

2 The application would produce an error now if you tried to run it, because the format
of the date field in the text file does not match the format the application is trying to
open. Manually edit the text file and remove the value “,11/16/95” from the first row.

Instead of the above step, you could manually enter code that would establish one
exportDisplayMask for importing the data and another exportDisplayMask for exporting
the data.

3 Run the application, and enter a date, such as 16/11/1995, in the my_date column of
the first row, and click the Save Changes button to save the changes back to the
text file.

4 View the text file in a text editor. It will now contain the following data:

1,"Apple",11-16-1995
2,"B"
3,"C"

5 Close the text file.

6 View the SCHEMA file in a text editor. Notice that the date field format is displayed
as part of the field definition. When the default format is used, this value is blank, as
it is in the FIELD0 definition. It looks like this:

[]
FILETYPE = VARYING
FILEFORMAT = Encoded
ENCODING = Cp1252
DELIMITER = "
SEPARATOR = ,
FIELD0 = my_number,Variant.SHORT,-1,-1,
FIELD1 = my_string,Variant.STRING,-1,-1,
FIELD2 = my_date,Variant.DATE,-1,-1,MM-dd-yyyy

7 Close the SCHEMA file.

When the text data file is imported next, the data will be imported from the information
in the SCHEMA file. To view data in the table in a different pattern, set the displayMask
property. To modify data in the table using a different pattern, set the editMask property.
These properties affect viewing and editing of the data only; they do not affect the way
data is saved. For example, to enter data into a currency field without having to enter
the currency symbol each time, use a displayMask that uses the currency symbol, and
an editMask that does not contain a currency symbol. You can choose to save the data
back to the text file with or without the currency symbol by setting the
exportDisplayMask.

184 Developing Database Appl icat ions

Chapter 17: Tutoria l : Creat ing a bas ic database appl icat ion 185

C h a p t e r

17
Chapter 17Tutorial: Creating a basic

database application
This tutorial describes how to develop a sample database application using
DataExpress components and the JBuilder design tools. Where necessary, the code
generated by the design tools will be modified to provide custom behavior.

This application demonstrates the following functionality:

� Connects to the JDataStore sample database, employee.jds, using the Database and
QueryDataSet components. (See Chapter 4, “Connecting to a database” and
“Querying a database” on page 46.)

� Contains a JdbTable which displays the data while also demonstrating the following
features:

� Persistent columns, which are columns where structure information typically
obtained from the server is specified as a column property instead. This offers
performance benefits as well as persistence of column-level properties. (See
“Persistent columns” on page 73 for more information on this feature.) In the
designer, double-click the data set to open the column designer to view more
information on each column.

� Formatting of the data displayed in the JdbTable using display masks (the
HIRE_DATE column). (See “Adding an Edit or Display Pattern for data
formatting” on page 148.)

� Data editing that is controlled using edit masks (the HIRE_DATE column). (See
“Adding an Edit or Display Pattern for data formatting” on page 148.)

� Calculated and aggregated fields which get their values as a result of an
expression evaluation (the NEW_SALARY, ORG_TOTAL, NEW_TOTAL,
DIFF_SALARY, AND DIFF_TOTAL columns). (See “Using calculated columns”
on page 142.)

186 Developing Database Appl icat ions

Tutor ial : Creat ing a bas ic database appl icat ion

� Includes a JdbStatusLabel control that displays navigation information, data
validation messages, and so on. Messages are written to the JdbStatusLabel control
when appropriate, or when instructed programmatically. (See “Displaying status
information” on page 158.)

� Displays a JdbNavToolBar for easy navigation through the data displayed in the table.

� Lets you locate data interactively using a JdbNavField which is embedded in the
JdbNavToolBar. For more information on locating data, see “Locating data” on
page 130.

� Uses a DBDisposeMonitor to automatically close the database connection when the
frame is closed.

� Resolves changes made to the data in the QueryDataSet by using default resolver
behavior. (See “Understanding default resolving” on page 87.) The Save button of
the JdbNavToolBar performs the save. Messages regarding the resolve process are
displayed in the JdbStatusLabel control.

For this tutorial, you will perform the following tasks:

� Create a JBuilder project

� Generate an application

� Add DataExpress components to access data from the database

� Design the columns for the application

� Add dbSwing components to create a user interface

� Aggregate data with calculated fields

When you have completed the tutorial, your application will look like this:

Figure 17.1 Basic database application

Chapter 17: Tutoria l : Creat ing a bas ic database appl icat ion 187

Step 1: Creat ing the project

The completed application can be viewed by opening the sample project file,
BasicApp.jpx, in <jbuilder>/samples/DataExpress/BasicApp/. There may be minor
differences between the application created in this tutorial and the sample application.
For users with read-only access to JBuilder samples, copy the samples directory into a
directory with read/write permissions.

See the Tutorials section in the JBuilder Quick Tips for useful information about
viewing and printing tutorials. The Accessibility options section in the JBuilder Quick
Tips contains tips on using JBuilder features to improve JBuilder’s ease of use for
people with disabilities.

For information on documentation conventions used in this tutorial and other JBuilder
documentation, see “Documentation conventions” on page 6.

Step 1: Creating the project
To develop your database application in JBuilder, you first need to create a new
project. To do this,

1 Choose File|New Project to display the Project wizard.

2 Type BasicApp in the Name field.

3 Click Finish to close the Project wizard and create the project. You do not need to
make any changes to the defaults on Steps 2, 3, or 4 of the wizard.

The project file BasicApp.jpx is displayed in the project pane.

Step 2: Generating an application
The Application wizard creates .java source files that are added to the project you just
created.

To generate source files for your application using the Application wizard, follow these
steps:

1 Choose File|New|General to open the General panel in the object gallery.

2 Double-click the Application icon to open the Application wizard.

3 In Step 1 of the Application wizard, accept the default package name, basicapp, type
BasicApp in the Class Name field, and click Next.

Note The package name used in this tutorial, basicapp, differs from the package name
used in the sample application, com.borland.samples.dx.basicapp, but the
applications are otherwise the same.

4 In Step 2 of the Application wizard, type BasicAppFrame in the Class field, type Sample
Database Application in the Title field, and click Finish.

The new Java source files are added to your project and displayed as nodes in the
project pane. The source code for BasicAppFrame.java is open in the content pane.

5 Choose File|Save All to save the source files and the project file.

188 Developing Database Appl icat ions

Step 3: Adding DataExpress components to your appl icat ion

Step 3: Adding DataExpress components to your application
The UI designer is used to add the DataExpress components to BasicAppFrame.java.
You will add the following DataExpress components to your application:

� Database
� QueryDataSet
� DBDisposeMonitor

These components provide the underlying database framework for the application.

1 Select the Design tab for BasicAppFrame.java in the content pane to activate the UI
designer.

The component palette appears on the side of the UI designer.

2 Select the DataExpress page of the component palette, click the Database
component, and then click in the structure pane or the UI designer to add the
component to the application.

The new Database component, database1, shows up under the Data Access node in
the structure pane, and the following line of code is added to the Frame class:

Database database1 = new Database();

3 Select the database1 component in the structure pane, select the connection property
in the Inspector, and click the ellipsis (…) button to open the Connection dialog box.

4 Set the connection properties to the JDataStore sample employee table, using the
field values in the following table.

The Connection URL points to the employee.jds file in a subdirectory of your JBuilder
installation directory, <jbuilder>.

The Connection dialog box includes a Test Connection button. Click this button to
check that the connection properties have been correctly set. Results of the
connection attempt are displayed in the status area. When the connection is
successful, click OK. If the connection is not successful, make sure you have
followed all the steps for Chapter 4, “Connecting to a database.”

5 Select the DataExpress page of the component palette, click the QueryDataSet
component, and then click in the structure pane or the UI Designer to add the
component to the application.

The new QueryDataSet component, queryDataSet1, shows up under the Data Access
node in the structure pane, and the following line of code is added to the Frame
class:

QueryDataSet queryDataSet1 = new QueryDataSet();

6 Select the query property of the QueryDataSet component in the Inspector, click the
ellipsis (…) button to open the Query dialog box, and set the following properties:

Property name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Browse to your copy of <jbuilder>/samples/JDataStore/
datastores/employee.jds

Username Enter your name (the default is “SYSDBA”)

Password Enter your password (the default is “masterkey”)

Property name Value

Database database1

SQL Statement SELECT EMP_NO, FULL_NAME, HIRE_DATE, DEPT_NO, JOB_COUNTRY,
SALARY FROM EMPLOYEE

Chapter 17: Tutoria l : Creat ing a bas ic database appl icat ion 189

Step 3: Adding DataExpress components to your appl icat ion

The SQL Statement will be run against the specified Database automatically when
the QueryDataSet is opened.

7 Click Test Query to ensure that the query is runnable.

The Query dialog box should look like this to indicate the query was successful.

Figure 17.2 Query dialog box

If the Query dialog box indicates Fail, review the information you have entered in the
query for spelling and omission errors.

8 Click OK to close the Query dialog box.

9 Select the More dbSwing page of the component palette, click the DBDisposeMonitor
component, and click in the structure pane to add the component to your
application.

The new DBDisposeMonitor component, dBDisposeMonitor1, shows up under the Data
Access node in the structure pane, and the following line of code is added to the
Frame class:

DBDisposeMonitor dBDisposeMonitor1 = new DBDisposeMonitor();

The DBDisposeMonitor will close the JDataStore when the window is closed.

10 Set the dataAwareComponentContainer property for the DBDisposeMonitor to this.

11 Expand the queryDataSet1 node in the structure pane.

Figure 17.3 queryDataSet1 node expanded

The selected columns of the sample JDataStore Employee database, employee.jds,
are displayed in the queryDataSet1 node.

You now have the basic components in place for retrieving and storing data from the
Employee database. Next, you will create a user interface for displaying and editing the
data.

190 Developing Database Appl icat ions

Step 4: Designing the columns for the appl icat ion

Step 4: Designing the columns for the application
Before we add a user interface to the application, we will,
� Add new columns and edit existing columns
� Specify a calculation for the calculated columns

Adding columns and editing column properties
1 Expand the queryDataSet1 node in the structure pane, and double-click <new column>

to add a new column.

This opens the column designer in the content pane, and loads the properties for the
new column in the inspector.

2 Change the columnName property in the Inspector from NewColumn1 to NEW_SALARY.

3 Click the Insert Column button to add additional four additional columns with the
following columnName property values:
� DIFF_SALARY
� ORIG_TOTAL
� NEW_TOTAL
� DIFF_TOTAL

4 Set properties for the columns as described in the following table:

Column Property name Value

HIRE_DATE caption Hire Date

HIRE_DATE displayMask MM-dd-yy

HIRE_DATE editMask MM-dd-yyyy

NEW_SALARY caption NEW_SALARY

NEW_SALARY calcType calculated

NEW_SALARY dataType BIGDECIMAL

NEW_SALARY visible FALSE

EMP_NO caption Employee No

FULL_NAME caption Name

FULL_NAME width 16

DEPT_NO caption Dept.

JOB_COUNTRY caption Country

JOB_COUNTRY width 15

SALARY caption Salary

ORIG_TOTAL calcType aggregated

ORIG_TOTAL caption ORIG_TOTAL

ORIG_TOTAL dataType BIGDECIMAL

NEW_TOTAL calcType aggregated

NEW_TOTAL caption New Total

NEW_TOTAL dataType BIGDECIMAL

DIFF_SALARY calcType calculated

DIFF_SALARY caption DIFF_SALARY

DIFF_SALARY dataType BIGDECIMAL

DIFF_TOTAL calcType aggregated

DIFF_TOTAL caption Diff. Total

DIFF_TOTAL dataType BIGDECIMAL

DIFF_TOTAL visible FALSE

Chapter 17: Tutoria l : Creat ing a bas ic database appl icat ion 191

Step 4: Design ing the co lumns for the appl icat ion

Editing the properties for a column makes the column persistent. When a column
has become persistent, square brackets ([]) are placed around the column name in
the structure pane. Optionally, you can set the preferredOrder property for the added
columns to –1 to accept the default column order.

When you re done editing the columns, the column designer should look similar to
this:

Figure 17.4 queryDataSet1 columns in the column designer

Specifying calculations for the calculated columns

The NEW_SALARY and DIFF_SALARY columns are calculated columns. In this
tutorial, we are giving each employee a 10% raise. The calculation adds the existing
SALARY data to the product of the existing SALARY data and 0.10. The resulting value
is placed in the NEW_SALARY column. The DIFF_SALARY is calculated by
subtracting the existing SALARY from the NEW_SALARY.

To add the calculation,

1 Select the queryDataSet1 node in the structure pane, select the Events tab of the
Inspector, and double-click the calcFields event handler.

This creates the stub for the event’s method in BasicAppFrame.java, and displays the
source code for the new method in the content pane.

2 Add the following statement to the existing import statements in BasicAppFrame.java
to import the java.math.BigDecimal class needed for the BIGDECIMAL data type
specified for the calculated columns.

import java.math.BigDecimal;

3 Modify the event method to calculate the value for NEW_SALARY and
DIFF_SALARY, as follows:

void queryDataSet1_calcFields(ReadRow changedRow, DataRow calcRow, boolean isPosted)
 throws DataSetException {
 BigDecimal bDin = changedRow.getBigDecimal("Salary");
 BigDecimal bDout = bDin.add(new BigDecimal(bDin.doubleValue()*10.0/100));
 calcRow.setBigDecimal("NEW_SALARY", bDout);
 calcRow.setBigDecimal("DIFF_SALARY", bDout.subtract(bDin));
}

This method is called for calcFields whenever a field value is saved and whenever a
row is posted. This event passes in an input which is the current values in the row
(changedRow), an output row for putting any changes you want to make to the row
(calcRow), and a boolean (isPosted) that indicates whether the row is posted in the
DataSet or not. You may not want to recalculate fields on rows that are not posted
yet.

4 Choose File|Save All to save the source files and the project file.

192 Developing Database Appl icat ions

Step 5: Adding dbSwing components to create a user in ter face

Some of the columns we added in this step are aggregated columns. We will address
these columns later in the tutorial. Let’s add a user interface to the application so we
can see what the application looks like.

Step 5: Adding dbSwing components to create a user interface
Now you are ready to create a user interface for your database application. The fastest
way to do this is to use the dbSwing components in the UI designer.

Note Normally the first step in setting up a user interface is to determine the appropriate
layout for your application (how the components are arranged visually, and which Java
Layout Manager to use to control their placement.) However, learning how to use Java
layout managers is a big task in itself. Therefore, to keep this tutorial focused on
creating a database application, you’ll use the default layout (BorderLayout), and control
the placement of the components by setting their constraints property.

To learn about using layouts, see “Introducing the Designer,” and “Using layout
managers” in Designing Applications with JBuilder.

The steps below add the following UI components to the application from the dbSwing
page on the component palette:

� JdbTable (and container), used to display two-dimensional data, in a format similar to
a spreadsheet.

� JdbNavToolBar, a set of buttons that help you navigate through the data displayed in
a JdbTable. It enables you to move quickly through the data set when the application
is running.

� JdbStatusLabel, which displays information about the current record or current
operation, and any error messages.

You will add these components to contentPane (BorderLayout), which is a JPanel, and
the main UI container into which you are going to assemble the visual components.
Additional JPanel components will be used to separate the navigation components from
the JdbStatusLabel.

To add the JdbTable component,

1 Select the Design tab for BasicAppFrame.java in the content pane to activate the UI
designer.

2 Select the dbSwing page on the component palette in the UI designer.

3 Click the TableScrollPane component on the component palette, click contentPane in
the component tree in the structure pane, or click in the center of the design surface
in the UI designer to add the component to your application.

The TableScrollPane component, tableScrollPane1, appears as a node in the
component tree in the structure pane.

4 Click the JdbTable component on the component palette, and click tableScrollPane1
in the component tree in the structure pane, or click in the center of the design
surface in the UI designer to add the component to your application.

The JdbTable component, jdbTable1, appears as a node under tableScrollPane1 in
the component tree in the structure pane.

5 Set the dataSet property of jdbTable1 to queryDataSet1.

When you set the dataSet property of jdbTable1 to queryDataSet1, the data from the
database appears in the UI designer:

Chapter 17: Tutoria l : Creat ing a bas ic database appl icat ion 193

Step 5: Adding dbSwing components to create a user inter face

Figure 17.5 JdbTable component in the UI designer

Next, we’ll add some navigation components, including a JdbNavToolBar component.
JPanel components will help separate the different types of UI elements.

To add the navigation elements,

1 Select the Swing Containers page on the component palette in the UI designer, click
the JPanel component, and click the contentPane node in the structure pane.

2 Set the layout property for jPanel1 to FlowLayout.

3 Select the More dbSwing page on the component palette, click the JdbNavField
component, and click the jPanel1 node in the structure pane.

The JdbNavField includes an incremental search feature for String type columns. Its
columnName property specifies the column in which to perform the locate. If not set,
the locate is performed on the last column visited in the JdbTable.

4 Set the preferredSize property for jdbNavField1 to 125, 21.

5 Select the Swing page on the component palette, click the JLabel component, and
click the jPanel1 node in the structure pane.

6 Set the text property for jLabel1 to Find.

7 Select the dbSwing page on the component palette, click the JdbNavToolBar
component, and click the jPanel1 node in the structure pane.

An instance of JdbNavToolBar, called jdbNavToolBar1, is added to the panel and is
displayed in the component tree. By default, the JdbNavToolBar component
automatically detects other data-aware components in the same root container, and
navigates the DataSet of the component that currently has focus. Therefore, you do
not need to set the dataSet property for jdbNavToolBar1 in the Inspector.

Note You may need to resize the designer workspace to see all the UI components.

Now, we’re ready to add the JdbStatusLabel component.

To add the JdbStatusLabel component,

1 Add another JPanel component to the contentPane node in the structure pane.

2 In the Inspector, set the contraints property for jPanel2 to South.

3 Select dbSwing page on the component palette, click the JdbStatusLabel
component, and click the area close to the center, bottom edge of the panel in the UI
designer.

An instance of JdbStatusLabel, called jdbStatusLabel1, is added to the panel and is
displayed in the component tree. jdbStatusLabel1 automatically attaches itself to
whichever DataSet has focus.

194 Developing Database Appl icat ions

Step 6: Aggregat ing data wi th ca lcu lated f ie lds

4 Choose Run|Run Project to compile and run the application.

The running application looks like this:

Figure 17.6 Basic database application with navigation bar and status label

Use the navigation bar and navigation field to move through the records. Note how
the status bar display updates as you navigate.

5 Close the running application, and save all changes (File|Save All).

To complete the application, let’s add some JdbTextField components to the UI to
display the data from the aggregated columns.

Step 6: Aggregating data with calculated fields
Now we’ll add JdbTextField components to display the data from the aggregated
columns, ORIG_TOTAL, NEW_TOTAL, and DIFF_TOTAL. These components will be
contained in a separate JPanel component within the JPanel component that contains
the JdbStatusLabel.

To add the JdbTextField components for the aggregated column data,

1 Select the Swing Containers page on the component palette in the UI designer,
select the JPanel component, and click the jPanel2 node in the structure pane.

This adds a new JPanel component, jPanel3, within jPanel2.

2 Set the layout property for jPanel3 to GridLayout and the layout property for jPanel2
to BorderLayout.

3 Select the dbSwing page on the component palette, click the JdbTextField
component, and click the jPanel3 node in the structure pane.

4 Set the dataSet property for jdbTextField1 to queryDataSet1, set the columnName
property to ORIG_TOTAL.

5 Select the Swing page on the component palette, select the JLabel component, and
click the jPanel3 node in the structure pane.

If necessary, reposition the JLabel component (jLabel2) in the UI designer to put it at
the left of the jdbTextField1 component.

6 Set the horizontalAlignment property for jLabel2 to LEADING, and the text property to
Original Total.

Chapter 17: Tutoria l : Creat ing a bas ic database appl icat ion 195

Step 6: Aggregat ing data wi th calculated f ie lds

7 Add two more JdbTextField and JLabel components, and set there properties as
described in the following table:

If necessary, adjust the positioning of the components in the UI designer.

8 Expand the queryDataSet1 node in the structure pane, and select the ORIG_TOTAL
column.

9 In the Inspector, select the agg property, and click the ellipsis (…) button to open the
Agg dialog box.

Figure 17.7 Agg dialog box

10 Choose SALARY from the Aggregate Column drop-down list, choose
SumAggOperator from the Aggregate Operation drop-down, and click OK.

11 Select the NEW_TOTAL column in the structure pane, and open the Agg dialog box.

12 Choose NEW_SALARY from the Aggregate Column drop-down list, choose
SumAggOperator from the Aggregate Operation drop-down, and click OK.

13 Select the DIFF_TOTAL column in the structure pane, and open the Agg dialog box.

14 Choose DIFF_SALARY from the Aggregate Column drop-down list, choose
SumAggOperator from the Aggregate Operation drop-down, and click OK.

15 Choose Run|Run Project to compile and run the application.

The application should display the aggregated data in the new JdbTextField
components.

Component Property name Value

jdbTextField2 dataSet queryDataSet1

jdbTextField2 columnName NEW_TOTAL

jLabel3 horizontalAlignment CENTER

jLabel3 text New Total

jdbTextField3 dataSet queryDataSet1

jdbTextField3 columnName DIFF_TOTAL

jLabel4 horizontalAlignment CENTER

jLabel4 text Difference

196 Developing Database Appl icat ions

Index 197

Symbols
? as JDBC parameter marker 57

A
accessing data 27, 45

from custom data sources 65
from data module 103
from JDBC data sources 27
from UI components 158

accessing model information 158
adding columns

for internal purposes 75
to imported text files 23
to parameterized queries 57

adding components
to data modules 104

adding parameters to queries 53
agg property editor 147
AggDescriptor objects 147
aggregating data 135

creating aggregated columns 144, 147
customizing aggregation methods 147
sample 144, 185

applications
database (2-tier) 109
generating 117

Apply button 113
ascending sort order 114
ASCII files 23

See also text files

B
binding parameter values 58
boolean data patterns 152

examples of 150
boolean patterns 148
Borland

contacting 7
developer support 7
e-mail 8
newsgroups 8
online resources 7
reporting bugs 8
technical support 7
World Wide Web 8

bugs, reporting 8
building database applications 1
bundling resources 49
business logic 103, 106

C
calculated columns 135, 142, 144

aggregating data 144, 147, 185
creating lookups with 136, 138
creating pick lists with 136
example 143
tutorial 185
types supported 142

CalculatedColumn sample 143

calculating 147
cost of goods 147
discounts 147
sales tax 147
totals 147

cascadeDeletes option 98
cascadeUpdates option 98
client database applications, developing with

InterClient 31
closing data sets 52
coding events

for data modules 106
Column component 16, 69

editing containing Java object 155
formatter property 155
formatting containing Java object 155
locale property 175
manipulating 154
overview 16, 69
persistent 153, 154
setting properties 153, 154
specifying as persistent 73
storing Java objects in 155
viewing 153

column designer 70, 153, 154
enabling 70
metadata options 71, 72
RowIterator Generator button 71

column order 134
column properties

data display 69
for multiple table queries 85

columns 69, 73
adding to StorageDataSets 75
calculated 135
changing properties for 70
controlling order of 75
exploring 165
filtering data in 121
linking on common 94
locating data in 121
lookup values in 136

See also lookup columns
setting persistent properties for 73
setting properties for 69
sorting 121
viewing information 70, 72
working with 69

common fields 93
components

JFC data-aware 157
synchronizing 157

.config files
creating for drivers 33

connecting to a database
tutorial 185

connections 27, 28
overview 27
pooling JDBC 38
problems and solutions 43
properties for databases 29
tutorial 185

Index

198 Developing Database Appl icat ions

constraints
enabling 129

controlling user input 149
controls 157
Create ResourceBundle dialog box 49
creating

master-detail relationships 93, 99
queries 46
SQL tables 170

cursors
shared 157

custom providers 65
custom resolvers 88

D
data 45

accessing 122
alternate view 152
caching 19
editing 168
exploring 172
exporting 25
extracting from a data source 45
filtering 121
finding 130
inserting 172
loading 67
locating 121, 130, 132, 133
manipulating 121
modifying 172
persisting 19, 153
providers 45
providing 45, 67
required 154
resolving 77, 78

customizing 90
resolving data

default behavior 87
resolving with stored procedures 80
retrieving 45, 65, 122
sorting 121
storing 19
viewing 168

data constraints, enabling 129
data fields, exporting 175
data filters 124

example 124
data groups 144
data import and export

tutorial 175
data input with patterns 135
data members

nontransient 86
private 86

Data Modeler
2-tier applications 109
client-server applications 109
creating

queries 166
Data Module wizard 104
data modules 103

adding business logic 106
adding components 104
adding to libraries 106
class files 106

compiling 106
creating 104, 109
referencing 106, 108
saving 106
using 106, 108
using generated 118
wizard 104
wizards 108

data patterns 148
examples of 150

data providers 45
data relationships 84

1-to-1 84
1-to-many 84
many-to-1 84
many-to-many 84

data retrieval enhancements 51
data sets 12, 52

binding parameter values 58
closing 52
enhancing performance 51
explicitly opening 52
linking 93
opening 67
returning as read-only 52
streamable 85

data sources
accessing 45
connecting to 28

data summaries 144, 185
data tables 98

displaying detail link columns 98
data types

variant 155
data-aware components 157

default data display 69
displaying columns in 153

database administration 165, 170
database applications 11

creating 122
distributed 161
generating 117
introduction 1, 11

Database class 14, 27, 28
example 28
overview 14, 27
using 28

database connections 27
monitoring 172, 174
pooling 38
properties 29

database drivers
adding to JBuilder 33
adding to project 34
all-Java 31
setting up 166

database examples 87
alternate views 152
calculated aggregations 144
calculated columns 143
creating lookups 138
creating pick lists 136
filtering data 124
master-detail relationships 94
parameterizing queries 53
ResolverEvents 89

Index 199

resolving changes 78
resolving ProcedureDataSets 80
setting up JDataStore 29, 31
StreamableDataSets 162
viewing column information 70

Database Pilot 72
Data page 168, 172
Enter SQL page 167
setting up 166
using 165
viewing column information 72
window 166

database servers, communicating with 11
database tables 165

exploring 165
database tutorials 3

basic 185
calculated aggregations 185
calculated columns 175
data import and export 175
JDBC connections 185
numeric fields 175
text fields 175
text file 175
time fields 175

database URLs 165
database-related packages 14
databases 1, 28

accessing 166
connecting to 28
connecting via JDBC 78
connection property 29
developing 1
displaying information 166
exploring 165
in distributed applications 161
indexes 165
properties (examples) 135
querying 47
UI 121, 135

DataExpress 11
applications 11
architecture 1, 11, 12
components 12, 14, 45

DataExpress Component Library 11
DataExpress components

accessing data with 45
DataExpress for EJB components 17
DataModule interface 16

customizing 104
discussed 103
overview 16
referencing 108

DataRow component 16
column order in locates 134
locating data 132, 133
overview 16

DataSet component 14
filtering data in 121
functionality 12
locating data in 121
overview 14
saving changes 77
sorting data in 121
storing Java objects 155
streamable 85

with RMI 85
DataSet package 14
DataSetData component 85

example 161
extractDataSet method 85, 86
extractDataSetChanges method 86
passing metadata 163
populating 86
sample application 161
sample application, described 161

DataSetException class 159
DataSetView component 15

overview 15
properties 152
sorting in 127
using 135, 152

DataStore component 15
DataStoreDriver component 15
date data, patterns 150
dates, importing 24
DBA 170

tasks 165
dbSwing components 17

creating database UI 17
using 157

default project, adding database drivers to 34
Delay Fetch of Detail Records Until Needed 97
delete procedures, custom 81
deleteProcedure property 81
deleting

persistent columns 74
tables 172

deploying
multi-tier applications 164

descending sort order 114
designers

column designer 70
See also column designer

detail records
fetching 97

detail tables 94
editing 98

Developer Support 7
display masks 135, 149

adding 148
displaying

data in data-aware components 69
special characters 149
status information 158

distributed applications
database 161

distributed objects
database 161

documentation conventions 6
platform conventions 7

driver manager 27
drivers

adding database drivers to project 34
adding JDBC 33
setting up for databases 166

E
edit masks 135

adding 148
editMask property 149

200 Developing Database Appl icat ions

edit/display masks 135
editing data

controlling user input 149
master-detail 98

enableDelete property 152
enableInsert property 152
enableUpdate property 152
Enter SQL page (Database Pilot) 167
errors

handling exceptions 159
See also exceptions

escape sequences 62
event handlers

custom aggregation 147
events

adding business logic 106
resolver 87

examples
adding status information 158
database resolvers 87
filtering data 124
master-detail relationships 94
parameterizing queries 53
ResolverEvents 89
resolving data changes 78
stored procedures

coding 81
viewing column information 70

exceptions
handling 159

export masks 148, 149
exportDisplayMask property 149

example 175
exporting data 25

from a QueryDataSet 25
to text files 23
using patterns 175

extractDataSet method 86
extractDataSetChanges method 86
extracting data 45

F
fetchAsNeeded property 97
fetching data 46

detail records 59, 97
from JDBC data sources 24, 61
optimizing 51

fields
linking on common 94
required 154

filtering
data 121, 124

FilterRows sample 124
flat file databases 23
fonts 6

JBuilder documentation conventions 6
formatted text files 24

importing 24
formatter property

using 155
formatting data 148

display masks for 149

G
generating

database applications 117
Group By clause 112
Group By page

Data Modeler 112
grouping data 144

H
handling

errors 159
exceptions 159

I
import masks 148, 149
importing data 21

from text files 23
indexes

database 165
unique vs. named 129

insert procedures, custom 81
insertProcedure property 81
insertRow() method 67
installing

InterClient 31
InterBase

about 31
setting up for JBuilder 31
stored procedures example 63
stored procedures return parameters 83
tips 32

Interbase 31
InterBase and InterClient

using with JBuilder 32
InterClient 31

about 31
connection errors 43
installing 31
setting up for JBuilder 31
using JDBC drivers 35

INTERNALROW 85, 86
Internet

developing client-server applications 31
InternetBeans Express 17
Intranet

developing client-server applications 31

J
Java

database drivers 31
objects containing DataSets 85
RMI with databases 161

Java data modules
saving queries 116

Java Database Connectivity See JDBC
Java interfaces

developing with InterClient 31
JBCL components

data-aware 157
JBuilder

newsgroups 8
reporting bugs 8

Index 201

JConnectionPool
optimizing performance 40

JDataStore 19
creating 21
JDBC drivers 29, 31
operations 21
package 14
using 19
verifying 21
when to use 19

JDataStore Explorer 20
JDBC 1, 27, 78

pooling connections 38
JDBC API 11
JDBC connections 27

managing 14
manipulating traffic 172
monitoring 172
overview 27
tutorial 185

JDBC data sources 24, 45, 61
accessing 27, 45
from text files 26
saving text file data 26

JDBC drivers 28
adding to JBuilder 33
adding to project 34
InterClient 35
JDataStore JDBC drivers 29, 31
setting up 31
specified in database 29
when to use 19

JDBC escape sequences 62
JDBC Monitor 172

in applications 174
starting 172
using 174

JdbNavField component 130
example 130

JdbNavToolBar component, saving data 78
JdbStatusLabel component 158

example 158
JdbTable components, sorting data in 127
JFC components 157
joining tables 93

L
libraries

adding to project 106
creating 33
required 106

Link Queries dialog box (Data Modeler) 115
linked tables

considerations 84
types 84

linking data sets 93
load options 47
Load Options field

in QueryDescriptor 47
loading data 67
local databases, accessing 166
Local InterBase Server 32
locale

property 175

locale-specific resources
loading 49

locate method 132
LocateOptions class 133
locating data 121, 130, 133

column order 134
interactive 130
locate options 133
programmatically 132
variants 134

lookup columns 136
creating 136
example 138

lookup lists 135

M
manipulating JDBC traffic 172
many-to-many data relationships 84
many-to-one data relationships 84
masks 135

for data formats 149
for editing 149
for importing/exporting 149

master tables 94
editing 98

masterDataSet property 99
master-detail relationships 115

creating 93, 99
defining 94
example 94
queries 59
resolving 100

custom 91
MasterDetail sample 94
masterLink property 94
MasterLinkDescriptor class

usage overview 94
metadata 69

discovery 69
exploring 165
obtaining 66
persisting 52, 71
setting as dynamic 72
updating in persistent columns 74
viewing 72

metaDataUpdate property
with multiple tables 85

middle-tier server implementations 85
models

accessing information about 158
MonitorButton

adding to palette 174
properties 174
using 174

monitoring
connections 172, 174
JDBC drivers 172

multi-column locates
column order 134

multi-table resolution 83
resolution order 85

multi-tier applications
deploying 164

202 Developing Database Appl icat ions

N
named

indexes 129
parameters 57

navigating
multiple data sets 157
synchronizing components 157

newsgroups 8
Borland and JBuilder 8
public 8
Usenet 8

nontransient data members 86
numeric data 24

importing 24
patterns 150

numeric fields
exporting 175

numeric patterns 148
examples of 150

O
objects

containing DataSets 85
Java 155
storing 155

one-to-many data relationships 84
one-to-many relationships 93
one-to-one data relationships 84
opening data sets 52
optimizing data retrieval 51
Oracle PL/SQL stored procedures example 64
Order By clause, adding 114
Order By page 114

P
packages

database-related 14
parameter markers 57
parameterized queries 53, 113, 114

adding columns 57
binding values 58
example 53
for master-detail records 59
supplying new values 59

ParameterRow component 16, 54, 57
parameters

return 83
specifying 48

Parameters tab (QueryDescriptor) 48
parsing

data 148
strings 149

PARTIAL option
multi-column locates 134

password, prompting for 38
Paste Column button 113
Paste Parameter button 113
patterns 135, 148

boolean data 152
date data 150
examples of 150
for data entry 149
for exporting data 175

numeric data 150
string data 151
time data 150

performance enhancing data set 51
Persist all Metadata option 71
persistent columns 154

adding 75
controlling metadata update with 74
deleting 74
overview 73

persisting
data 19, 153

pick lists 135, 136
example 136
removing 137

Place SQL Text In Resource Bundle
in QueryDescriptor 47, 49

populating SQL tables 172
private data members 86
procedure calls

server-specific 62
ProcedureDataSet component 11, 15

about 61
overview 15
resolving data 80
resolving example 80
saving changes to 81
sorting in 127

ProcedureResolver component 77
coding 81
deleteProcedure property 81
insertProcedure property 81
properties 81
saving changes with 81
updateProcedure property 81
using 80

procedures
resolving 80

projects, adding
database drivers 34

prompting for user name and password 38
provideData method 67
ProviderHelp, initData method 67
providers

creating custom 65
custom 161
of data 45

providing data
for database examples 122
from JDBC data sources 61
with parameterized queries 53

Q
queries 46

building 47
column properties of multiple tables 85
containing WHERE clause 84
creating 166
creating parameterized 53
creating with Data Modeler 109
editing directly 114
ensuring updatability 52
executing 167
Group By clause 112
master-detail 115

Index 203

multiple in Data Modeler 115
on multiple tables 84
optimizing 73
overview 46
parameterized 113, 114
required components 46
saving to data modules 116
sort order 114
SQL

Database Pilot 167
testing 114
viewing results 114
Where clause 113

query property
editor 47
parameters 48
understanding 47

query property, editor
tutorial 185

Query tab 47
QueryDataSet component 11, 15, 54

example 53, 78
exporting to a file 25
overview 15, 46, 51
query property setting 47
resolving changes 78
saving changes 79
sorting in 127

QueryDescriptor component
Parameters tab 48
Place SQL text in resource bundle option 49
Query page 47
setting properties visually 47

QueryProvider component 85
QueryResolver component 77

adding 87
customizing 87, 88
default 87
events

controlling 88
for ProcedureDataSets 80
intercepting events 88
sample 78
saving changes with 80
using 78
with stored procedures 80

R
read-only data sets 52
reconciling data 77
relational databases 93
remote

servers 27
remote databases 28

accessing 166
connecting to 28

removing
persistent columns 74
tables 172

reporting bugs 8
required data 154
resolution order

specifying 85
resolution process

controlling 88

ResolutionManager class 87
resolveOrder property 83, 85
resolver events 87
ResolverEvents sample application 88, 89
ResolverListener interface 88
ResolverResponse 88
resolvers 77

custom 77, 87, 90, 161
default 87

resolving
example 81
ProcedureResolver 81

resolving data 77, 78, 87, 90
customizing events 88
customizing resolver logic 87
default 87
handling errors 88
master-detail relationships 100
multiple tables 83
QueryDataSets 79
stored procedures 80

resource bundles 47, 49
resources

locale-specific 49
retrieving data 27, 45, 65, 122

from a data module 103
from data sources 87
through stored procedures 61

return parameters 83
RMI

streaming data 85
with databases 161

RowFilterListener interface
example 124

rowID property
using 85

RowIterator class 71

S
saveChanges() method

and rowID property 85
saving changes 78, 80, 87

master-detail relationships 100
to QueryDataSets 79

saving data 77
example 81
JdbNavToolBar component 78
multiple tables 83
ProcedureResolver 81
using QueryResolver 80

SCHEMA files 24
and exportDisplayMasks 149

schemaName property 83
Selected Sort Order Direction options 114
serializing objects 85
setResolver 87
shared cursors 157
SimpleStoredProcedure sample 80
sort order 129

SQL queries 114
unique 129

sort property editor 128
sorting data 121, 127

in JdbTable components 127
in tables 127

204 Developing Database Appl icat ions

programmatically 130
sort order 129
with design tools 128
with master-detail relationships 94

special characters 149
specifying resolution order 85
SQL Builder 47
SQL connections 27
SQL databases

connecting to 28
SQL queries 46

adding parameters 53
editing directly 114
ensuring updatability 52
Group By clause 112
master-detail 115
multiple in Data Modeler 115
optimizing 73
overview 46
required components 46
resourceable 49
saving to data modules 116
sort order 114
testing 114
view results 114
Where clause 113

SQL servers, connecting to See SQL connections
SQL Statement field

in QueryDescriptor 47
SQL statements 62

defining 47
discussion of 62
encapsulating 61
examples 47
executing 167

SQL tables
creating 170
deleting 172
from text files 25
populating 172
saving changes to 78
saving text file data 25
updating 77

SqlRes class 49
SQLResolver component 77, 87

customizing 87
for ProcedureDataSets 80
using ProcedureResolver 81
using with multiple tables 83

status information 158
status labels

adding to applications 158
StatusEvent listener 159
StorageDataSet component 15

adding empty columns 75
controlling column order 75
overview 15
saving changes 77
usage overview 45

StorageDataSet methods
insertRow() 67
startLoading() 67

storageDataSet property 152
stored procedures

creating 62
example 81

examples 63, 64, 65
InterBase 83
overview 61
ProcedureResolver 81
resolving 80
return parameters 83

streamable data sets 85
using 85

StreamableDataSets sample, running 162
streaming data 85
string conversions, with masks 149
string data, patterns 151
string patterns 148

examples of 150
strings

parsing 149
summarizing data 144, 185
Sybase stored procedures, example 65
synchronizing components 157
synonyms, displaying data in 168

T
table data

editing 172
viewing 172

tableColumnName property 83
TableDataSet component 15

exporting formatted data 175
overview 15
resolving 25
saving changes to 25
sorting in 127
usage overview 23

tableName property 83
tables

creating 170
deleting 172
editing data 168
exploring 165
linked 84
not updatable 85
populating 172
querying 122
saving changes to 78
viewing data 168

TestFrame.java sample 65
testing

queries 114
text fields, exporting 175
text files 23

exporting 23, 25
importing 21, 23
to JDBC sources 26
to SQL tables 25

TextDataFile component
resolving 26
retrieving JDBC data for 24
usage overview 23

time data, patterns 150
time fields, exporting 175
time patterns 148
time patterns, examples of 150
totals, calculating 147
transactions 78

default processing 77

Index 205

tutorials
aggregated data with calculated columns 185
basic database application 185
calculated aggregations 185
importing and exporting data from a text file 175
JDBC connections 185

two-tier applications
generating 117

U
unique indexes 129
update procedure 81
updateProcedure property 81
updating

data from data sources 87
data sources 77
SQL tables 78

URLs
adding in Data Modeler 110
opening in Data Modeler 110

Use Data Module wizard 108
Usenet newsgroups 8
user input

controlling 149
parsing 149

user name
prompting for 38

V
ValidationException 159
Variant class

locating data 134
variant data types 155
Variant.OBJECT data types

in columns 155
VariantFormatter class 148
views

displaying data in 168
of data 15

W
Where clause 113
Where page

Data Modeler 113

X
XML database components 17

206 Developing Database Appl icat ions

	Developing Database�Applications
	Contents
	Figures
	Tutorials
	Ch 1: Introduction
	Chapter summaries
	Database tutorials
	Database samples
	Related documentation
	Documentation conventions
	Developer support and resources
	Contacting Borland Developer Support
	Online resources
	World Wide Web
	Borland newsgroups
	Usenet newsgroups
	Reporting bugs

	Ch 2: Understanding JBuilder database applications
	Database application architecture
	DataExpress components
	Key features and benefits
	Overview of the DataExpress components

	DataExpress for EJB components
	InternetBeans Express
	XML database components
	dbSwing
	Data modules and the Data Modeler
	Database Pilot
	JDBC Monitor
	JDataStore and JBuilder
	When to use JDataStore versus JDBC drivers
	Additional advantages of a JDataStore
	Using the JDataStore Explorer
	JDataStore explorer operations

	InterBase and JBuilder

	Ch 3: Importing and exporting data from a text file
	Adding columns to a TableDataSet in the editor
	Importing formatted data from a text file
	Retrieving data from a JDBC data source
	Exporting data
	Exporting data from a QueryDataSet to a text file
	Saving changes from a TableDataSet to a SQL table
	Saving changes loaded from a TextDataFile to a JDBC data source

	Ch 4: Connecting to a database
	Connecting to databases
	Adding a Database component to your application
	Setting Database connection properties

	Setting up JDataStore
	Setting up InterBase and InterClient
	Using InterBase and InterClient with JBuilder
	Tips on using sample InterBase tables

	Adding a JDBC driver to JBuilder
	Creating the .library and .config files
	Adding the JDBC driver to projects

	Connecting to a database using InterClient JDBC drivers
	Using the Database component in your application
	Prompting for user name and password
	Pooling JDBC connections
	Optimizing performance of JConnectionPool
	Logging output
	Pooling example

	Troubleshooting JDataStore and InterBase connections
	Common connection error messages

	Ch 5: Retrieving data from a data source
	Querying a database
	Setting properties in the query dialog box
	The Query page
	The Parameters page
	Place SQL text in resource bundle

	Querying a database: Hints & tips
	Enhancing data set performance
	Persisting query metadata
	Opening and closing data sets
	Ensuring that a query is updatable

	Using parameterized queries to obtain data from your database
	Parameterizing a query
	Creating the application
	Adding a Parameter Row
	Adding a QueryDataSet
	Add the UI components

	Parameterized queries: Hints & tips
	Using parameters
	Re-executing the parameterized query with new parameters
	Parameterized queries in master-detail relationships

	Ch 6: Using stored procedures
	Stored procedures: hints & tips
	Escape sequences, SQL statements, and server-specific procedure calls

	Using vendor-specific stored procedures
	Using JDataStore stored procedures and user-defined functions
	Using InterBase stored procedures
	Using parameters with Oracle PL/SQL stored procedures
	Using Sybase stored procedures
	Sample application with database-server specific stored procedures

	Writing a custom data provider
	Obtaining metadata
	Invoking initData

	Obtaining actual data
	Tips on designing a custom data provider
	Understanding the provideData() method in master-detail data sets

	Ch 7: Working with columns
	Understanding Column properties and metadata
	Non-metadata Column properties
	Viewing column information in the column designer
	Generate RowIterator Class button
	Using the column designer to persist metadata
	Making metadata dynamic using the column designer
	Viewing column information in the Database Pilot

	Optimizing a query
	Setting column properties
	Setting Column properties using JBuilder’s visual design tools
	Setting properties in code

	Persistent columns
	Combining live metadata with persistent columns
	Removing persistent columns
	Using persistent columns to add empty columns to a DataSet

	Controlling column order in a DataSet

	Ch 8: Saving changes back to your data source
	Saving changes from a QueryDataSet
	Adding a button to save changes from a QueryDataSet

	Saving changes back to your data source with a stored�procedure
	Saving changes using a QueryResolver

	Coding stored procedures to handle data resolution
	Saving changes with a ProcedureResolver
	Example: Using InterBase stored procedures with return parameters

	Resolving data from multiple tables
	Considerations for the type of linkage between tables in the�query
	Table and column references (aliases) in a query string
	Controlling the setting of the column properties
	What if a table is not updatable?
	How can the user specify that a table should never be updated?

	Using DataSets with RMI (streamable data sets)
	Example: Using streamable data sets
	Using streamable DataSet methods

	Customizing the default resolver logic
	Understanding default resolving
	Adding a QueryResolver component
	Intercepting resolver events
	Using resolver events

	Writing a custom data resolver
	Handling resolver errors
	Resolving master-detail relationships

	Ch 9: Establishing a master-detail relationship
	Defining a master-detail relationship
	Creating an application with a master-detail relationship

	Fetching details
	Fetching all details at once
	Fetching selected detail records on demand

	Editing data in master-detail data sets
	Steps to creating a master-detail relationship
	Saving changes in a master-detail relationship
	Resolving master-detail data sets to a JDBC data source

	Ch 10: Using data modules to simplify data access
	Creating a data module using the design tools
	Create the data module with the wizard
	Add data components to the data module
	Adding business logic to the data module
	Using a data module
	Adding a required library to a project
	Referencing a data module in your application
	Understanding the Use DataModule wizard

	Creating data modules using the Data Modeler
	Creating queries with the Data Modeler
	Opening a URL
	Beginning a query
	Adding a Group By clause
	Selecting rows with unique column values
	Adding a Where clause
	Adding an Order By clause
	Editing the query directly
	Testing your query
	Building multiple queries
	Specifying a master-detail relationship
	Saving your queries

	Generating database applications
	Using a generated data module in your code

	Ch 11: Filtering, sorting, and locating data
	Retrieving data for the examples
	Filtering data
	Adding and removing filters

	Sorting data
	Sorting data in a JdbTable
	Sorting data using the JBuilder visual design tools
	Understanding sorting and indexing

	Sorting data in code

	Locating data
	Locating data with a JdbNavField
	Locating data programmatically
	Locating data using a DataRow
	Working with locate options
	Locates that handle any data type
	Column order in the DataRow and DataSet

	Ch 12: Adding functionality to database applications
	Using pick lists and lookups
	Data entry with a pick list
	Adding a pick list field
	Removing a pick list field
	Create a lookup using a calculated column
	Create a lookup using the PickListDescriptor parameters

	Using calculated columns
	Create a calculated column in the designer
	Aggregating data with calculated fields
	Example: Aggregating data with calculated fields

	Setting properties in the AggDescriptor
	Creating a custom aggregation event handler

	Adding an Edit or Display Pattern for data formatting
	Display masks
	Edit masks
	Using masks for importing and exporting data
	Data type dependent patterns
	Patterns for numeric data
	Patterns for date and time data
	Patterns for string data
	Patterns for boolean data

	Presenting an alternate view of the data
	Ensuring data persistence
	Making columns persistent

	Using variant data types
	Storing Java objects

	Ch 13: Using other controls and events
	Synchronizing visual components
	Accessing data and model information from a UI component
	Displaying status information
	Building an application with a JdbStatusLabel component
	Running the JdbStatusLabel application

	Handling errors and exceptions
	Overriding default DataSetException handling on controls

	Ch 14: Creating a distributed database application using DataSetData
	Understanding the sample distributed database application (using Java RMI and DataSetData)
	Setting up the sample application
	What is going on?
	Passing metadata by DataSetData
	Deploying the application on multiple tiers

	Ch 15: Database administration tasks
	Exploring database tables and metadata using the Database�Pilot
	Browsing database schema objects
	Setting up drivers to access remote and local databases
	Executing SQL statements
	Using the Explorer to view and edit table data

	Using the Database Pilot for database administration tasks
	Creating the SQL data source
	Populating a SQL table with data using JBuilder
	Deleting tables in JBuilder

	Monitoring database connections
	About the JDBC Monitor
	Using the JDBC Monitor in a running application
	Adding the MonitorButton to the Palette
	Using the MonitorButton Class from code
	Understanding MonitorButton properties

	Ch 16: Tutorial: Importing and exporting data from a text file
	Step 1: Creating the project
	Step 2: Creating the text file
	Step 3: Generating an application
	Step 4: Adding DataExpress components to your application
	Step 5: Adding dbSwing components to create a user interface
	Step 6: Adding a JButton Swing component
	Step 7: Compiling and running your application
	Step 8: Using patterns for exporting numeric, date/time, and text�fields

	Ch 17: Tutorial: Creating a basic database application
	Step 1: Creating the project
	Step 2: Generating an application
	Step 3: Adding DataExpress components to your application
	Step 4: Designing the columns for the application
	Adding columns and editing column properties
	Specifying calculations for the calculated columns

	Step 5: Adding dbSwing components to create a user interface
	Step 6: Aggregating data with calculated fields

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

